Variational problems of some second order
Lagrangians given by Pfaff forms
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Abstract. In this paper we study the dynamics of some second order
Lagrangians that come from Pfaff forms, i.e. differential forms on tangent
bundles. In the non-singular case, mainly considered in the paper, the
generalized Euler-Lagrange equation is a third order differential equation.
We prove that the solutions of the differential equations of motion of a
charge in a field and the Euler equations of a rigid body can be obtained
as particular solutions of suitable Pfaff forms, with non-negative second
variations along their solutions. A non-standard Hamiltonian approach is
also considered in the non-singular case, using energy functions associated
with suitable semi-sprays.
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1 Introduction

The Euler-Lagrange equation of a first order Lagrangian is one of the most known
and widely used variational equation in mathematics, mechanics and physics. Its
solutions are the critical curves of the action defined by the Lagrangians on curves;
in the case when the Lagrangian comes from a Riemannian, a non-Riemannian or a
Finslerian metric, these solutions are known as geodesics, since they locally minimise
the distance. The second variation decides if the solution is an extreme (see [11, Ch.1,
Sect.2]). The local expression of the first order Euler-Lagrange equation contains the
second derivatives and, in the case of a hyperregular Lagrangian, its solutions are
integral curves of a global second order differential equation.

In this paper we consider an other type of dynamics, where the local expression of a
generalized Euler-Lagrange equation contains the third derivatives and, in the regular
case, the solutions are integral curves of a global third order differential equation. The
generalized Euler-Lagrange equation is obtained by a variational method on an action
of a second order Lagrangian defined by a Pfaff form (i.e. a differential 1-form on the
tangent space of a manifold).
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According to [3, Sect. 6.3], some special regularity conditions can be considered
in this case and they are studied in detail in our paper. The second order Lagrangian
is linear in the second order velocities (accelerations), as in [8]. The Euler-Lagrange
equation of a higher order Lagrangian was firstly described by Ostrogradski and stud-
ied, for example, in the monographs [13] or in [5]. The second order Lagrangian
considered in our paper, comes from a Pfaff form and has a null Hessian. Besides
its Euler-Lagrange equation, we are interested also in the second derivative of the
variation, deduced in a classical variational way. We prove that the solutions of the
differential equations of motion of a charge in a field (formulas (17) in [4, Section 17])
and the Euler equations of a rigid body [6] can be obtained as particular solutions of
suitable Pfaff forms, with some non-negative second variations.

A dual Hamiltonian approach to higher order Lagrangians, particularly on second
order, was first used also by Ostrogradski (see, for example [13, 5]). But, technically,
this approach can not be used in the particular case when the Lagrangian is linear
in the second order velocities (or accelerations); the second order momenta can not
be related to the accelerations, since the Legendre transformation is degenerated on
fibers. We use here an unusual Hamiltonian approach, as in [8, 10] in the case of a
second and higher order Lagrangian, linear in the second or higher order velocities.
The line in [8] uses a general Hamiltonian duality that is extended in [9] to the
higher order case. More exactly, we consider energy functions of the Pfaff form,
each associated with a suitable semi-spray; then we obtain the local solutions of the
generalized Euler-Lagrange equation in some particular but relevant cases, given by
the integral curves of the second order differential equations coming from the semi-
sprays (see Propositions 3.3 and 3.4).

2 Actions on curves given by Pfaff forms

A Pfaff form is a differentiable 1-form w € X*(R x TM):
(2.1) w = wodt + w;dx’ + w;dy".
We define the action Iy of w on a curve 7 : I = [a,b] — T'M by the formula

dt dt? )

Ifw,=w;=0,wg=L:RxTM — R, then it is easy to see that I is the action
I for the Lagrangian L.
Denoting

L/(t7 :L'i7 y(l)ia y(2)l) = wO(ta xia y(l)l) + w; (ta xiv y(l)z)y(l)z + w; (t7 :L'i7 y(l)i)y(2)i’

b 7 2 .1
d d
Io(w):/ (wo+wii + o Ty at.

we obtain that Iy is in fact the variation of a second order Lagrangian, affine in the
second order velocities (accelerations), as studied in [8].
Let us consider two points z, y € M and o = (z}(t)) a curve joining = and v, i.e.
2§ (0) = z and z{(1) = y. Let us consider allowed variations of 7, as variations by
curves joining z and y, having the local form 7. = (2%(t)), where ' (t) = x}(t)+eh’(t)
and satisfying the conditions
i i dh* dh
(2.2) h*(a) = h'(b) =0, o (a) = o

(b) = 0.
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A Pfaff form can be related to a second order dynamical form considered in [3].
According to [3, Section 2], a first order dynamical form on the bundle ¥ = R x
M — M is a one contact and horizontal two form v on J!(Y'), having the local form
v=v(t, 27, y?)dz’ Ndt+1;(t, 27,y )dy’ Adt. Obviously a first order dynamical form is
equivalent to give a Pfaff form with wy = 0. An advantage to use Pfaff forms is having
the Lagrangian forms (i.e. w; = w; = 0) in the same setting. An other motivation
to study Pfaff forms is given by the possibility to use their actions on curves through
some second order Lagrangians that vertical Hessians are null.

One have:

d
— I (7e) |e=
e 0 () le=o

b ) b ) .
Owy ., Owy dh Ow; .  Ow;dh' dx)
= L h! : dt It J — Ot
/a(axl Jrayl dt) +/a(@az?' +8y’ dt)dt +

b i b - ~ i 92,7 b 270
dh Ow; . Ow;dh' d°x d“h

i ——dt I pt J O qt / 0; ———dt.
/awdt +/a(axl oy ) A Ut e

2.1 The case of non-singular Pfaff forms

A Pfaff form w given locally by (2.1) is regular if the vertical 2-form

00 6%: )dy A dy’

(2.3) ( 9y Oy

0w; 9w,
oy* oyJ
vanishing, i.e. its matrix is only non-null, we say that the Pfaff form is non-singular.

Let us consider now, for a singular curve «y, a variation that satisfies the conditions

(2.2). We have:

is regular, i.e. the matrix ( ) . is non-singular. If the vertical 2-form 2.3 is not
0,3

d
71 g) |le=
Iz 0 () le=0
(2.4)
:8(4)0 awj LI% G(Dj dzlL'(J) . i(&uo 8Wj L% w4 aa)j d2$%) + izw, -0
Oxt Ozt dt  Oxt dt2  dt Oyt Oyt dt Oyt dt? a2 ’

If the Pfaff form w is non-singular, then the equation is of third order. For a
regular Pfaff form one can prove the following result.

Proposition 2.1. If the Pfaff form w is regular, then the solutions of the generalized
Euler-Lagrange equation (2.4) are the same with the solutions of a third order equation
given by a global second order semi-spray S : T>M — T3M.

We omit the proof, since it is not relevant for the rest of the paper. Some important
classes of Pfaff forms are when wo = 0 (for example, the case of time independent
Lagrangians L = L(z% ")) and when wy = w; = 0 (for example, this is the case of
L = L(y"));



Variational problems of some second order Lagrangians 85

If w = @;(y*)dy’, then there are constants ¢; so that the equation (2.4) has the
form ,
(8% B awj)de% .
oyt Oyt di? !

Example 1. Let us consider coordinates (z,y) on R? and (z,y, X,Y) on R* =
TR?. Let w = YdX — XdY. The equations (2.4) have the form:

d <d2y) d? <dy> _0
dt \ dt? daz \dt) 7
that simply implies % =0, and % = 0. The general solution is: z(t) = C; + Cat +
Cst?, y(t) = Cy + Cst + Cet?.
Example 2. In R?, as in Example 1. above, let w = —ydz + zdy + YdX — XdY.

The equations (2.4) have the form

dy d3y dx dz

a T B B

The general solution is z(t) = ¢j cost + cgsint + ¢5, x(t) = cacost + ¢gsint + cg,
thus the integral curves are ellipses and straight lines. If t; < to < t3 are given, then
for every three distinct points A, (7a,%a) € R?, a = 1,3, there is a unique integral
curve in the family that contains the three points, i.e. ¢ — (2(t),y(t)), z(ta) = Za,
Y(ta) = Ya, a = 1,3. Notice that this feature characterizes the dynamics generated
by a third order differential equation, while in general, an integral curve is determined
by three distinct points. Let us notice that for a second order differential equation,
an integral curve is determined, in general, by two distinct points.

Let us consider now the case dimM = 1. In this case, since the only sqew-
symmetric matrix of first order is the null matrix, the equation (2.4) is always of
second order, for every Pfaff form © = wydt + wdx + wdy.

In the case when the local functions wy, w and @ do not depend on y, the Euler
equation has the form
(2.5) 2&dm+82(’u<m)2 827@@4’_%_%4_627@:
Ox dt? ox? \ dt Ox0t dt ox ot ot?

According to [2, Section 2.], a standard Lagrangian has the form

1
(2.6) L(t,z,y) = 5P(x,t)y* + Q(z, )y + R(x, ).
Its Euler-Lagrange equation is 2Pz + P, (z/)* + 2P’ + 2(Q: — R;) = 0, where
subscripts z, t denote partial derivatives and 2z’ = ‘fi—f, '’ = ‘227;”. In [2, Proposition

2.1.] one prove that there is a standard Lagrangian description (2.6) for a second
order equation
2 +a(t,z) (@) +bt,z)a’ +c(t,z) =0

iff b, = 2a;; then P = exp(2 [“a(t, s)ds) and R = [*(Qu(t,s) — c(t, s)P(t, s))ds,
where @ = Q(x,t) is an arbitrary function. The following result can be proved by a
straightforward verification.
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Proposition 2.2. The equation (2.5) admits a standard Lagrangian description.

We calculate now the second derivative of I (v.) (the second variation). Taking
into account of the conditions (2.2), we obtain:

d2
d62 IO (’V&) ‘5:0
_ 1/b( Pwo s i_ 4 Pwy 9w Vi 9*wo dhiLm)
2 Oxtdxd dt " 0xidyl = OyidxI Oytoyd dt dt
T POV R P T U
2 ), 0xi0xI dt dt " 0x*0yl  OytoxI’ dt Oy'oy! dt dt dt
1 (* dow; | Ow ;5 0w Ow; dh'dhI
5/(1 (_ﬁ(é‘xi 317j)h h +(6yi+8yj) dt E)dt—i_
1 /b( Pop_daf,,;  d (« oo 0o )d%’g) i, 0wy d’axf dh' dh
2 J, 0xi0xi dit? dt " 0xt0ys  OytdxI’ dit? Oytdoyd di?2 dt dt
1 b @ ow, 0w, ., 0w; Ow; dhidhi  d 00 Ow; dhi dhI
= —— : DR -2 ) — — (52 “)————)dt.
2/ ( dt2(8:ﬁ + BxJ)h h (8;3’ axﬂ) dt dt dt(ayl 8yi) dt dt )t

We particularize below this long formula in some important particular cases.

2.2 Some particular cases
If w = w;(y")dy’, then there are the constants ¢; such that the equation (2.4) becomes

8@]‘ o0w; dQJ% .
(2.7) <6yi — 8yj> preaimict

In this case, the second variation is

d? 0%y, 0%w; O*w; | d*xf dh® dn
Sl () le=0= (5555 — 5555~ 55=7) 5 —
de oy*oys  Oykoys  Oykoy*’ dt? dt dt

If m = dim M, then we obtain the quadratic form

(2 8) aQ(Dk . (92(:)2' o 82wj d21'18
' Oy'oyl  oykayl  oykoyt) dt* ), i

1,m

Let us consider now two examples. Even the equations of motion used in the
following examples have the second order, their integral curves are obtained from
some suitable equations of Pfaff forms. First, we consider a system that has the form

W= ey +cy? — by

yl
d
(2.9) dy? _ 3l
. g — C2tay” —cy
y3
di

Y = ey + by — ay?

where the coefficients are constants. Notice that the equations of motion of a charge
in a field (formulas (17) in [4, Section 17]) have this form.

)dt +
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Proposition 2.3. There is a Pfaff form w = @;(y")dy’ on R? such that the solutions
of the system (2.9) are also solutions of the generalized Euler-Lagrange equation (2.7).

Proof. One can check that we can consider the Pfaff form w = widy' + wody? +
wsdy®, where

(210)  wi(y)) = ey +by'y? +ay'y’ wa(y!) = ey’ + ay'y® + vy,
(2.11)  ws(y’) = —02y1 + cy1y3 + by2y3.|:|

One can find other Pfaff forms with the property asked by Proposition 2.3, looking
for w; = Bijyj + %Cijkyiyj, Cijr = Cik; (all constants).

Let us investigate the second derivative of the variation. The matrix (2.8) has in
this case the form

dy! dy? dy?
diag(ZG% —2acy —2cc3 —2beo, 2bd—yt —2bcg —2cc3 —2acq, 20% —2cc3 —2bcy —2acq).

Let us take, as in [4, Section 17], (a,b,c¢) = (0,0,1) (the z-axis) and (c1,c2,c3) =
(0,¢2,¢3) (in the YZ plane), we obtain z” = ¢z, thus the above matrix becomes
diag(—2c3, —2c3,0). Tt follows that along the solutions (;—;I(%) |e=0) has a non-
positive or non-negative sign, according to —cs; we can find a suitable c3 according
to 2(t) = Sest? + at + 3.

The second example is constructed using the Euler equations of a rigid body, as
follows. Let us consider a system of second order equations having the form

(212) IE,/ — /313/2’/, y// — ﬂQZ,Z'/, Z// — ﬂley/.
According to [6] the Euler equations of a rigid body have the above form (2.12), where

Izi-5L , §L-D
52_ 12 753_ 13 .

13

(213) b= 22,

Proposition 2.4. There is a Pfaff form w = @;(y")dy’ on R such that the solutions
of the system (2.12) are solutions of the generalized FEuler-Lagrange equation (2.7)
too.

Proof. One can check that we can consider the Pfaff form with
i Bs,1(,2\2 _ B2,1( 3\2 i B, 2 (,3\2 _ B3, 2 ( 1)2
wiy’) = Ty () -y () wy’) = Ty () - By (YY)
; 2 2
wily)) = By (y') -3 (7)) O

One can find other Pfaff forms with the property asked by Proposition 2.3, looking
for

w1 = A1yt (¥2) 2+ Byt (v°)%, 02 = Aoy (v°) 4+ Bay? (y1)?, @3 = Asy® (v*) 2+ Bsy® (v?)?,

where A; and B; are constants, and 2(As—Bs) = (1, 2(A3—B;) = B2 and 2(A;—Bs) =
Bs.
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In the explicit case of the Euler equation of the rigid body, when (2.13) holds, one
can take

ity y®) = dyt () eyt ()T 2t (1)
Wyt P y?) = R (0) et (vh) 2 (7))
w3ty ®) = et () ey ()T + el (43)°

Let us investigate the second derivative of the variation. The matrix (2.8) has the
form

Y1Y2y3ay y3by Y2b2
1 111%13 I 1315 III%IS
Y301 Yi1y2ysaz Y103
L1513 I 1515 I 1513 ’
11[213 y2%2 y1%3 Yiy2ysas
111513 I 1213 111213

where a; = (IQ — 13) (112 + 51[22[3 — 51[2[3%)7 as = (I3 — Il) (62[1[?? — 52]12[3 + 122),
az = (Ih — L) (63171 — 631115 + I3), by = I3y — Lilfy; — I3y5 + I313y3, by =
Ry} — LIty — Iy3 + LIy3, bs = Bys — LI3y5 — [3y5 + LI3y3. Tt is easy to
see that for §; large enough, the above matrix comes from a positively or negatively
definite quadratic form, according to the sign of y1y2ys.

Proposition 2.5. Let us consider the system (2.12) with the coefficients (2.13)
coming from the Fuler equation of the rigid body, in an bounded domain U, where
1,2,3
yy'y” #0. o ‘
Then there is a Pfaff form w = w;(y*)dy’ defined for (y*) € U, such that the so-
lutions of the system (2.12) are extremal solutions for the generalized Euler-Lagrange
equation (2.7), i.e. the second variation has a constant sign along these solutions.

3 A Hamiltonian description of non-singular Pfaff
forms

In this section we study the solutions of the generalized Euler-Lagrange equations for
non-singular Pfaff forms, considering an energy function associated with a Pfaff form
and a semi-spray.

A section S : R x TM — R x T2M of the affine bundle R x 72M = R x TM
is called a (first order) semi-spray on TM. It can be regarded as well as a (time
dependent) vector field I'g on the manifold 7'M, since T?M C TTM.

Let w be a Pfaff form as in (2.1) and S : R x TM — R x T?M, (¢, z%*) 5
(t, 2%, y*, Si(t,27,97)) be a semi-spray. We consider the energy:

Es: T"TM — R,E(x", ", qi,pi) = (g5 +wi)y’ + 2(pi + i) S” + wo.
Proposition 3.1. The energy Es is a global function on T*TM.

Proof. One have (g + wy)y" + 2(pr Jr@z")si/ +wo = qyi— ¥ 2L Py Y (wi —

W i)+ 2(pi + i)™ L (py + @i ) sy ¥+ wo = (gi +wi)y’ + 2(ps + @) S + w.
O
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Let
0Es 0 0fs 0 0 0  0Es O
7 9q; 0x' " Opi Dy 0a' 0q; Oy Op,
be the Hamiltonian vector field of the Hamiltonian s according to the canonical

symplectic form on T*TM and let M C T*TM be the submanifold defined by p; +
w; = 0.

(3.1) Xe

Proposition 3.2. If an integral curve of Xgg s tangent to the submanifold M, then
the curve projects to an integral curve of the generalized Fuler-Lagrange equation of

the Pfaff form w.
Proof. Let t — (x(t),y*(t),q:(t), pi(t)) be an integral curve of Xg,. By (3.1):
dx? s dy’ _

=Y = |
B2) W By Mg, 4o - 0,
Cizz':_giyg g — w; — (?9 51_2(101‘*‘%)8853 _%‘;j.
Since p; = —@;, dst =y’ and ddzﬁ = 25", one have
d?w; d  Ow; dz? 0wy d*x? dwy Ow; dx?  dwj d*z7  Bwy

2 @ay @ T T ey az Yay) o at 0w Az on

Then the Euler-Lagrange equation (2.4) holds. O
Using the definition of the submanifold M, then its tangent subspace is generated
by the local frame of vectors

{a 0o, & 0 0w 9 a}

ort  Ox @’ Ayt Oy dp;’ Oq;

Thus the vector Xg, is tangent to M in a certain point of T*T'M having as local
coordinates ((zla yi7qiapi = _wz(xj’yj)) iff

C(Ow;  Ow; Ow;  Ow; Owy
25" 2 - g —w; — ——=0.

(31/1 3yﬂ> T G Ty T T Gy

Example 3. Let us consider the setting of Example 1. and w = (X+Y)dX+YdY.
We use below the notations = 2!, y = 22, X = ¢!, Y = ¢2. Let {Si(xj,yj)}i:ﬁ
be some real functions considered as the components of a semi-spray S on R?. Then
Es(xt, 4y, qi,pi) = (¢ +wi)y® +2(p; +@;)S* and the differential system that gives the
integral curves of X¢, has the form

(3.3)

dx’ dy? . dg; dp; 0w; . 0857
=y, ogg T P 9%gi g .
a Y a g T T Ry A e
We have ql( ) = ¢? (= const.) along the solution. The condition (3.3) gives S* = +¢3
and S% = —14}. Takmg a semi-spray on R? with constant coefficients, we obtain the
equations ddit =y, ay = ¢*. Tt follows that ddtﬁ = 0. Thus all the solutions of (2.4)

are obtained in this case for a suitable semi-spray on R? with constant coefficients.
The above example can be extended as follows.
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Proposition 3.3. Let us suppose that there are some c_oordinates such that the local
coefficients of a regular Pfaff form w depend only on (y*). Then there are some local
semi-sprays whose local coefficients depend only on (y*), such that:

1. An integral curve I' of Xg, that intersects M is included in M.

2. An integral curve I' projects on M on a curve 7 that is a solution of the gener-
alized Euler-Lagrange equation of the Pfaff form w.

3. The curve 7y is obtained as an integral curve of a semi-spray whose local coeffi-
cients depend only on (y").

Proof. If the local coefficients of w depend only on (y¢), then the second equation
(3.2) implies ¢;(t) = ¢¥ (= const.) and the compatibility condition (3.3) becomes

gi <8wj 8&),) Ow; i 0 Owy

oyt Oyl

Toy Y Tl T T gy T

00; _ 0w

oyt oyl

and also the resulting solution (S?) has each component depending only on (y%). O
Example 4. Consider setting of Example 2. and the notations = = z!, y = 22,

X =y, Y =y Let {28°(a7,y’)},_15 be some real functions considered as the

Since the Pfaff form is regular, it follows that the matrix ( ) is non-singular

components of a semi-spray S on R?. Then the differential system that gives the
integral curves of X¢  reads
dz’ ; dyt . dg; Ow; ; dp;
=Y, = s T, ~Y, = —q; — W
dt dt dt ox? dt

&Dj ; _ 057

Considering 25 (2, y") = —a! + ¢; and 258%(x%,9") = —22 + co, then taking into
account Example 2., the integral curves of all semi-sprays S having this form give all
the solutions of the generalized Euler-Lagrange equation (2.4) of w.

The above example can be extended as follows.

Proposition 3.4. Let us suppose that there are some coordinates such that the local
form of a reqular Pfaff form is w = w;(2?)dx* + 0;(y?)dy* and also g:; + g‘;{ = 0.
Then there are some local semi-sprays S such that:

1. An integral curve I' of Xg, that intersects M is included in M.

2. An integral curve I' projects on M on a curve «y that is a solution of the gener-
alized Euler-Lagrange equation of the Pfaff form w.

Proof. Let us consider a semi-spray given by the condition
QSjgij = 2w; + 2¢;,

where ¢; are constants. Let ¢ — (2%(t),y*(t)) be an integral curve of the semi-spray S
and denote by T the curve t — (2(t), y(£), ¢; (t) = w; (27 () +2¢1, pi (t) = —@i (47 (1))).
Then I' C M is an integral curve of the Hamiltonian vector field X¢  (3.2), as it
can be checked by a straightforward verification. The assertion 1. follows from the
construction of I', taking into account the uniqueness of the integral curve of Xgg

passing through a given point of M. The assertion 2. follows using Proposition 3.2.
O
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