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Abstract. A review of the geometry of 3-dimensional contact metric man-
ifolds shows that generalized Sasakian manifolds and n-Einstein manifolds
are deeply interrelated. For example, it is known that a 3-dimensional
Sasakian manifold is n-Einstein. In this paper, we discuss the relationships
between several special classes of 3-dimensional contact metric manifolds
which are generalizations of 3-dimensional Sasakian manifolds. We also
provide examples illustrating our result in this paper.
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1 Introduction

It is well-known that any 3-dimensional compact oriented manifold admits a con-
tact structure [21], and hence, it admits an associated contact metric structure. There-
fore, it is natural to investigate 3-dimensional compact oriented manifolds from the
contact metric view point. We shall give a brief review of contact metric manifolds
focusing on the interrelationships between the generalizations of Sasakian manifolds
and n-Einstein contact metric manifolds. It is well known that a Sasakian manifold is
characterized as a contact metric manifold M = (M, ¢, &, n, g) whose curvature tensor
R satisfies

(1.1) R(X,Y)§ = n(Y)X —n(X)Y,

for any X, Y € X(M), where X(M) denotes the Lie algebra of all smooth vector
fields on M. As a generalization of the Sasakian manifold, Blair, Koufogiorgos and
Papantoniou [2] introduced the notion of a contact metric manifold called a (k, ut)-
contact metric manifold satisfying the condition

(1.2) R(X,Y)E = r(n(Y)X = n(X)Y) + p(n(Y)hX —n(X)hY),

for any X, Y € X(M), where x and p are constants on M and h = %i‘g(b (here, £¢ is
the Lie derivative in the direction of £). (k, p)-contact metric manifolds have attracted
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by many authors [4, 5, 9, 10, 11, 18, 20]. (k, pt)-contact metric manifolds include
Sasakian manifolds (x = 1 and h = 0), and also many examples of non-Sasakian
(K, p)-contact metric manifolds have been provided. Koufogiorgos and Tsichlias [12]
generalized the notion of a (k, p)-contact metric manifold by regarding the constants
k and g in (1.2) to be smooth functions on M, called a generalized (k, u)-contact
metric manifold. Further, the same authors [11] studied 3-dimensional generalized
(K, p)-contact metric manifolds with £&u = 0 (this condition means the function p is
constant along each integral curve of the characteristic vector field &) and showed
that it is possible to construct two families of such manifolds in R?, for any smooth
function x (k < 1) of one variable. We shall introduce an example belonging to
such families in §5, which illustrates Theorem B in the present paper. Koufogiorgos,
Markellas and Papantoniou [10] introduced the notion of a (s, u, v)-contact metric
manifold which is a generalization of the generalized (k, u)-contact metric manifold,
defined as a contact metric manifold M = (M, ¢,£,n, g) satisfying

R(X,Y)E = m(n(Y)X = n(X)Y) + u(n(Y)hX —n(X)hY)

(1.3) +v(n(Y)phX — n(X)phY).

for any X, Y € X(M), where k, u, v are smooth functions on M. In the same
paper [10], they proved that a (k, i, v)-contact metric manifold is necessarily a (k, )-
contact metric manifold if the dimension of M is greater than or equal to 5. They
also proved that the condition (1.3) is invariant under the D-homothetic deformations,
and further that, if dimM = 3, then the condition (1.3) is equivalent to the following
condition

(1.4) Q:(g—ﬁ>l+<—g+35>n®£+uh+u¢h

holding on an open and dense subset of M, where @ is the Ricci operator and r
is the scalar curvature of M ([10], Proposition 3.1). We note that x < 1 on 3-
dimensional (k, i, v)-contact metric manifold (see(3.13)). A contact metric manifold
M = (M,¢,&,m,9) is called n-Einstein if the Ricci operator @ takes the following
form

(1.5) Q=al +8n®E,

where o and 3 are some smooth functions on M. From (1.3) and (1.4), taking account
of (1.5), we may observe that the geometry of (k, i, v)-contact metric manifolds and
of generalized (k, pt)-contact metric manifolds is deeply interrelated with the general-
ization of the n-Einstein contact metric manifold in the 3-dimensional case. On the
other hand, a contact metric manifold M = (M, ¢,£,n, g) is said to be H-contact if
the characteristic vector field £ is a harmonic vector field. We remark that (k, p, v)-
contact metric manifold is H-contact. Koufogiorgos, Markellas and Papantoniou [10]
proved that a 3-dimensional H-contact manifold is a (k, 1, v)-contact metric manifold
on an open and dense subset of M ([10], Theorem 1.1). The last two of the present
authors worked on the H-contact unit tangent sphere bundles [6, 7, 14]. Concern-
ing 3-dimensional (k, u, v)-contact metric manifolds, the present authors previously
proved the following theorem.

Theorem A [8] Let M = (M,$,&,1,9) be a 3-dimensional (k, p,v)-contact metric
manifold. If the functions p and v are constant on M, then M 1is either Sasakian
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or a non-Sasakian (k, pu)-contact metric manifold with constant scalar curvature r =
2k — 2u.

In this paper, we shall prove the following theorem.

Theorem B Let M = (M,$,£,1n,9) be a 3-dimensional compact (k, u,v)-contact
metric manifold with Ep = v = 0 and let v be the scalar curvature. If either (the

inequality) r + ”72 >0orr+ "; < 0 holds everywhere on M, then M is a Sasakian

manifold or a non-Sasakian (k, p)-contact metric manifold with k = p — %2 and

12

T = — 5

We here remark that the hypothesis “M = (M, ¢,&,n, g) is a 3-dimensional (k, u, v/)-
contact metric manifold with £ = v = 0”7 is preserved under any D-homothetic
transformation [10] of the contact metric structure (¢, &, 7, g) on M. Unless otherwise

specified, the manifolds to be considered in this paper will be assumed to be connected.

2 Preliminaries

In this section, we present some basic facts about contact metric manifolds. We refer
to [1] for more details. A (2n+ 1)-dimensional smooth manifold M is called a contact
manifold if it admits a global 1-form 7 such that n A (dn)™ # 0 everywhere on M.
We call i a contact form of M. It is well known that given a contact form 7, there
exists a unique vector field &, which is called the characteristic vector field, satisfying
n(€) =1 and dn(¢, X) = 0 for any vector field X on M. A Riemannian metric g is
said to be an associated metric to a contact form 7 if there exists a (1, 1)-tensor field
¢ satisfying

where X and Y are vector fields on M. From (2.1), one can easily obtain

(2.2) =0, nop=0, g(¢X,dY)=g(X,Y)—n(X)n(Y).

The structure (¢,&, 7, g) is called a contact metric structure, and a manifold M with
a contact metric structure (¢, &, 7, g) is said to be a contact metric manifold and is
denoted by M = (M, ¢,£,n,g). Let V be the Levi-Civita connection and let R be the
corresponding Riemann curvature tensor field given by R(X,Y)=[Vx, Vy]- Vix v
for all vector fields X,Y on M. We denote by S the Ricci tensor field of type (0,2), by
Q@ the Ricci operator, and by r the scalar curvature. We define on M the operators
h, [ by setting

(2.3) WX = L(£c)X. 1X = R(X. €.

where £¢ is the Lie derivative in the direction of £. It is easily checked that h and !
are symmetric operators and satisfy the following equalities

(2.4) he =0, 1€=0, ho=—¢h.
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We also have the following formulas for a contact metric manifold:

Vx&=—¢X —¢hX, (and hence V¢§=0)
(2.5) Veo =0, Trl = g(Q¢, &) = 2n — tr(h?),
Pl — 1 = 2(¢* + h?), Veh = ¢ — ¢l — ph>.

On the other hand, a contact metric manifold for which ¢ is a Killing vector field is
called a K-contact manifold. It is well known that a contact metric manifold is K-
contact if and only if A = 0. It is well known that Sasakian manifolds are necessarily
K-contact but the converse is generally not true except in the 3-dimensional case ([1],
pp.70 and pp.76). Here, we note that on any (2n + 1)(n > 1)-dimensional 7-Einstein
K-contact manifold, the functions « and  in the defining equation (1.5) are both
constant. We may also note that any 3-dimensional Sasakian manifold is 7-Einstein
((1.4), [17]) and « + B is constant [3]. Hence, it is natural to ask whether there exists
a 3-dimensional Sasakian manifold with non-constant coefficient functions « and [ as
a n-Einstein or not. Concerning this question, to our knowledge, it seems that any
explicit example of a 3-dimensional Sasakian manifold with non-constant coefficient
functions « and § as an n-Einstein manifold has not yet appeared in any literature.
In the last section, we shall provide an explicit example of such a 3-dimensional
Sasakian manifold. Based on the above arguments, it seems worthwhile to discuss
the coefficient functions in the equation (1.4) for a 3-dimensional (s, u,v)-contact
metric manifold, along with the generalizations of a 3-dimensional Sasakian manifold
introduced in the §1.

3 Fundamental formulas

In this section, we shall prepare some fundamental formulas which we need in the
proof of the Theorem B.

Let M = (M,,&,1n,g) be a 3-dimensional contact metric manifold, and h,l be
the (1, 1) tensor fields defined by (2.3). First, we recall the following formula by [19]:

(3.1) (Vx )Y = g(X + hX,Y)§ —n(Y)(X + hX),

for any X, Y € X(M). Next, we recall that the curvature tensor R of a 3-dimensional
Riemannian manifold satisfies the following identity

R(X,Y)Z = g(Y, 2)QX — g(X, 2)QY — g(QX, Z)Y

2
32 FolQY.2)X ~ L (g(v. 2)X — (X, 2)Y),
forany X, Y, Z € X(M). Now, let U be the open subset of M on which h # 0, and V'
be the open subset of points m € M such that h = 0 on a neighborhood of m. Then,
we may easily check that U UV is an open and dense subset of M. If U is not empty,
for any m € U, we may choose a local orthonormal frame field {&, e1, ea = ¢e1} on
a neighborhood of m in such a way that

(33) h@l = )\617 h€2 = 7)\62,
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where ) is a smooth positive function on U. We may also note that, if V' is not empty,
then V becomes a Sasakian manifold (see §2).

Now, we assume that U is not empty. Then, by making use of (2.4), (2.5), (3.2) and
(3.3), we have the following basic formulas on U:

(3.4)
Veer = —aes, Vees = aeq, Ve, & =—(A+1)es, Ve, =—(A—1)eq,
1 1
Velel = 5(62)\ + A)eg, Veleg = —5(62)\ + A)61 + ()\ + 1)5,
1 1
v52€2= 5(61)\—5-3)61, v6261 :—5(61)\—%3)62—1-(/\—1)5,
and we have
1 1
(3.5) le1,e2] = _5(62/\4‘1‘1)61 + 5(61/\+B)€2 + 2¢,

where A = S(&,e1),B = S(§,e2) and a is a smooth function. Further, the Ricci
operator @ [16] on U is given by
Q¢ = 2(1 — A2)¢ + Aey + Bes,

(3.6) Qer = A+ (5 = 14+ 2% + 200 e1 + € (Ve

Qes = BE+E(N)ey + (g —14+ X - Qa)\) €.

Thus, from (3.2) and (3.6), we get that the components of the curvature tensor are
given by

(3.7)

R(e1,ex)e; = (2 — g — 2)\2) es — B¢, R(e1,ez)es = (g -2+ 2)\2> e + A,
R(e1,e2)€ = Bej — Aes, R(er,&)er = — Beg+ (A —1—2a))¢,
R(e1,&)es = Bey — E(N)E, R(e1,6)¢ = (2aX+1 = X)eq + E(Nea,
R(eg,&)er = Aey — (M), R(ez,&)ex = Bey + (=14 A + 2a))¢,
R(e2,6)¢ = €(Ner + (1 — 2a\ — A)es.

We have noted that Trl = 2(1 — A?) by (2.5). In the remaining section, we assume
that M (under consideration) is a (k, y, v)-contact metric manifold. Then, from (1.3),
we have

(3.8)
R(e1,e2)é =0, R(e1,8)¢ = (k+ Aw)er + dves, R(es,£)€ = ey + (k — Ap)es.

Thus, comparing (3.7) and (3.8), we have

(3.9) A=B=0,

(3.10) €N =\,
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(3.11) 1—X42a\ =k + Ay, 1—X—2a\ =K — Ay,
Thus, from (1.4), (2.5), (3.6), (3.9), and (3.11), we have further

(3.12) w="2a,

(3.13) K= %S(g,g) =1- %Tr(iﬁ) =1-)\%

On the other hand, from (2.4) and (3.3), taking account of (3.4), (3.9), (3.10) and
(3.12), we have

(Vern)(e2) = =(A+1),  (Ven)(§) =0, (Veyn)(er) = =(A = 1),

G e —o (Vemen =0, (Venea) = 0.
(Ve h)(e2) = —(e1N)ea + (e2A)er — A(A + 1)E,
(Ve h)(e1) = —(e1X)ea + (e2X)er + A(A — 1)¢,
(Ve h)(§) = =A(A + 1)ea, (Ve h)(§) = A(A = 1)ex,
(Veh)(er) = Aver — Apes, (Veh)(e2) = —Aveg — Apes,
(Ve 0h)(e2) = (e1M)er + (e2h)ea, (Ve 0h)(§) = A(A + 1)ey,
(Ve,dh)(e1) = (e1N)er + (e2N)ea, (Ve,0h)€ = A\ — 1)eq,
(Veph)er = Aves + e, (Veph)ea = Aver — Apes.
From (1.3), taking account of the second Bianchi identity, we get

{(Zr) (V)X = n(X)Y) + £((Vzn)(Y)X = (Vzn)(X)Y)

(
+ (Zpw)(n(Y)hX —n(X)RY) + p((Vzn)(Y)hX +n(Y)(Vzh) X
= (Vzn)(X)hY —n(X)(Vzh)Y) + (Zv)(n(Y)phX — n(X)phY')
+1(Vzn)(Y)ohX +n(Y)(Vzoh) X — (Vzn)(X)phY —n(X)(Vzeh)Y)}

for any X, Y, Z € X(M), where XG}S/Z denotes the cycle sum with respect to the

vector fields X, Y and Z. Setting X = e, ¥ = ez and Z = ¢ in (3.15), and taking
account of (3.4), (3.7) and (3.14), we have

202 =14+ N2p)€ = 2(k — N2p)€ + (Neqv — Neapn — eak)er + (e1k — Aerpn — Aeav)e,
and hence, we have
(3.16) e1k = AMeip + eav), eak = Aejv — eap).

Thus, from (3.16), taking account of (3.13), we have also

1 1
(3.17) 61)\:—§(€1M+62V), eo\ = §(€2M—€1V)-
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By the second Bianchi identity, we have further

(318) S (V§R)(61, 62)61 = 0,

§.e1,e2

Taking account of (3.4) and (3.7) with (3.9), (3.10), (3.12) and (3.13), we have

1
(VeR)(e1,e2)er = — <2§r —1-4)\21/) es,

(Ve, R)(e2,8)er = —(e1(Av) + pea )+ A(A + 1)ves,
(Ve, R)(&,e1)er = (ea(Ap) — 2Xead + ver A)E + A(A — 1)ves.

(3.19)

Thus, from (3.18) and (3.19), we have

(3.20) Er = —4\%v.
From (3.10) and (3.13), we have also

(3.21) €k = =2\
Now, from (3.4), (3.9), (3.12) and (3.13), we obtain

(3.22)
R(el, 62)61
= vel (v€261) - v62 (velel) - v[ehez]el

1 1 1 1
= {—261(61 log A\) — 562(62 log A) + Z(ez log \)? + Z(el log \)? + k + ,u} €s.

On one hand, taking account of (2.5) and (3.4), we also obtain

(3.23)
1
~3 Alog A

1

=—3 {61(61 log A) + ea(ealog A) + £(€log N) 1(62 log \)? — %(61 log )\)2} .

2
Thus, from the first equality in (3.7), (3.22) and (3.23), we have

(3.24) r=Alog\+ 2k —2u — &v.

4 Proof of Theorem B

Let M = (M, ¢,&,m,g) be a 3-dimensional compact (k, i, v)-contact metric manifold
with éu = &v = 0 on M. Now, we assume that the open subset U of M on which
h # 0, is not empty. We set

(4.1) Frin = {m € M |  takes into minimum at m},
' Frae = {m € M | k takes into maximum at m}.



Notes on some classes of 3-dimensional contact metric manifolds 61

Then, we may easily check that Fi,;, and Fj,., are both non-empty closed (and
hence, compact) subsets of M such that F,,;, C U. And, we see that each integral
curve of £ is a geodesic in M. We denote by «(t) = v(¢;m) the integral curve of &
though m € U with the arc-length parameter ¢. Then, from (3.10) and hypothesis
(v =0, we have

(4.2) Alt) = A(y(1))

for |t| < €, where € is a certain positive real number. From (3.13), (4.2), we see that
k(t) = k(y(t)) is given by

)\(m)ey(m)t.

(4.3) K(t) = 1 — A(m)2e? (M1,

for |¢| < e. Thus from (4.3), we see that, for each point m € U, v(t) € U for all t € R.
Now, we suppose that there exists a point m € U with v(m) > 0. Then, from (4.3),
we have

(4.4) lim k() = —c0.

t——+oo
Similarly, if there exists a point m € U with v(m) < 0. Then from (4.3), we have also

(4.5) lim k(t) = —o0.

t——o0

Since M is compact, we see that x (< 1) must bounded on M. But, from (4.4) and
(4.5), this is a contradiction. Therefore, it follows that v = 0 on U. Since V is
Sasakian, it follows immediately » = 0 on V. Since UUV is an open and dense subset
in M, we see that v vanishes on M and hence, the (k, i, v)-contact metric manifold
M under consideration reduces to a generalized (k, u)-contact metric manifold with
&u=0. Since v =0 on M, from (3.17), we have on U.

1 1
4.6 A =—=-By, Ay =-B
( ) 1 2 1 2 2 25

where Ay = ey A, By = e1p, Ay = ea\, By = eap. From (3.4) and (3.5), we have

(4.7) le1,€] = (g—)\—l) e, [6275]2—(g+)\—1) er.

Since v = 0, from (3.10), we have also
(4.8) EX=0.
Thus, from (4.7), taking account of (4.6) and (4.8), we obtain
— _H —(a_14H
(4.9) €A, = (A+1 2)Ag, €Ay </\ 1+ 2)A1.
Similarly, from (4.7), taking account of (4.6) and {u = 0, we obtain

(4.10) gAlz—(AH—g)Az, §A2:—(/\—1+g)A1.
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Thus, from (4.9) and (4.10), we have

(4.11) (A+1—g) Ay =0.

(4.12) </\ —1+ g) A =0.

Lemma 4.1. Ay =0 or Ay =0 at each point of U.

Proof. We assume that 4; # 0 and Ay # 0 at some point m € U. Then, from (4.11)
and (4.12), it follows that A+1—% =0 and A—1+ % = 0 at the point m, and hence,
A =0 at m. But, this is a contradiction. O

Now, we define subsets Fi, F5,G1,G2 and F of U by

G1={m e U|A1 #0 (i.e. A2 =0) at m},
Go={m e U|Ay #0 (i.e. Ay =0) at m},

Fl:{mEU|)\—1—|—%=Oatm}7

F2:{mEU|)\+1—g=Oatm},

FZ{mEU|A1:A2:0(Z€B1:BQZO) atm}

Then, taking account of (4.11) and (4.12) and Lemma 4.1, we have the following
relations.

Gy CF, Gy CFy, FiNFy, =, and

(4.13) o
U=G,UGyUF =F; UF, (disjoint union).

We have denoted by F(;) the interior of F' in U. Then, taking account of (4.9), we
may observe that, if ;) # &, then A (and hence, k) is constant on Fi;). From (4.13),
we see that G1 U G2 U F;) is an open and dense subset in U. First, we assume that

the inequality r + “72 > 0 holds on M. If G; # &, then from (3.24), taking account
of (4.12), we have

2
(4.14) Alogh=71—2(1=X) =4 - 1) =r+20~ 1) =r+ - >0

on (. Similarly, if G2 # @, then, from (3.24), taking account of (4.11), we have

vV

2
(4.15) Alog)\:r—Q(l—)\Q)+4()\+1):r+2()\+1)2:r+% 0

on G5. Therefore, we have the following inequality
(4.16) AlogA >0

on G U G4. By direct calculation, we get

1 , 1
(4.17) Alog)\:—ﬁ\gmdM +XA/\



Notes on some classes of 3-dimensional contact metric manifolds 63

on Gy U Gy. Further, since k =1 — A% on U, we get also
(4.18) Ak = =2|grad\®* =2\ A\

on G1 U Gy. Thus, from (4.17) and (4.18), we have

(4.19) Ak = —4|grad\* —2X* Alog A <0

on G1 UGsz. On the other hand, k=const on F{;). Since G1 U G2 U F; is an open and
everywhere dense subset of U, from (4.19), we have the inequality Ax < 0 on U.
If V # @, V is Sasakian (and has k = 1 on V), since Kk = 1 on V| it is evident that
Ak =0 holds on V. Since U UV is open and everywhere dense in M, we see finally
that

(4.20) Ak <0

holds on M. On the other hand, the function x takes its minimum on the non-empty
subset Fj,;n,. Therefore, by Hopf’s theorem, we see that x is constant on M, and
hence, w is also constant on M. Next, we assume that the inequality r + “72 <0
holds everywhere on M. Then, applying the similar arguments as in the previous
case where r + “72 > 0, we have Ak > 0 holds on M. Since the function x takes its
maximum on the non-empty subset Fi,,,. Therefore, by Hopf’s theorem, we see also
that x and p are both constant on M.

As the result, we see that M is a non-Sasakian (x, y)-contact metric manifold with

k= — “72 and hence r = 7% by virtue of (3.24) if U # @. On the other hand, it
is evident that M is Sasakian (x =1 and y = v = 0) if U = @. This completes the

proof of Theorem B.

5 Examples

In this section, we shall provide an example of the 3-dimensional Sasakian manifold
M = (M, ¢$,£,m,g) with non-constant coefficient functions a and § in the defining
equation (1.5) of an n-Einstein manifold are both non-constant (see Example 1),
and also an example of the 3-dimensional generalized (k, p)-contact metric manifold
which illustrates as well as supports Theorem B (see Example 2). Example 1 below
is a special case of the example introduced in Blair’s book [1].

Example 1 Let M=R3 and set

0 0 0 0
e =2—, 62:2(f— Zf—ky—),

1 =2—
(5.1) §=25 By or 7 oy

Let i be the 1-form dual to &, and define (1, 1)-tenser field ¢ by ¢¢ = 0, ¢e1 = e and
¢es = —ey. Further, let g be the Riemannian metric defined by ¢g(£,£) = 1,¢9(&,e;) =0
and g(e;,e;) = d;; for 1 < 4,5 < 2. Then, by direct calculation, we may check that
(M, $,&,n,9) is a 3-dimensional Sasakian manifold and the Ricci transformation @ is
given by

(5.2) Q=—2+24y") + (4+24y* ) @€
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on M. Therefore, from (5.2), we see that the 3-dimensional Sasakian manifold M
provides an explicit example of the n-Einstein manifold with non-constant coefficient
functions a and # in (1.5) which is mentioned in §2.

The following example which is constructed by Koufogiorgos and Tsichlias [11],
which illustrates Theorem B.

Example 2 Let M = {(x,y,2) € R*|z > 0} and set

0 0 1 .0 0 0
5.3 —_— = —2y— + (2 P U T .
(5:3) ¢ or ! y8x+( Ve 4zy)8y+82’ 2 Oy
Let n be the 1-form dual to £, and define (1, 1)-tenser field ¢ by @€ = 0, ¢e; = e and
¢pes = —ey. Further, let g be the Riemannian metric defined by ¢g(&,£) = 1,9(£,¢e;) =0
and g(e;,e;) = d;; for 1 < 4,5 < 2. Then, by direct calculation, we may check that
(M, ¢,£,1m,9) is a 3-dimensional generalized (k, i, v)-contact metric manifold with

k=1—2zp=2(1—-/2) (andV:O)andr+”72:—8%<OonM.

Thus, Example 2 shows that the compactness assumption in Theorem B plays an
essential role.

It is well-known that a 3-dimensional Lie group G admits a discrete subgroup
I' such that the space of right cosets I'\G is compact if and only if G is unimod-
ular [13]. Let G be one of the following simply connected unimodular Lie groups:
E(2), E(1,1). Then, from the proof of the Theorem B and ([2,84], [15]), we may
check that M = T'\G with a suitable discrete subgroup I" of G, provides an example
illustrating Theorem B for non-Sasakian case. Acknowledgement. This work was
supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (2011-0012987).
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