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Abstract. In this paper we study the dynamics of some second order
Lagrangians that come from Pfaff forms, i.e. differential forms on tangent
bundles. In the non-singular case, mainly considered in the paper, the
generalized Euler-Lagrange equation is a third order differential equation.
We prove that the solutions of the differential equations of motion of a
charge in a field and the Euler equations of a rigid body can be obtained
as particular solutions of suitable Pfaff forms, with non-negative second
variations along their solutions. A non-standard Hamiltonian approach is
also considered in the non-singular case, using energy functions associated
with suitable semi-sprays.
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1 Introduction

The Euler-Lagrange equation of a first order Lagrangian is one of the most known
and widely used variational equation in mathematics, mechanics and physics. Its
solutions are the critical curves of the action defined by the Lagrangians on curves;
in the case when the Lagrangian comes from a Riemannian, a non-Riemannian or a
Finslerian metric, these solutions are known as geodesics, since they locally minimise
the distance. The second variation decides if the solution is an extreme (see [11, Ch.1,
Sect.2]). The local expression of the first order Euler-Lagrange equation contains the
second derivatives and, in the case of a hyperregular Lagrangian, its solutions are
integral curves of a global second order differential equation.

In this paper we consider an other type of dynamics, where the local expression of a
generalized Euler-Lagrange equation contains the third derivatives and, in the regular
case, the solutions are integral curves of a global third order differential equation. The
generalized Euler-Lagrange equation is obtained by a variational method on an action
of a second order Lagrangian defined by a Pfaff form (i.e. a differential 1-form on the
tangent space of a manifold).
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According to [3, Sect. 6.3], some special regularity conditions can be considered
in this case and they are studied in detail in our paper. The second order Lagrangian
is linear in the second order velocities (accelerations), as in [8]. The Euler-Lagrange
equation of a higher order Lagrangian was firstly described by Ostrogradski and stud-
ied, for example, in the monographs [13] or in [5]. The second order Lagrangian
considered in our paper, comes from a Pfaff form and has a null Hessian. Besides
its Euler-Lagrange equation, we are interested also in the second derivative of the
variation, deduced in a classical variational way. We prove that the solutions of the
differential equations of motion of a charge in a field (formulas (17) in [4, Section 17])
and the Euler equations of a rigid body [6] can be obtained as particular solutions of
suitable Pfaff forms, with some non-negative second variations.

A dual Hamiltonian approach to higher order Lagrangians, particularly on second
order, was first used also by Ostrogradski (see, for example [13, 5]). But, technically,
this approach can not be used in the particular case when the Lagrangian is linear
in the second order velocities (or accelerations); the second order momenta can not
be related to the accelerations, since the Legendre transformation is degenerated on
fibers. We use here an unusual Hamiltonian approach, as in [8, 10] in the case of a
second and higher order Lagrangian, linear in the second or higher order velocities.
The line in [8] uses a general Hamiltonian duality that is extended in [9] to the
higher order case. More exactly, we consider energy functions of the Pfaff form,
each associated with a suitable semi-spray; then we obtain the local solutions of the
generalized Euler-Lagrange equation in some particular but relevant cases, given by
the integral curves of the second order differential equations coming from the semi-
sprays (see Propositions 3.3 and 3.4).

2 Actions on curves given by Pfaff forms

A Pfaff form is a differentiable 1-form ω ∈ X ∗(R× TM):

(2.1) ω = ω0dt + ωidxi + ω̄idyi.

We define the action I0 of ω on a curve γ : I = [a, b] → TM by the formula

I0 (γ) =
∫ b

a

(ω0 + ωi
dxi

dt
+ ω̄i

d2xi

dt2
)dt.

If ωi = ω̄i ≡ 0, ω0 = L : R× TM → R, then it is easy to see that I0 is the action
I for the Lagrangian L.

Denoting

L′(t, xi, y(1)i, y(2)i) = ω0(t, xi, y(1)i) + ωi(t, xi, y(1)i)y(1)i + ω̄i(t, xi, y(1)i)y(2)i,

we obtain that I0 is in fact the variation of a second order Lagrangian, affine in the
second order velocities (accelerations), as studied in [8].

Let us consider two points x, y ∈ M and γ0 = (xi
0(t)) a curve joining x and y, i.e.

xi
0(0) = x and xi

0(1) = y. Let us consider allowed variations of γ0, as variations by
curves joining x and y, having the local form γε = (xi

ε(t)), where xi
ε(t) = xi

0(t)+εhi(t)
and satisfying the conditions

(2.2) hi(a) = hi(b) = 0,
dhi

dt
(a) =

dhi

dt
(b) = 0.
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A Pfaff form can be related to a second order dynamical form considered in [3].
According to [3, Section 2], a first order dynamical form on the bundle Y = R ×
M → M is a one contact and horizontal two form ν on J1(Y ), having the local form
ν = νi(t, xj , yj)dxi∧dt+ ν̄i(t, xj , yj)dyi∧dt. Obviously a first order dynamical form is
equivalent to give a Pfaff form with ω0 = 0. An advantage to use Pfaff forms is having
the Lagrangian forms (i.e. ωi = ω̄i = 0) in the same setting. An other motivation
to study Pfaff forms is given by the possibility to use their actions on curves through
some second order Lagrangians that vertical Hessians are null.

One have:

d

dε
I0 (γε) |ε=0

=
∫ b

a

(
∂ω0

∂xi
hi +

∂ω0

∂yi

dhi

dt
)dt +

∫ b

a

(
∂ωj

∂xi
hi +

∂ωj

∂yi

dhi

dt
)
dxj

0

dt
dt +

∫ b

a

ωi
dhi

dt
dt +

∫ b

a

(
∂ω̄j

∂xi
hi +

∂ω̄j

∂yi

dhi

dt
)
d2xj

0

dt2
dt +

∫ b

a

ω̄i
d2hi

dt2
dt.

2.1 The case of non-singular Pfaff forms

A Pfaff form ω given locally by (2.1) is regular if the vertical 2-form

(2.3) (
∂ω̄j

∂yi
− ∂ω̄i

∂yj
)dy

i

∧ dyj

is regular, i.e. the matrix (∂ω̄j

∂yi − ∂ω̄i

∂yj )
i,j

is non-singular. If the vertical 2-form 2.3 is not
vanishing, i.e. its matrix is only non-null, we say that the Pfaff form is non-singular.

Let us consider now, for a singular curve γ, a variation that satisfies the conditions
(2.2). We have:

d

dε
I0 (γε) |ε=0

=
∂ω0

∂xi
+

∂ωj

∂xi

dxj
0

dt
+

∂ω̄j

∂xi

d2xj
0

dt2
− d

dt
(
∂ω0

∂yi
+

∂ωj

∂yi

dxj
0

dt
+ ωi +

∂ω̄j

∂yi

d2xj
0

dt2
) +

d2

dt2
ω̄i = 0.

(2.4)

If the Pfaff form ω is non-singular, then the equation is of third order. For a
regular Pfaff form one can prove the following result.

Proposition 2.1. If the Pfaff form ω is regular, then the solutions of the generalized
Euler-Lagrange equation (2.4) are the same with the solutions of a third order equation
given by a global second order semi-spray S : T 2M → T 3M .

We omit the proof, since it is not relevant for the rest of the paper. Some important
classes of Pfaff forms are when ω0 = 0 (for example, the case of time independent
Lagrangians L = L(xi, yi)) and when ω0 = ωi = 0 (for example, this is the case of
L = L(yi));
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If ω = ω̄j(yi)dyj , then there are constants ci so that the equation (2.4) has the
form

(
∂ω̄j

∂yi
− ∂ω̄j

∂yi
)
d2xj

0

dt2
= ci.

Example 1. Let us consider coordinates (x, y) on R2 and (x, y,X, Y ) on R4 =
TR2. Let ω = Y dX −XdY . The equations (2.4) have the form:

− d

dt

(
d2y

dt2

)
− d2

dt2

(
dy

dt

)
= 0,

that simply implies d3y
d3t = 0, and d3x

d3t = 0. The general solution is: x(t) = C1 + C2t +
C3t

2, y(t) = C4 + C5t + C6t
2.

Example 2. In R2, as in Example 1. above, let ω = −ydx + xdy + Y dX −XdY .
The equations (2.4) have the form

dy

dt
+

d3y

d3t
= 0,

dx

dt
+

d3x

d3t
= 0.

The general solution is x(t) = c1 cos t + c3 sin t + c5, x(t) = c2 cos t + c4 sin t + c6,
thus the integral curves are ellipses and straight lines. If t1 < t2 < t3 are given, then
for every three distinct points Aα(xα, yα) ∈ R2, α = 1, 3, there is a unique integral
curve in the family that contains the three points, i.e. t → (x(t), y(t)), x(tα) = xα,
y(tα) = yα, α = 1, 3. Notice that this feature characterizes the dynamics generated
by a third order differential equation, while in general, an integral curve is determined
by three distinct points. Let us notice that for a second order differential equation,
an integral curve is determined, in general, by two distinct points.

Let us consider now the case dim M = 1. In this case, since the only sqew-
symmetric matrix of first order is the null matrix, the equation (2.4) is always of
second order, for every Pfaff form ω̃ = ω0dt + ωdx + ω̄dy.

In the case when the local functions ω0, ω and ω̄ do not depend on y, the Euler
equation has the form

(2.5) 2
∂ω̄

∂x

d2x0

dt2
+

∂2ω̄

∂x2

(
dx0

dt

)2

+2
∂2ω̄

∂x∂t

dx0

dt
+

∂ω0

∂x
− ∂ω

∂t
+

∂2ω̄

∂t2
= 0.

According to [2, Section 2.], a standard Lagrangian has the form

(2.6) L(t, x, y) =
1
2
P (x, t)y2 + Q(x, t)y + R(x, t).

Its Euler-Lagrange equation is 2Px′′ + Px (x′)2 + 2Ptx
′ + 2(Qt − Rx) = 0, where

subscripts x, t denote partial derivatives and x′ = dx
dt , x′′ = d2x

dt2 . In [2, Proposition
2.1.] one prove that there is a standard Lagrangian description (2.6) for a second
order equation

x′′ + a(t, x) (x′)2 + b(t, x)x′ + c(t, x) = 0

iff bx = 2at; then P = exp(2
∫ x

a(t, s)ds) and R =
∫ x(Qt(t, s) − c(t, s)P (t, s))ds,

where Q = Q(x, t) is an arbitrary function. The following result can be proved by a
straightforward verification.
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Proposition 2.2. The equation (2.5) admits a standard Lagrangian description.

We calculate now the second derivative of I (γε) (the second variation). Taking
into account of the conditions (2.2), we obtain:

d2

dε2
I0 (γε) |ε=0

=
1
2

∫ b

a

(
∂2ω0

∂xi∂xj
hihj − d

dt
(

∂2ω0

∂xi∂yj
+

∂2ω0

∂yi∂xj
)hihj +

∂2ω0

∂yi∂yj

dhi

dt

dhj

dt
)dt +

1
2

∫ b

a

(
∂2ωk

∂xi∂xj

dxk
0

dt
hihj − d

dt
((

∂2ωk

∂xi∂yj
+

∂2ωk

∂yi∂xj
)
dxk

0

dt
)hihj +

∂2ωk

∂yi∂yj

dxk
0

dt

dhi

dt

dhj

dt
)dt +

1
2

∫ b

a

(− d

dt
(
∂ωj

∂xi
+

∂ωi

∂xj
)hihj + (

∂ωj

∂yi
+

∂ωi

∂yj
)
dhi

dt

dhj

dt
)dt +

1
2

∫ b

a

(
∂2ω̄k

∂xi∂xj

d2xk
0

dt2
hihj − d

dt
((

∂2ω̄k

∂xi∂yj
+

∂2ω̄k

∂yi∂xj
)
d2xk

0

dt2
)hihj +

∂2ω̄k

∂yi∂yj

d2xk
0

dt2
dhi

dt

dhj

dt
)dt +

1
2

∫ b

a

(− d2

dt2
(
∂ω̄j

∂xi
+

∂ω̄i

∂xj
)hihj − 2(

∂ω̄j

∂xi
+

∂ω̄i

∂xj
)
dhi

dt

dhj

dt
− d

dt
(
∂ω̄j

∂yi
+

∂ω̄i

∂yj
)
dhi

dt

dhj

dt
)dt.

We particularize below this long formula in some important particular cases.

2.2 Some particular cases

If ω = ω̄j(yi)dyj , then there are the constants ci such that the equation (2.4) becomes

(2.7)
(

∂ω̄j

∂yi
− ∂ω̄i

∂yj

)
d2xj

0

dt2
= ci.

In this case, the second variation is

d2

dε2
I0 (γε) |ε=0 = (

∂2ω̄k

∂yi∂yj
− ∂2ω̄i

∂yk∂yj
− ∂2ω̄j

∂yk∂yi
)
d2xk

0

dt2
dhi

dt

dhj

dt
.

If m = dim M , then we obtain the quadratic form

(2.8)
((

∂2ω̄k

∂yi∂yj
− ∂2ω̄i

∂yk∂yj
− ∂2ω̄j

∂yk∂yi

)
d2xk

0

dt2

)

i,j=1,m

.

Let us consider now two examples. Even the equations of motion used in the
following examples have the second order, their integral curves are obtained from
some suitable equations of Pfaff forms. First, we consider a system that has the form

(2.9)





dy1

dt = c1 + cy2 − by3

dy2

dt = c2 + ay3 − cy1

dy3

dt = c3 + by1 − ay2

where the coefficients are constants. Notice that the equations of motion of a charge
in a field (formulas (17) in [4, Section 17]) have this form.
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Proposition 2.3. There is a Pfaff form ω = ω̄j(yi)dyj on R3 such that the solutions
of the system (2.9) are also solutions of the generalized Euler-Lagrange equation (2.7).

Proof. One can check that we can consider the Pfaff form ω = ω1dy1 + ω2dy2 +
ω3dy3, where

ω1(yj) = c3y
2 + by1y2 + ay1y3, ω2(yj) = c1y

3 + ay1y2 + cy2y3,(2.10)
ω3(yj) = −c2y

1 + cy1y3 + by2y3.¤(2.11)

One can find other Pfaff forms with the property asked by Proposition 2.3, looking
for ω̄i = Bijy

j + 1
2Cijkyiyj , Cijk = Cikj (all constants).

Let us investigate the second derivative of the variation. The matrix (2.8) has in
this case the form

diag(2a
dy1

dt
−2ac1−2cc3−2bc2, 2b

dy2

dt
−2bc2−2cc3−2ac1, 2c

dy3

dt
−2cc3−2bc2−2ac1).

Let us take, as in [4, Section 17], (a, b, c) = (0, 0, 1) (the z-axis) and (c1, c2, c3) =
(0, c2, c3) (in the Y Z plane), we obtain z′′ = c3, thus the above matrix becomes
diag(−2c3,−2c3, 0). It follows that along the solutions ( d2

dε2 I (γε) |ε=0) has a non-
positive or non-negative sign, according to −c3; we can find a suitable c3 according
to z(t) = 1

2c3t
2 + αt + β.

The second example is constructed using the Euler equations of a rigid body, as
follows. Let us consider a system of second order equations having the form

(2.12) x′′ = β1y
′z′, y′′ = β2z

′x′, z′′ = β3x
′y′.

According to [6] the Euler equations of a rigid body have the above form (2.12), where

(2.13) β1 =
I2 − I3

I1
, β2 =

I3 − I1

I2
, β3 =

I1 − I2

I3
.

Proposition 2.4. There is a Pfaff form ω = ω̄j(yi)dyj on R3 such that the solutions
of the system (2.12) are solutions of the generalized Euler-Lagrange equation (2.7)
too.

Proof. One can check that we can consider the Pfaff form with

ω1(yj) = β3
4 y1

(
y2

)2 − β2
4 y1

(
y3

)2
, ω2(yj) = β1

4 y2
(
y3

)2 − β3
4 y2

(
y1

)2
,

ω3(yj) = β2
4 y3

(
y1

)2 − β1
4 y3

(
y2

)2
.¤

One can find other Pfaff forms with the property asked by Proposition 2.3, looking
for

ω̄1 = A1y
1(y2)2+B1y

1(y3)2, ω̄2 = A2y
2(y3)2+B2y

2(y1)2, ω̄3 = A3y
3(y1)2+B3y

3(y2)2,

where Ai and Bi are constants, and 2(A2−B3) = β1, 2(A3−B1) = β2 and 2(A1−B2) =
β3.
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In the explicit case of the Euler equation of the rigid body, when (2.13) holds, one
can take

ω1(y1, y2, y3) = I1
2I3

y1
(
y2

)2
+ I1

2I2
y1

(
y3

)2
+ δ1(I3−I2)

6

(
y1

)3
,

ω2(y1, y2, y3) = I2
2I1

y2
(
y3

)2
+ I2

2I3
y2

(
y1

)2
+ δ2(I1−I3)

6

(
y2

)3
,

ω3(y1, y2, y3) = I3
2I2

y3
(
y1

)2
+ I3

2I1
y3

(
y2

)2
+ δ3(I2−I1)

6

(
y3

)3
.

Let us investigate the second derivative of the variation. The matrix (2.8) has the
form

1
I1I2I3




y1y2y3a1
I1I2I3

y3b1
I1I2I3

y2b2
I1I2I3

y3b1
I1I2I3

y1y2y3a2
I1I2I3

y1b3
I1I2I3

y2b2
I1I2I3

y1b3
I1I2I3

y1y2y3a3
I1I2I3


 ,

where a1 = (I2 − I3)
(
I2
1 + δ1I

2
2I3 − δ1I2I

2
3

)
, a2 = (I3 − I1)

(
δ2I1I

2
3 − δ2I

2
1I3 + I2

2

)
,

a3 = (I1 − I2)
(
δ3I

2
1I2 − δ3I1I

2
2 + I2

3

)
, b1 = I3

1y2
1 − I3I

2
1y2

1 − I3
2y2

2 + I3I
2
2y2

2 , b2 =
I3
1y2

1 − I2I
2
1y2

1 − I3
3y2

3 + I2I
2
3y2

3 , b3 = I3
2y2

2 − I1I
2
2y2

2 − I3
3y2

3 + I1I
2
3y2

3 . It is easy to
see that for δi large enough, the above matrix comes from a positively or negatively
definite quadratic form, according to the sign of y1y2y3.

Proposition 2.5. Let us consider the system (2.12) with the coefficients (2.13)
coming from the Euler equation of the rigid body, in an bounded domain U , where
y1y2y3 6= 0.

Then there is a Pfaff form ω = ω̄j(yi)dyj defined for (yi) ∈ U , such that the so-
lutions of the system (2.12) are extremal solutions for the generalized Euler-Lagrange
equation (2.7), i.e. the second variation has a constant sign along these solutions.

3 A Hamiltonian description of non-singular Pfaff
forms

In this section we study the solutions of the generalized Euler-Lagrange equations for
non-singular Pfaff forms, considering an energy function associated with a Pfaff form
and a semi-spray.

A section S : R × TM → R × T 2M of the affine bundle R × T 2M
π2→ R × TM

is called a (first order) semi-spray on TM . It can be regarded as well as a (time
dependent) vector field Γ0 on the manifold TM , since T 2M ⊂ TTM .

Let ω be a Pfaff form as in (2.1) and S : R × TM → R × T 2M , (t, xiyi) S→
(t, xi, yi, Si(t, xj , yj)) be a semi-spray. We consider the energy:

ES : T ∗TM → R, E(xi, yi, qi, pi) = (qi + ωi)yi + 2(pi + ω̄i)Si + ω0.

Proposition 3.1. The energy ES is a global function on T ∗TM .

Proof. One have (qi′ + ωi′)yi′ + 2(pi′ + ω̄i′)Si′ + ω0 = qiy
i− yi ∂yi′

∂xi p
i′ + yi(ωi −

∂yi′

∂xi ω̄i′)+ 2(pi + ω̄i)Si+ 1
2 (pi′ + ω̄i′) ∂2xi′

∂xi∂xj y
i

yj+ ω0 = (qi + ωi)yi + 2(pi + ω̄i)Si + ω0.
¤
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Let

(3.1) XES
=

∂ES

∂qi

∂

∂xi
+

∂ES

∂pi

∂

∂yi
−∂ES

∂xi

∂

∂qi
− ∂ES

∂yi

∂

∂pi

be the Hamiltonian vector field of the Hamiltonian ES according to the canonical
symplectic form on T ∗TM and let M ⊂ T ∗TM be the submanifold defined by pi +
ω̄i = 0.

Proposition 3.2. If an integral curve of XES
is tangent to the submanifold M, then

the curve projects to an integral curve of the generalized Euler-Lagrange equation of
the Pfaff form ω.

Proof. Let t → (xi(t), yi(t), qi(t), pi(t)) be an integral curve of XES
. By (3.1):

dxi

dt
= yi,

dyi

dt
= 2Si,

dqi

dt
= −∂ωj

∂xi
yj − 2

∂ω̄j

∂xi
Sj−2(pj + ω̄j)

∂Sj

∂xi
− ∂ω0

∂xi
,(3.2)

dpi

dt
=− ∂ωj

∂yi
yj−qi − ωi − 2

∂ω̄j

∂yi
Sj − 2(pj + ω̄j)

∂Sj

∂yi
− ∂ω0

∂yi
.

Since pi = −ω̄i, dxi

dt = yi and d2xi

dt2 = 2Si, one have

d2ω̄i

dt2
=

d

dt
(
∂ωj

∂yi

dxj

dt
+ ωi +

∂ω̄j

∂yi

d2xj

dt2
+

∂ω0

∂yi
)− ∂ωj

∂xi

dxj

dt
− ∂ω̄j

∂xi

d2xj

dt2
− ∂ω0

∂xi
.

Then the Euler-Lagrange equation (2.4) holds. ¤
Using the definition of the submanifold M, then its tangent subspace is generated

by the local frame of vectors
{

∂

∂xi
− ∂ω̄j

∂xi

∂

∂pj
,

∂

∂yi
− ∂ω̄j

∂yi

∂

∂pj
,

∂

∂qj

}
.

Thus the vector XES
is tangent to M in a certain point of T ∗TM having as local

coordinates ((xi, yi, qi, pi = −ω̄i(xj , yj)) iff

(3.3) 2Si

(
∂ω̄j

∂yi
− ∂ω̄i

∂yj

)
+ yi ∂ω̄j

∂xi
−∂ωi

∂yj
yi−qj − ωj − ∂ω0

∂yj
= 0.

Example 3. Let us consider the setting of Example 1. and ω = (X+Y )dX+Y dY .
We use below the notations x = x1, y = x2, X = y1, Y = y2. Let {Si(xj , yj)}i=1,2

be some real functions considered as the components of a semi-spray S on R2. Then
ES(xi, yi, qi, pi) = (qi + ωi)yi + 2(pi + ω̄i)Si and the differential system that gives the
integral curves of XES has the form

dxi

dt
= yi,

dyi

dt
= 2Si,

dqi

dt
=0,

dpi

dt
= −qi − 2

∂ω̄j

∂yi
Sj − 2(pj + ω̄j)

∂Sj

∂yi
.

We have qi(t) = q0
i (= const.) along the solution. The condition (3.3) gives S1 = 1

4q0
2

and S2 = − 1
4q0

1 . Taking a semi-spray on R2 with constant coefficients, we obtain the

equations dxi

dt = yi, ∂yi

dt = ci. It follows that d3xi

dt2 = 0. Thus all the solutions of (2.4)
are obtained in this case for a suitable semi-spray on R2 with constant coefficients.

The above example can be extended as follows.
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Proposition 3.3. Let us suppose that there are some coordinates such that the local
coefficients of a regular Pfaff form ω depend only on (yi). Then there are some local
semi-sprays whose local coefficients depend only on (yi), such that:

1. An integral curve Γ of XES
that intersects M is included in M.

2. An integral curve Γ projects on M on a curve γ that is a solution of the gener-
alized Euler-Lagrange equation of the Pfaff form ω.

3. The curve γ is obtained as an integral curve of a semi-spray whose local coeffi-
cients depend only on (yi).

Proof. If the local coefficients of ω depend only on (yi), then the second equation
(3.2) implies qi(t) = q0

i (= const.) and the compatibility condition (3.3) becomes

Si

(
∂ω̄j

∂yi
− ∂ω̄i

∂yj

)
−∂ωi

∂yj
yi−q0

j − ωj − ∂ω0

∂yj
= 0.

Since the Pfaff form is regular, it follows that the matrix
(

∂ω̄j

∂yi − ∂ω̄i

∂yj

)
is non-singular

and also the resulting solution (Si) has each component depending only on (yi). ¤
Example 4. Consider setting of Example 2. and the notations x = x1, y = x2,

X = y1, Y = y2. Let {2Si(xj , yj)}i=1,2 be some real functions considered as the
components of a semi-spray S on R2. Then the differential system that gives the
integral curves of XES

reads

dxi

dt
= yi,

dyi

dt
= 2Si,

dqi

dt
= −∂ωj

∂xi
yj ,

dpi

dt
= −qi − ωi − 2

∂ω̄j

∂yi
Sj − 2(pj + ω̄j)

∂Sj

∂yi
.

Considering 2S1(xi, yi) = −x1 + c1 and 2S2(xi, yi) = −x2 + c2, then taking into
account Example 2., the integral curves of all semi-sprays S having this form give all
the solutions of the generalized Euler-Lagrange equation (2.4) of ω.

The above example can be extended as follows.

Proposition 3.4. Let us suppose that there are some coordinates such that the local
form of a regular Pfaff form is ω = ωi(xj)dxi + ω̄i(yj)dyi and also ∂ωi

∂xj + ∂ωj

∂xi = 0.
Then there are some local semi-sprays S such that:

1. An integral curve Γ of XES that intersects M is included in M.

2. An integral curve Γ projects on M on a curve γ that is a solution of the gener-
alized Euler-Lagrange equation of the Pfaff form ω.

Proof. Let us consider a semi-spray given by the condition

2Sjgij = 2ωi + 2ci,

where ci are constants. Let t
γ→ (xi(t), yi(t)) be an integral curve of the semi-spray S

and denote by Γ the curve t
Γ→ (xi(t), yi(t), qi(t) = ωi(xj(j))+2ci, pi(t) = −ω̄i(yj(t))).

Then Γ ⊂ M is an integral curve of the Hamiltonian vector field XES
(3.2), as it

can be checked by a straightforward verification. The assertion 1. follows from the
construction of Γ, taking into account the uniqueness of the integral curve of XES

passing through a given point of M. The assertion 2. follows using Proposition 3.2.
¤
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