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Abstract. The purpose of this paper is to study n-dimensional QR-
submanifolds of maximal QR-dimension isometrically immersed in a quater-
nionic space form and to classify such submanifolds under certain condi-
tions concerning the second fundamental form and the induced almost
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1 Introduction

Let M be a connected real n-dimensional submanifold of real codimension p immersed
in a real (n+p)-dimensional quaternionic Kähler manifold M with quaternionic Kähler
structure {F, G, H}. If there exists an r-dimensional normal distribution ν of the
normal bundle TM⊥ such that

Fνx ⊂ νx, Gνx ⊂ νx, Hνx ⊂ νx,

Fν⊥x ⊂ TxM, Gν⊥x ⊂ TxM, Hν⊥x ⊂ TxM

at each point x ∈ M , then M is called a QR-submanifold of r QR-dimension, where
ν⊥ denotes the complementary orthogonal distribution to ν in TM⊥ (cf. [1], [5], [9],
[13], [14] etc.). Real hypersurfaces, which are typical examples of QR-submanifold
with r = 0, have been investigated in many papers (cf. [15], [16] and [17] etc.) in
connection with the shape operator and the induced almost contact 3-structure (for
definition, see [11]).

On the other hand, for a QR-submanifold M of maximal QR-dimension(that is,
(p−1) QR-dimension), we can take a distinguished normal vector field ξ to M so that
ν⊥ = Span{ξ}. Many authors (cf. [5], [8], [9], [13] and [14]) studied QR-submanifolds
M of maximal QR-dimension under the following additional condition:

The distinguished normal vector field ξ is parallel with respect to the normal con-
nection induced on the normal bundle of M .
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In this paper we shall determine QR-submanifolds of maximal QR-dimension iso-
metrically immersed in a quaternionic space form under the conditions given in (3.1)
without the additional condition mentioned above. In particular we have Theorems
3.3 and 5.3 which are improvements of theorems provided in [9, Theorem 1.1, p.656]
and [5, Theorem 2, p.588], respectively.

All manifolds, submanifolds and geometric objects will be assumed to be con-
nected, differentiable and of class C∞, and all maps also be of class C∞ if not stated
otherwise.

2 Preliminaries

Let M be a real (n+p)-dimensional quaternionic Kähler manifold. Then, by definition,
there is a 3-dimensional vector bundle V consisting of tensor fields of type (1,1) over
M satisfying the following conditions (a), (b) and (c):

(a) In any coordinate neighborhood U , there is a local basis {F , G, H} of V such
that

(2.1)
F 2 = −I, G2 = −I, H2 = −I,

FG = −GF = H, GH = −HG = F, HF = −FH = G.

(b) There is a Riemannian metric g which is Hermitian with respect to all of F ,
G and H.

(c) For the Riemannian connection ∇ with respect to g, we have

(2.2)



∇F
∇G
∇H


 =




0 r −q
−r 0 p
q −p 0







F
G
H


 ,

where p, q and r are local 1-forms defined in U . Such a local basis {F, G, H} is called
a canonical local basis of the bundle V in U (cf. [6] and [7]).

For canonical local bases {F,G, H} and {′F, ′G, ′H} of V in coordinate neighbor-
hoods U and ′U respectively, it follows that in U ∩ ′U



′F
′G
′H


 = (sxy)




F
G
H


, (x, y = 1, 2, 3),

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a consequence of
(2.1). It is well known that every quaternionic Kähler manifold is orientable (cf. [6]
and [7]).

Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
namely, (p − 1) QR-dimension isometrically immersed in M . Then by definition
there is a unit normal vector field ξ such that ν⊥x = Span{ξ} at each point x ∈ M .
We set

U = −Fξ, V = −Gξ, W = −Hξ.(2.3)
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Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM

of TxM , we have D⊥x ⊃ Span{U, V, W}, where D⊥x means the complementary or-
thogonal subspace to Dx in TxM . But, using (2.1) and (2.3), we can prove that
D⊥x = Span{U, V,W} (cf. [1] and [14]). Thus we have

TxM = Dx ⊕ Span{U, V,W}, ∀x ∈ M,

which together with (2.1) and (2.3) implies

FTxM, GTxM, HTxM ⊂ TxM ⊕ Span{ξ}.

Therefore, for any tangent vector field X and for a local orthonormal basis {ξα}α=1,...,p

(ξ1 := ξ) of normal vectors to M , we have the following decomposition in tangential
and normal components:

FX = φX + u(X)ξ, GX = ψX + v(X)ξ, HX = θX + w(X)ξ,(2.4)

Fξα =
p∑

β=2

P1αβξβ , Gξα =
p∑

β=2

P2αβξβ , Hξα =
p∑

β=2

P3αβξβ , α = 2, . . . , p.(2.5)

Then it is easily seen that {φ, ψ, θ} are skew-symmetric endomorphisms acting on
TxM . Moreover, from (2.3), (2.4), (2.5) and the Hermitian property of {F, G, H}, it
follows that

(2.6)
g(U,X) = u(X), g(V, X) = v(X), g(W,X) = w(X),
u(U) = 1, v(V ) = 1, w(W ) = 1,

φU = 0, ψV = 0, θW = 0.

Next, applying F to the first equation of (2.4) and using (2.1), (2.3), (2.4) and
(2.6), we have

φ2X = −X + u(X)U, u(φX) = 0.

Similarly taking account of the second and the third equations of (2.4), consequently
we get

φ2X = −X + u(X)U, ψ2X = −X + v(X)V, θ2X = −X + w(X)W,(2.7)

u(φX) = g(φX, U) = 0, v(ψX) = g(ψX, V ) = 0, w(θX) = g(θX, W ) = 0.(2.8)

Applying G and H respectively to the first equation of (2.4) and using (2.1), (2.3)
and (2.4), we have

θX + w(X)ξ = −ψ(φX)− v(φX)ξ + u(X)V,

ψX + v(X)ξ = θ(φX) + w(φX)ξ − u(X)W,
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respectively. Thus we can see that

ψ(φX) = −θX + u(X)V, v(φX) = −w(X),
θ(φX) = ψX + u(X)W, w(φX) = v(X).

(2.9)

Therefore, according to similar method as the above, the second and the third equa-
tions of (2.4) also yield respectively

φ(ψX) = θX + v(X)U, u(ψX) = w(X),
θ(ψX) = −φX + v(X)W, w(ψX) = −u(X),

(2.10)

φ(θX) = −ψX + w(X)U, u(θX) = −v(X),
ψ(θX) = φX + w(X)V, v(θX) = u(X).

(2.11)

Moreover, from (2.8) joined with the skew-symmetry of φ, ψ and θ, it follows that

ψU = −W, v(U) = 0, θU = V, w(U) = 0,

φV = W, u(V ) = 0, θV = −U, w(V ) = 0,

φW = −V, u(W ) = 0, ψW = U, v(W ) = 0,

(2.12)

where we have used (2.9), (2.10) and (2.11).
The equations (2.6)-(2.12) tell us that M admits the so-called almost contact 3-

structure (for definition, see [11]) and consequently it is seen that the dimension n of
M satisfies the equality n = 4m + 3 for some integer m.

On the other hand, since the normal distribution ν is quaternionic invariant, we
can take a local orthonormal basis {ξ, ξa, ξa∗ , ξa∗∗ , ξa∗∗∗}a=1,...,q:= p−1

4
of normal vec-

tors to M such that

ξa∗ := Fξa, ξa∗∗ := Gξa, ξa∗∗∗ := Hξa.(2.13)

Now let ∇ be the Levi-Civita connection on M and let ∇⊥ the normal connection
of TM⊥ induced from ∇. Then Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X, Y ),(2.14)

∇Xξ = −AX +∇⊥Xξ = −AX+
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗

+ sa∗∗(X)ξa∗∗ + sa∗∗∗(X)ξa∗∗∗},
(2.151)

∇Xξa = −AaX − sa(X)ξ+
q∑

b=1

{sab(X)ξb + sab∗(X)ξb∗

+ sab∗∗(X)ξb∗∗ + sab∗∗∗(X)ξb∗∗∗},
(2.152)

∇Xξa∗ = −Aa∗X − sa∗(X)ξ+
q∑

b=1

{sa∗b(X)ξb + sa∗b∗(X)ξb∗

+ sa∗b∗∗(X)ξb∗∗ + sa∗b∗∗∗(X)ξb∗∗∗},
(2.153)



Certain QR-submanifolds of maximal QR-dimension 35

∇Xξa∗∗ = −Aa∗∗X − sa∗∗(X)ξ+
q∑

b=1

{sa∗∗b(X)ξb + sa∗∗b∗(X)ξb∗

+ sa∗∗b∗∗(X)ξb∗∗ + sa∗∗b∗∗∗(X)ξb∗∗∗},
(2.154)

∇Xξa∗∗∗ = −Aa∗∗∗X − sa∗∗∗(X)ξ +
q∑

b=1

{sa∗∗∗b(X)ξb + sa∗∗∗b∗(X)ξb∗

+ sa∗∗∗b∗∗(X)ξb∗∗ + sa∗∗∗b∗∗∗(X)ξb∗∗∗}
(2.155)

for vector fields X and Y tangent to M , where s′s are the coefficients of the normal
connection ∇⊥. Here and in the sequel h denotes the second fundamental form and
A, Aa, Aa∗ , Aa∗∗ , Aa∗∗∗ the shape operators corresponding to the normals ξ, ξa, ξa∗ ,
ξa∗∗ , ξa∗∗∗ , respectively. They are related by

h(X,Y ) = g(AX, Y )ξ +
q∑

a=1

{g(AaX, Y )ξa + g(Aa∗X, Y )ξa∗

+ g(Aa∗∗X, Y )ξa∗∗ + g(Aa∗∗∗X, Y )ξa∗∗∗}.
(2.16)

By means of (2.1)-(2.4), (2.13) and (2.151−5), it can be easily verified that

AaX = −φAa∗X + sa∗(X)U
= −ψAa∗∗X + sa∗∗(X)V = −θAa∗∗∗X + sa∗∗∗(X)W,

(2.171)

Aa∗X = φAaX − sa(X)U
= ψAa∗∗∗X − sa∗∗∗(X)V = −θAa∗∗X + sa∗∗(X)W,

(2.172)

Aa∗∗X = −φAa∗∗∗X + sa∗∗∗(X)U
= ψAaX − sa(X)V = θAa∗X − sa∗(X)W,

(2.173)

Aa∗∗∗X = φAa∗∗X − sa∗∗(X)U
= −ψAa∗X + sa∗(X)V = θAaX − sa(X)W,

(2.174)

(2.181) sa(X) = −u(Aa∗X) = −v(Aa∗∗X) = −w(Aa∗∗∗X),

(2.182) sa∗(X) = u(AaX) = v(Aa∗∗∗X) = −w(Aa∗∗X),

(2.183) sa∗∗(X) = −u(Aa∗∗∗X) = v(AaX) = w(Aa∗X),

(2.184) sa∗∗∗(X) = u(Aa∗∗X) = −v(Aa∗X) = w(AaX).
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Moreover, since φ, ψ, θ are skew-symmetric and Aa, Aa∗ , Aa∗∗ , Aa∗∗∗ are sym-
metric, (2.171−4) together with (2.6) yield

g((Aaφ + φAa)X, Y ) = sa(X)u(Y )− sa(Y )u(X),
g((Aaψ + ψAa)X,Y ) = sa(X)v(Y )− sa(Y )v(X),
g((Aaθ + θAa)X, Y ) = sa(X)w(Y )− sa(Y )w(X),

(2.191)

g((Aa∗φ + φAa∗)X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),
g((Aa∗ψ + ψAa∗)X,Y ) = sa∗(X)v(Y )− sa∗(Y )v(X),
g((Aa∗θ + θAa∗)X, Y ) = sa∗(X)w(Y )− sa∗(Y )w(X),

(2.192)

g((Aa∗∗φ + φAa∗∗)X,Y ) = sa∗∗(X)u(Y )− sa∗∗(Y )u(X),
g((Aa∗∗ψ + ψAa∗∗)X,Y ) = sa∗∗(X)v(Y )− sa∗∗(Y )v(X),
g((Aa∗∗θ + θAa∗∗)X, Y ) = sa∗∗(X)w(Y )− sa∗∗(Y )w(X),

(2.193)

g((Aa∗∗∗φ + φAa∗∗∗)X,Y ) = sa∗∗∗(X)u(Y )− sa∗∗∗(Y )u(X),
g((Aa∗∗∗ψ + ψAa∗∗∗)X,Y ) = sa∗∗∗(X)v(Y )− sa∗∗∗(Y )v(X),
g((Aa∗∗∗θ + θAa∗∗)X,Y ) = sa∗∗∗(X)w(Y )− sa∗∗∗(Y )w(X).

(2.194)

On the other side, since the ambient manifold is a quaternionic Kählerian manifold,
differentiating the first equation of (2.4) covariantly and using (2.2), (2.4), (2.14),
(2.151) and (2.16), we have

(∇Y φ)X = r(Y )ψX − q(Y )θX + u(X)AY − g(AY,X)U,

(∇Y u)X = r(Y )v(X)− q(Y )w(X) + g(φAY, X).
(2.20)

Similarly, from the second and the third equations of (2.4), we also get respectively

(∇Y ψ)X = −r(Y )φX + p(Y )θX + v(X)AY − g(AY, X)V,

(∇Y v)X = −r(Y )u(X) + p(Y )w(X) + g(ψAY,X),
(2.21)

(∇Y θ)X = q(Y )φX − p(Y )ψX + w(X)AY − g(AY, X)W,

(∇Y w)X = q(Y )u(X)− p(Y )v(X) + g(θAY, X).
(2.22)

Next, differentiating the first equation of (2.3) covariantly and making use of (2.2),
(2.3), (2.4), (2.14) and (2.151), we obtain

(2.23) ∇Y U = r(Y )V − q(Y )W + φAY,

From the other equations of (2.3), similarly we obtain

(2.24) ∇Y V = −r(Y )U + p(Y )W + ψA1Y,

(2.25) ∇Y W = q(Y )U − p(Y )V + θA1Y.

Finally if the ambient manifold is a quaternionic space form M(c), namely, a
quaternionic Kählerian manifold of constant Q-sectional curvature c, its curvature
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tensor R satisfies

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y

+ g(FY, Z)FX − g(FX,Z)FY − 2g(FX, Y )FZ

+ g(GY, Z)GX − g(GX, Z)GY − 2g(GX,Y )GZ

+ g(HY,Z)HX − g(HX, Z)HY − 2g(HX,Y )HZ},

for vector fields X, Y, Z tangent to M (cf. [6] and [7]). Hence equations of Gauss,
Codazzi and Ricci imply

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+ g(ψY, Z)ψX − g(ψX, Z)ψY − 2g(ψX, Y )ψZ

+ g(θY, Z)θX − g(θX, Z)θY − 2g(θX, Y )θZ}
+ g(AY, Z)AX − g(AX, Z)AY

+
q∑

a=1

{g(AaY,Z)AaX − g(AaX, Z)AaY

+ g(Aa∗Y,Z)Aa∗X − g(Aa∗X,Z)Aa∗Y

+ g(Aa∗∗Y, Z)Aa∗∗X − g(Aa∗∗X, Z)Aa∗∗Y

+ g(Aa∗∗∗Y,Z)Aa∗∗∗X − g(Aa∗∗∗X, Z)Aa∗∗∗Y },

(2.26)

g((∇XA)Y − (∇Y A)X, Z)

=
c

4
{g(φY,Z)u(X)− g(φX,Z)u(Y )− 2g(φX, Y )u(Z)

+ g(ψY,Z)v(X)− g(ψX, Z)v(Y )− 2g(ψX, Y )v(Z)
+ g(θY, Z)w(X)− g(θX, Z)w(Y )− 2g(θX, Y )w(Z)}

+
q∑

a=1

{g(AaX, Z)sa(Y )− g(AaY, Z)sa(X)

+ g(Aa∗X, Z)sa∗(Y )− g(Aa∗Y, Z)sa∗(X)
+ g(Aa∗∗X, Z)sa∗∗(Y )− g(Aa∗∗Y,Z)sa∗∗(X)
+ g(Aa∗∗∗X,Z)sa∗∗∗(Y )− g(Aa∗∗∗Y,Z)sa∗∗∗(X)},

(2.27)

(2.28) g(R(X,Y )ξα, ξβ) = g(R⊥(X, Y )ξα, ξβ) + g([Aβ , Aα]X, Y )

for any vector fields X, Y, Z tangent to M , where R and R⊥ denote the curvature
tensor of ∇ and ∇⊥, respectively (cf. [1] and [3]).
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3 Fundamental aspects concerning the conditions

Let M be an n-dimensional QR-submanifold of maximal QR dimension in a quater-
nionic Kähler manifold. From now on we assume that the equalities

h(X, φY ) + h(φX, Y ) = 0, h(X,ψY ) + h(ψX, Y ) = 0,(3.1)
h(X, θY ) + h(θX, Y ) = 0

hold on M . Then it follows from (2.16) and (3.1) that

(3.2) Aφ = φA, Aψ = ψA, Aθ = θA,

(3.31) Aaφ = φAa, Aaψ = ψAa, Aaθ = θAa,

(3.32) Aa∗φ = φAa∗ , Aa∗ψ = ψAa∗ , Aa∗θ = θAa∗ ,

(3.33) Aa∗∗φ = φAa∗∗ , Aa∗∗ψ = ψAa∗∗ , Aa∗∗θ = θAa∗∗ ,

(3.34) Aa∗∗∗φ = φAa∗∗∗ , Aa∗∗∗ψ = ψAa∗∗∗ , Aa∗∗∗θ = θAa∗∗∗ .

Furthermore, taking account of (2.6), (2.10), (2.12) and (3.2), we can easily obtain
that

(3.4) AU = λU, AV = λV, AW = λW,

where λ := u(AU) = v(AV ) = w(AW ).
Next, applying φ to the first equation of (3.31) and using (2.6) and (2.7), we have

AaU = u(AaU)U.

On the other hand, since (2.182) gives u(AaU) = sa∗(U), consequently we get

AaU = sa∗(U)U.

Similarly, we also have

(3.5) AaU = sa∗(U)U, AaV = sa∗∗(V )V, AaW = sa∗∗∗(W )W.

By the same method as the above, from (3.3)2−4, we can easily verify that

(3.61) Aa∗U = −sa(U)U, Aa∗V = −sa∗∗∗(V )V, Aa∗W = sa∗∗(W )W,

(3.62) Aa∗∗U = sa∗∗∗(U)U, Aa∗∗V = −sa(V )V, Aa∗∗W = −sa∗(W )W,

(3.63) Aa∗∗∗U = −sa∗∗(U)U, Aa∗∗∗V = sa∗(V )V, Aa∗∗∗W = −sa(W )W.
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Hence (2.181) and (3.61−3) reduce to

sa(X) = sa(U)u(X) = sa(V )v(X) = sa(W )w(X),

from which together with (2.12), it follows that sa = 0. Likewise, taking account of
(2.182−4) and (3.61−3), we also obtain

sa∗(X) = sa∗(U)u(X) = sa∗(V )v(X) = sa∗(W )w(X),
sa∗∗(X) = sa∗∗(U)u(X) = sa∗∗(V )v(X) = sa∗∗(W )w(X),
sa∗∗∗(X) = sa∗∗∗(U)u(X) = sa∗∗∗(V )v(X) = sa∗∗∗(W )w(X),

which also yield sa∗ = sa∗∗ = sa∗∗∗ = 0. Summing up, we have

(3.7) sa = sa∗ = sa∗∗ = sa∗∗∗ = 0,

or equivalently ∇⊥ξ = 0. Thus we get

Lemma 3.1. Let M be an n-dimensional QR-submanifold of maximal QR-dimension
in a quaternionic Kähler manifold. If the equalities appeared in (3.1) hold on M , then
the distinguished normal vector field ξ is parallel with respect to the normal connection.

By means of Lemma 3.1, we can see that the distinguished normal vector field ξ
is parallel with respect to ∇⊥, namely, that (3.7) establishes on M . Hence it is clear
from (2.172−4) and (3.5) that

(3.8) φAa = Aa∗ , ψAa = Aa∗∗ , θAa = Aa∗∗∗ , a = 1, · · · , q,

(3.9) AaU = 0, AaV = 0, AaW = 0, a = 1, · · · , q.

On the other hand, it follows from (2.191), (3.31) and (3.7) that

φAa = 0, ψAa = 0, θAa = 0,

which together with (2.7) and (3.9) gives Aa = 0. Then this equation combined with
(3.8) yields

(3.10) Aa = Aa∗ = Aa∗∗ = Aa∗∗∗ = 0, a = 1, · · · , q.

Owing to Lemma 3.1 and (3.10), we can use the codimension reduction theorems
provided in [4, Theorem, p.339], [10, Theorem 4.3. p.32] and [12 Theorem 3.4, p.115]
and therefore prove

Theorem 3.2. Let M be an n-dimensional QR-submanifold of maximal QR-dimension
in a quaternionic space form M

(n+p)/4
(c) of constant Q-sectional curvature c. If the

equalities appeared in (3.1) hold on M , then there exists a real (n + 1)-dimensional
totally geodesic quaternionic space form M

(n+1)/4
(c) such that M ⊂ M

(n+1)/4
(c).

Proof. Lemma 3.1 and (3.10) imply that the first normal space of M is contained in
Span{ξ} which is invariant under parallel translation with respect to the normal con-
nection ∇⊥. Thus we can apply to M the codimension reduction theorems provided
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in [12, Theorem 3.4, p.115] (in the case of c = 4), [4 Theorem, p.339] (in the case of
c = 0) and [10, Theorem 4.3, p.32] (in the case of c = −4) and verify that there exists
a real (n + 1)-dimensional totally geodesic submanifold M

n+1
such that M ⊂ M

n+1
.

Tentatively we denote M
n+1

by M ′ and by i1 the immersion of M into M ′ and
by i2 the totally geodesic immersion of M ′ into M

(n+p)/4
(c). Then it is clear from

(2.16) that

(3.11) ∇′i1X i1Y = i1∇XY + h′(X,Y ) = i1∇XY + g(A′X,Y )ξ′,

where ∇′ is the induced connection on M ′ from that of M
(n+p)/4

(c), h′ the second
fundamental form of M in M ′ and A′ the corresponding shape operator to a unit
normal vector field ξ′ to M in M ′.

Since i = i2 ◦ i1 and M ′ is totally geodesic in M
(n+p)/4

(c), we can easily see that

(3.12) ξ = i2ξ
′, A = A′,

where we have used (2.16) and (3.11). Moreover, since the tangent space of the totally
geodesic submanifold M ′ at x ∈ M is TxM ⊕Span{ξ}, it is clear from (2.3) and (2.4)
that M ′ is a quaternionic invariant submanifold of Q(n+p)/4, namely, a quaternionic
space form with constant Q-sectional curvature c. ¤

Furthermore, owing to Lemma 3.1 and the theorem([9, Theorem 1.1, p.656]) due
to the present authors, we immediately have

Theorem 3.3. Let M be a complete n-dimensional QR-submanifold of maximal QR-
dimension in a quaternionic projective space QP (n+p)/4. If the equalities appeared in
(3.1) hold on M , then M is congruent to a tube of some radius r ∈ (0, π/2) around
the canonically (totally geodesic) embeded quaternionic projective space QP k for some
k ∈ {0, . . . , (n + p)/4− 1}.
Remark. In the proof of Theorem 3.2, M ′ is a quaternionic invariant submanifold
of M

(n+p)/4
(c) and hence, for any vector field X tangent to M ,

(3.13) Fi2X = i2F
′X, Gi2X = i2G

′X, Hi2X = i2H
′X

are valid, where {F ′, G′,H ′} is the induced quaternionic Kähler structure on M ′.
Thus it follows from the first equation of (2.4) and (3.13) that

FiX = Fi2 ◦ i1X = i2F
′i1X = i2(i1φ′X + u′(X)ξ′)

= iφ′X + u′(X)i2ξ′ = iφ′X + u′(X)ξ,

for any vector field X tangent to M . Comparing this equation with the first equation
of (2.4), we have φ = φ′ and u = u′. Similarly, we have

(3.14) φ = φ′, ψ = ψ′, θ = θ′, u = u′, v = v′, w = w′.

In this sense, by means of (3.2), Theorem 3.2 and the theorem ([17, Theorem 10,
p.57]) due to the second author, we can also prove Theorem 3.3.



Certain QR-submanifolds of maximal QR-dimension 41

4 The case of ambient quaternionic hyperbolic space

In this section we specialize to the case of an ambient quaternionic hyperbolic space
QH(n+p)/4, namely, to the case of a complete simply connected quaternionic Kähler
manifold of constant Q-sectional curvature−4, and assume that M is an n-dimensional
QR-submanifold of maximal QR-dimension in QH(n+p)/4 and the equalities appeared
in (3.1) hold on M . As was already shown in Theorem 3.2 and Remark, M can be
regarded as a real hypersurface of QH(n+1)/4 which is totally geodesic in QH(n+p)/4.

In what follows, we study the QR-submanifold M as a real hypersurface of QH(n+1)/4

and use the same notations and related equations as in §1 and §2 in the sense of (3.12)
and (3.13) .

A real hypersurface of a Riemannian manifold M is said to be curvature-adapted if
the shape operator A of M with respect to a unit normal vector field ξ and the normal
Jacobi operator K(·) := R(·, ξ)ξ are simultaneously diagonalizable (i.e. K ◦ A =
A ◦K), where R denotes the curvature tensor of M .

On the other hand, for a real hypersurface M in a quaternionic Kähler manifold M ,
TM can be decomposed into subbundles D⊕D⊥ by use of the maximal quaternionic
invariant subbundle D. J. Berndt([2]) pointed out that a real hypersurface in a non-
flat quaternionic space form is curvature-adapted if and only if one of the following
two conditions holds:

(i) the subbundle D is invariant under the shape operator A,
(ii) the subbundle D⊥ is invariant under the shape operator A.

Moreover, from this fact, in [2] J.Berndt provided the following theorem:

Let M be a connected curvature-adapted real hypersurface in QHn(n ≥ 2) with
constant principal curvatures λ1, λ2 and α1.

(B1) If λ1 and λ2 (resp. α1) belong to A|D (resp. A|D⊥), then M is congruent
to an open part of a tube of some radius r ∈ (0,∞) around a canonically embedded
totally geodesic quaternionic hyperbolic space QHk for some k ∈ {0, . . . , n− 1}.

(B2) If λ1 = λ2 (resp. α1) belongs to A|D (resp. A|D⊥), then M is congruent to
a horosphere in QHn.

Conversely, these model spaces are curvature-adapted in QHn and their principal
curvatures are constant.
In our case, we first notice that

(4.1) Aφ = φA, Aψ = ψA, Aθ = θA,

which implies

(4.2) AU = λU, AV = λV, AW = λW,

where λ := u(AU) = v(AV ) = w(AW ). Since D⊥ = Span{U, V,W} (see §2) is
invariant under the shape operator A because of (4.2), M is curvature-adapted in
QH(n+1)/4. Hence, owing to this fact and Berndt’s theorem([2], Theorem 2, p.10),
we can verify

Theorem 4.1. Let M be a complete n-dimensional QR-submanifold of maximal QR-
dimension in a quaternionic hyperbolic space QH(n+p)/4. If the equalities appeared
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in (3.1) hold on M , then M is congruent to a tube of some radius r ∈ (0,∞) around
a canonically embedded totally geodesic quaternionic hyperbolic space QHk for some
k ∈ {0, . . . , (n + p− 4)/4} or a horosphere in QH(n+p)/4.

Proof. It suffices to show that M has two or three constant principal curvatures. We
first notice that, in our case, the Codazzi equation (2.27) reduces to

g((∇XA)Y − (∇Y A)X, Z)

=
c

4
{g(φY,Z)u(X)− g(φX,Z)u(Y )− 2g(φX, Y )u(Z)

+ g(ψY, Z)v(X)− g(ψX, Z)v(Y )− 2g(ψX, Y )v(Z)
+ g(θY, Z)w(X)− g(θX, Z)w(Y )− 2g(θX, Y )w(Z)},

(4.3)

with c = −4 because of (3.7) or (3.10).
Differentiating the first equation of (4.2) covariantly and taking account of (2.23),

(4.1) and (4.2) itself, we have

g((∇XA)Y,U) + g(φA2X,Y ) = u(Y )Xλ + λg(φAX, Y ),

from which, taking the skew-symmetric part and using (4.3) with c = −4 and (4.1),
it follows that

− 2{g(φX, Y )− w(Y )v(X) + w(X)v(Y )} − 2g(φA2X, Y )
= u(X)Y λ− u(Y )Xλ− 2λg(φAX, Y ).

(4.4)

Now we put Y = U in (4.4). Then the skew-symmetry of φ, (2.6), (2.12) and (4.2)
imply Xλ = (Uλ)u(X). Similarly, we also have

Xλ = (Uλ)u(X) = (V λ)v(X) = (Wλ)w(X)

and consequently it is seen that Uλ = V λ = Wλ = 0. Therefore we can see that λ is
constant. This fact combined with (4.4) gives

φA2X = −{φX + w(X)V − v(X)W}+ λφAX,

from which, applying φ and taking account of (2.7), (2.12) and (4.2), it turns out to
be

(4.5) A2X = λAX − {X − u(X)U − v(X)V − w(X)W}.
If X is a non-zero vector field with X ∈ D and AX = ρX, then it follows from (4.5)
that

ρ2 − λρ + 1 = 0,

and thus we get ρ 6= λ. Consequently we have the following:
(1) If λ2 6= 4, then M has three constant principal curvatures (λ +

√
λ2 − 4)/2,

(λ−√λ2 − 4)/2 and λ with multiplicities 4k, 4(m− k) and 3, respectively.
(2) If λ2 = 4, then M has two constant principal curvatures λ/2 and λ with

multiplicities 4m and 3, respectively.
Hence owing to (1) and (2), the table([2], p.11) provided by J. Berndt implies our
assertion. ¤
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5 The case of ambient quaternionic number space

In this section we specialize to the case of an ambient quaternionic number space
Q(n+p)/4, namely, to the case of a quaternionic Kähler manifold of constant Q-
sectional curvature c = 0, and suppose that M is an n-dimensional QR-submanifold
of maximal QR-dimension in Q(n+p)/4 and the conditions (3.1) hold on M .

In this case, by means of Theorem 3.2 the submanifold M can be regarded as a
real hypersurface of Q(n+1)/4 which is totally geodesic in Q(n+p)/4.

In what follows, we study the QR-submanifold M as a real hypersurface of Q(n+1)/4

and use the same notations and related equations as in § 1 and § 2.
We first notice that in this case (4.1) and (4.2) are also established on M . Differ-

entiating the first equation of (4.2) covariantly and using (2.23), (4.1) and (4.2) itself,
we have

g((∇XA)Y, U) + g(φA2X, Y ) = (Xλ)u(Y ) + λg(φAX, Y ),

thus taking the skew-symmetric part of the last equation and making use of (4.3)
with c = 0 and (4.1), it turns out to be

(5.1) 2g(φA2X, Y ) = (Xλ)u(Y )− (Y λ)u(X) + 2λg(φAX, Y ).

Now we put Y = U in (5.1). Then the skew-symmetry of φ and (2.12) imply Xλ =
(Uλ)u(X). Similarly, we also have

Xλ = (Uλ)u(X) = (V λ)v(X) = (Wλ)w(X)

and consequently we get
Uλ = V λ = Wλ = 0,

which yields that λ is constant. This fact combined with (5.1) gives φ(A2X−λAX) =
0, and thus applying φ and using (2.7) and (4.2), the last equation implies A2 = λA.
Therefore we have

Lemma 5.1. Let M be a real hypersurface of a quaternionic number space Q(n+1)/4

on which the equalities appeared in (3.1) are valid. Then

(5.2) A2 = λA

and λ is locally constant.

In particular, from Lemmma 5.1 we can prove

Lemma 5.2. Let M be as in Lemma 5.1. Then

(5.3) ∇A = 0.

Proof. Differentiating (5.2) covariantly and making use of the fact that λ is constant,
we get

(5.4) (∇Y A)AX + A(∇Y A)X = λ(∇Y A)X,

thus taking the skew-symmetric part of the last equation and using (4.3) with c = 0,
we find

(∇Y A)AX = (∇XA)AY
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and hence we get

g((∇Y A)AX,Z) = g((∇XA)AY, Z) = g(A(∇XA)Z, Y ).

On the other side, sine we see that

g((∇Y A)AX, Z) = g((∇ZA)AX, Y ),

which together with the last equation gives

g((∇Y A)AX, Z) = g(A(∇XA)Y, Z),

that is, (∇Y A)AX = A(∇Y A)X. Hence (5.4) reduces to

2A(∇Y A)X = λ(∇Y A)X,

thus applying A to the last equation and using (5.2), we have λA(∇Y A)X = 0 and
therefore we obtain λ(∇Y A)X = 0, which completes our assertion because of the fact
that λ is constant. ¤

By means of Lemma 5.1, the eigenvalues κ of the shape operator A satisfy

κ(κ− λ) = 0.

Moreover it is clear from (4.1) and (4.2) that the multiplicity of λ must be 4m + 3
for some integer m at each point in M . Since λ is constant and traceA is continuous,
the multiplicity r of λ is constant. Hence it suffices to consider the following 3-cases

(i) r = 0, (ii) r = n, (iii) 3 ≤ r < n.

We will start with the first case of (i). In this case A = 0 and consequently M is
contained in a totally geodesic hyperplane Rn of Q(n+1)/4.

Next, we consider the case of (ii). In this case A = λI. Let x̄ be the position
vector of M and put p̄ := x̄ + λ−1ξ. Then, since ∇⊥Xξ = 0,

∇X p̄ = ∇X(x̄ + λ−1ξ) = X − λ−1(AX) = 0,

which means that p̄ is a fixed point in Q(n+1)/4. Moreover, it is clear that ‖x̄− p̄‖ =
|λ|−1 and consequently M is contained in a hypersphere Sn(|λ|−1) of radius |λ|−1 and
centered at p̄.

Finally we consider the case of (iii). Since the multiplicity r of λ is constant,
the eigenspaces corresponding to λ and 0 determine distributions of dimension r and
n− r, which will be denoted by Dλ and D0, respectively. Furthermore, by means of
Lemma 5.2, ∇A = 0 and consequently it is easily verified that Dλ and D0 are both
involutive and that Dλ is parallel along D0 and vice versa. Denoting by Mλ and M0

the integral submanifolds of Dλ and D0, respectively, we can see that M is locally
the Riemannian product Mλ ×M0.

From now on we shall study Mλ and M0 more precisely and start with Mλ.
Let Z1, · · · , Zn−r be orthonormal vector fields belonging to D0. Since Mλ is totally
geodesic in M , the shape operators A′1, · · · , A′n−r corresponding to those normal
vectors vanish. On the other hand we may consider Mλ as a submanifold of Q(n+1)/4.
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Then the vector fields Z1, · · · , Zn−r, ξ form an orthonormal set of local vector fields
normal to Mλ. In this case the shape operators corresponding to Z1, · · · , Zn−r also
vanish. Hence it is clear from (2.28) that

(5.5) ′R⊥(X, Y )Zi = 0, i = 1, . . . , n− r ,

where ′R⊥ denotes the curvature tensor of the normal connection ′∇⊥ of Mλ in
Q(n+1)/4. Thus, by the same method as that used in the proof of Proposition 1.1
in [3, p.99], we may show that the equation (5.5) yields the existence of the normal
vector fields Z1, · · · , Zn−r such that

(5.6) ′∇⊥XZi = 0, i = 1, . . . , n− r

for any tangent vector X to Mλ.
Now let x̄ be the position vector of Mλ in Q(n+1)/4 and put p̄ := x̄ + λ−1ξ. Then,

for X ∈ Dλ, it follows that

∇X p̄ = X − λ−1AX = 0 and ‖x̄− p̄‖ = |λ|−1,

which means that Mλ belongs to the hypersphere of radius |λ|−1 centered at p̄. Fur-
ther, using (5.7) and A′i = 0, i = 1, · · · , n− r, we have

Xg(x, Zi) = g(X,Zi) = 0, i = 1, · · · , n− r,

that is,

(5.7) g(x̄, Zi) = ci, i = 1, · · · , n− r

for X ∈ Dλ, where ci(i = 1, · · · , n − r) are constants. Hence Mλ belongs to the
intersection of the hypersphere of radius |λ|−1 centered at p̄ and the n−r hyperplanes
defined by (5.7). We notice that p is contained in the n− r hyperplanes.

In a similar way it can be shown that M0 belongs to the intersection of the r + 1
hyperplanes given by

g(x̄, ξ) = c, g(x̄, Zs) = cs, s = n− r + 1, · · · , n,

where c and cs(s = n− r + 1, · · · , n) are constants. Summing up, we yield

Theorem 5.3. Let M be a complete n-dimensional QR-submanifold of maximal QR-
dimension in Q(n+p)/4 on which the equalities appeared in (3.1) are valid. Then M
is isometric to Rn, Sn or Sr × Rn−r.
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