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M. Anastasiei

Abstract. We consider the category of anchored Banach vector bundles
and we discuss the notion of semispray. Adding on the set of sections of
an anchored Banach vector bundle a Lie bracket with some properties one
gets the notion of Lie algebroid. We prove that the Lie algebroids form
also a category. A Dirac structure on a Banach manifold M is defined
as a subbundle of the big tangent bundle TM ⊕ T ∗M that equals its
orthocomplement with respect to the standard neutral metric and is closed
with respect to the Courant bracket. Various characterizations of this
closeness are provided. We show that with a convenient anchor any Dirac
structure becomes a Banach Lie algebroid. Some examples are included.
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1 Introduction

The notion of Lie algebroid was extended to the category of Banach vector bundles by
the present author [2], and independently by F. Pelletier [13]. The next paper studying
Banach Lie algebroids is due to P. Cabau and F. Pelletier [4]. Here several well known
results in finite dimensional case are extended and some obstructions produced by the
new framework are revealed. Moreover, an application to the mechanical systems with
constraints is worked out. In a different direction, C. Ida [10] considers the coomology
of Banach Lie algebroids and proves that if (M,π) is a Banach Poisson manifold,
the Banach Lie algebroid cohomology of (T ∗M, {., }, ]π) is the Lichnerowicz-Poisson
cohomology of (M, π). Next steps are done by M. Anastasiei and A. Sandovici, [3].
They introduced the Dirac structures on Banach manifolds and related them to Lie
algebroids.

Dirac structures on finite dimensional manifolds were introduced by T. Courant
and A. Weinstein (see [7]) and were systematically studied by T. Courant in [6].
They became an important tool in generalized geometry by studies of I. Vaisman
(see [15]. In the geometrical context, it must be pointed out the usefulness of Dirac
structures in the study of interconnected systems, [5]. Following the direction opened
by S. Vacaru in [14], certain applications of Dirac structures in Theoretical Physics
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could appear. Dirac structures were used in the study of the mechanical systems
described by constraint Hamiltonian systems or implicit Lagrangian systems ([16, 17]).

Another field where Dirac structures are useful is the study of the integrability of
the nonlinear evolution equations, [8]. In the monograph [9] I. Dorfman emphasized
the necessity of considering Dirac structures on infinite dimensional spaces.

A first study of the concept of a Dirac structure within the framework offered by
infinite-dimensional smooth manifolds is due to the present author and A. Sandovici,
[3]. Here the well known result that an integrable Dirac structure defines a Lie
algebroid is extended to Banach manifold category.

The main difficulty in studying the Lie algebroids and the Dirac structures in
the infinite–dimensional vector bundles in the greatest generality is the absence of a
property of localization for the sections of a Banach vector bundle. There are cases
when the property holds, for instance if the model of fibers is a reflexive Banach
space but even in these cases every assertion from the finite dimensional case has to
be verified and very often the proof is different from that existing in finite dimensional
setting. Our main reference for the geometry of infinite dimensional manifolds is S.
Lang’s book [11].

This paper contains a survey of author’s results on Lie algebroids and Dirac struc-
tures in the category of Banach vector bundles. Its content is as follows.

In Section 1 we consider the anchored Banach vector bundles and we show that
they form a category. Also, we recall the notion of semispray (see [1]), we mention
several examples and exhibit for each one the so called adapted curves. In Section 2
we recall the definition of a Banach Lie algebroid and we show that the set of these
algebroids and their morphisms form a category. Section 3 is devoted to the Dirac
structures. On the set of sections of the big tangent bundle TM ⊕ T ∗M one defines
the neutral metric and a subbundle of TM ⊕T ∗M is called an almost Dirac structure
or an almost Dirac bundle if it equals its orthocomplement with respect to the neutral
metric. Then one recalls the Courant bracket and one computes its Jacobiator. An
almost Dirac structure is called a Dirac structure or a Dirac bundle if it closed with
respect to the Courant bracket. Some characterizations of this closeness are provided.
Examples of Dirac structures are given. In the end one proves that any Banach Dirac
bundle is a Banach Lie algebroid.

2 Anchored vector bundles

Let M be a smooth i.e. C∞ Banach manifold modeled on Banach space M and let
π : E → M be a Banach vector bundle whose type fiber is a Banach space E. We
denote by τ : TM → M the tangent bundle of M .

Definition 2.1. We say that the vector bundle π : E → M is an anchored vector
bundle if there exists a vector bundle morphism ρ : E → TM . The morphism ρ will
be called the anchor map.

Let F(M) be the ring of smooth real functions on M .
We denote by Γ(E) the F(M)-module of smooth sections in the vector bundle

(E, π, M) and by X (M) the module of smooth sections in the tangent bundle of M
(vector fields on M).



Banach Lie algebroids and Dirac structures 3

The vector bundle morphism ρ induces an F(M)-module morphism which will be
denoted also by ρ : Γ(E) → X (M), ρ(s)(x) = ρ(s(x)), x ∈ M, s ∈ Γ(E).

Let {(U,ϕ), (V, ψ), . . .} be an atlas on M . Restricting U, V... if necessary we may
choose a vector bundle atlas {(π−1(U), ϕ), (π−1(V ), ψ), . . .} with ϕ : π−1(U) → U×E
given by ϕ(u) = (π(u), ϕπ(u)), where ϕπ(u) : Eπ(u) → E is a toplinear isomorphism.
Here Eπ(u), is the fiber of (E, π,M) in x = π(u) ∈ M. The given atlas on M together
with a vector bundle atlas induce a smooth atlas {(π−1(U),Φ), (π−1(U), Ψ), . . .} on
E such that E becomes a Banach manifold modeled on the Banach space M×E. The
map Φ : π−1(U) → ϕ(U)× E is given by

Φ(u) = (ϕ(π(u)), ϕπ(u)(u)), u ∈ E,

and the changes of local charts (Ψ ◦ Φ−1) are given by (ψ ◦ ϕ−1, ψx ◦ (ϕx)−1), where
Mx := ψx ◦ (ϕx)−1 : E 7→ E is a toplinear isomorphism.

For a section s : U → π−1(U), its local representation φ ◦ s ◦ ϕ−1 : ϕ(U) →
ϕ(U)× E given by (φ ◦ s ◦ ϕ−1)(ϕ(x)) = (ϕπ(s(x)), ϕπ(s(x))(s(x)) = (ϕ(x), ϕx(s(x)))
is completely determined by the map sϕ : ϕ(U) → E given by sϕ(ϕ(x)) = ϕx(s(x))
which will be called the local representative (shortly l.r.) of s. On U∩V we may speak
also of the l.r. sψ of a section s : U ∪V → π−1(U ∩V ) given by sψ(ψ(x)) = ψx(s(x)).
It is clear that we have

(2.1) sψ(ψ(x)) = ψx ◦ (ϕx)−1(sϕ(ϕ(x))) = Mx(sϕ(ϕ(x)), x ∈ U ∪ V.

For a vector field X : U → τ−1(U) we have a l.r. Xϕ : ϕ(U) → M and on U ∩ V we
have also a l.r. Xψ and one holds

(2.2) Xψ(ψ(x)) = h′(ϕ(x))(Xp(ϕ(x))), x ∈ U ∩ V,

where prime means Frechet differentiation and we have set h = ψ ◦ ϕ−1.
Locally, ρ reduces to a morphism U × E → U × M, (x, v) → (x, ρU (x)v) with

ρU (x) ∈ L(E,M). We call ρU (x) the l.r. of ρ. On overlaps of local charts one easily
gets

(2.3) ρV (x) ◦Mx = h′(ϕ(x)) ◦ ρU (x), x ∈ U ∩ V.

Examples.

1. The tangent bundle of M is trivially anchored vector bundle with ρ = I (iden-
tity). In (3) we have Mx = h′(ϕ(x)).

2. Let A be a tensor field of type (1, 1) on M . It is regarded as a section of
the bundle of linear mappings L(TM, TM) → M and also as a morphism A :
TM → TM . In the other words, A may be thought as an anchor map. The l.r
AU is a linear operator on M.

3. Any subbundle of TM is an anchored vector bundle with the anchor the inclu-
sion map in TM .

4. Let now ζ : F → M , where F is a Banach manifold, be a submersion and ζ∗
be the differential (tangent map) of ζ. The union of subspaces (ζ∗)−1(u), u ∈ F
provides a subbundle of the tangent bundle of F , τF : TF 7→ F , denoted by V F
and called the vertical subbundle. As a subbundle, by the Example 3), this is
an anchored vector bundle.
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5. Let τ∗ : T ∗M 7→ M be the cotangent bundle of M and the Whitney sum τ⊕τ∗ :
TM⊕T ∗M 7→ M called sometimes the big tangent bundle. This is an anchored
bundle with the anchor given by the projection pr1 : TM ⊕ T ∗M 7→ TM .

Theorem 2.1. The anchored vector bundles form a category.

Proof. The objects are the pairs (E, πE , M, ρE) with ρE the anchor of E and the cat-
egory morphism (f, φ) : (E, πE ,M, ρE) → (F, πH , N, ρF ) is a vector bundle morphism
(f, φ) : E → F which verifies the condition ρF ◦ f = φ∗ ◦ ρE , where φ∗ is the tangent
map of φ : M 7→ N .

Now, if (E, π, M, ρ) is an anchored vector bundle, we consider on E a special
vector field called semispray. ¤

Definition 2.2. A vector field S on E, that is a section S : E 7→ TE will be called
a semispray if π∗ ◦ S = ρ.

The condition that S is a semispray can be also written in the form

π∗,u(S(u)) = ρ(u) = (ρ ◦ τE)(S(u)), u ∈ E.

Let c : J → E for 0 ∈ J ⊂ R a curve on E. The differential of c is c∗ : J×R→ TE
and using i : J → J ×R, t → (t, 1), t ∈ J we set c′(t) = c∗ ◦ i.

It is clear that π ◦ c is a curve on M and it easily follows that (π ◦ c)′(t) =
π∗,c(t) ◦ c′(t).

Definition 2.3. A curve c on E will be called admissible if (π ◦ c)′(t) = ρ(c(t)),
∀t ∈ J .

Locally, if c : J → ϕ(U) × E, t → (x(t), w(t)) then π ◦ c : J → ϕ(U) is t → x(t),
t ∈ J .

It follows that c is an admissible curve if and only if

(2.4)
dx

dt
= ρU (x(t))w(t), t ∈ J

Theorem 2.2. A vector field S on E is a semispray if and only if all its integral
curves are admissible curves.

For a proof we refer to [2].
In the same paper [2] one proves

Theorem 2.3. A vector field S on E is a semispray if and only if its l.r. Sϕ :
ϕ(U)× E→ ϕ(U)× E×M× E has the form

Sϕ(x, u) = (x, u, ρU (x)u,−2Gϕ(x, u)),

where the functions Gϕ satisfy

Gψ(h(x),M(x)u) = M(x)Gϕ(x, u)− 1
2
M ′(x)(ρU (x)u)u

on overlaps of local charts.
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Remark 2.4. 1. In the Example 1 the admissible curves (x(t), y(t)) on TM are
those that satisfy y(t) = ˙x(t) := dx

dt . Such a curve is called the tangent lift of
the curve x(t) on M . Thus the system ẋ = y, ẏ + 2Gϕ(x, ẋ) = 0 giving the
integral curves of the semispray S has as solutions, by the Theorem 1.2, only
the tangent lifts of curves on M . This system is equivalent to the SODE (second
order differential equation) ẍ + 2Gϕ(x, ẋ) = 0. So a semispray is in this case
simply a SODE on M . In the other cases the integral curves of a semispray are
solutions of a system of first order differential equations on E.

2. In the Example 2 the admissible curves are solutions of the system ẋ = A(x)w,
ẇ + 2Gϕ(x,w) = 0. If A(x) is invertible we can find w as a function of ẋ and
inserting it in the second equation we get a SODE in the form ẍ+2G̃ϕ(x, ẋ) = 0.
This defines a semispray S̃ projectively equivalent with S.

3. In the Example 3 the admissible curves are the tangent lifts (x(t), ẋ(t)), with
the tangent vector ẋ in the subbundle (distribution) F ⊂ TM . One says that
such a curve is tangent to the distribution F . It follows that the functions Gϕ

are F-valuated, where F is the type fibre of the subbunle F .

4. In the Example 4 the admissible curve (x(t), y(t)) are given by the equation
ẋ = 0. Thus any curve in the fibre Ex0 is an admissible curve. This is also a
consequence of the fact that the vertical distribution on E is integrable with the
fibres as leaves.

3 Lie algebroids

Let π : E → M be an anchored Banach vector bundle with the anchor ρE : E → TM
and the induced morphism ρE : Γ(E) → X (M).

Assume there exists defined a bracket [, ]E on the space Γ(E) that provides a
structure of real Lie algebra on Γ(E).

Definition 3.1. The triplet (E, ρE , [, ]E) is called a Banach Lie algebroid if

(i) ρ : (Γ(E), [, ]E) → (X (M), [, ]) is a Lie algebra homomorphism and

(ii) [fs1, s2]E = f [s1, s2]E − ρE(s2)(f)s1, for every f ∈ F(M) and s1, s2 ∈ Γ(E).

Examples:

1. The tangent bundle τ : TM → M is a Banach Lie algebroid with the anchor
the identity map and the usual Lie bracket of vector fields on M .

2. For any submersion ζ : F → M ,where F is a Banach manifold, the vertical bun-
dle V F over F is an anchored Banach vector bundle. As the Lie bracket of two
vertical vector fields is again a vertical vector field it follows that (V F, i, [, ]V F ),
where i : V F → TF is the inclusion map is a Banach Lie algebroid. This
applies, in particular, to any Banach vector bundle π : E → M .
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Let Ωq(E) := Γ(La
q (E)) be the F(M)− module of differential forms of degree q.

Its elements are sections of the vector bundle of alternating multilinear forms on E,
see [11], p. 61. In particular, Ωq(TM) will be denoted by Ωq(M). The differential
operator dE : Ωq(E) → Ωq+1(E) is given by the formula

(dEω)(s0, . . . , sq) =
∑

i=0,...,n

(−1)iρE(si)ω(s0, . . . , ŝi, . . . , sq)

+
∑

0≤i<j≤q

(−1)i+j(ω([si, sj ]E), s0, . . . ŝi, . . . , ŝj , . . . , sq),(3.1)

for s1, . . . , sq ∈ Γ(E), where hat over a symbol shows that symbol must deleted.
Let (E′, π′,M) be a Banach vector bundle and (E′, ρE′ , [, ]E′) a Banach Lie alge-

broids based on it.

Definition 3.2. A vector bundle morphism f : E → E′ over f0 : M → M ′ is a mor-
phism of the Banach Lie algebroids (E, ρE , [, ]E and (E′, ρE′ , [, ]E′) if the map induced
on forms f∗ : Ωq(E′) → Ωq(E) defined by (f∗ω′)x(s1, . . . , sq) = ω′f0(x)(fs1, . . . , fsq),
s1, . . . , s2 ∈ Γ(E) commutes with the differential, i.e.,

(3.2) dE ◦ f∗ = f∗ ◦ dE .

Using this definition it is easy to prove

Theorem 3.1. The Banach Lie algebroids with the morphisms defined in the above
form a category.

4 Dirac structures

Let M be a smooth i.e. C∞ Banach manifold modeled on Banach space M and the
big tangent bundle TM ⊕ T ∗M → M . On the space of sections Γ(TM ⊕ T ∗M) one
defines a symmetric bilinear operation by:

(4.1) 〈(X, α), (Y, β)〉+ = α(Y ) + β(X),

for all (X, α), (Y, β) ∈ Γ(TM ⊕ T ∗M).
For a subbundle B ⊂ TM ⊕ T ∗M define the orthogonal complement B⊥ by:

B⊥ = {(X, α) ∈ TM ⊕ T ∗M : 〈(X, α), (Y, β)〉+ = 0, for all (Y, β) ∈ B} .

Definition 4.1. An almost Banach Dirac bundle, or an almost Banach Dirac struc-
ture, on M is a vector subbundle D of TM ⊕T ∗M → M which satisfies the following
equality:

(4.2) D = D⊥.

In the case M is a finite–dimensional smooth manifold (dimM = n) the definition
of an almost Dirac structure D is equivalent to the fact that D is maximally isotropic
with respect to the pairing 〈·, ·〉+. More precisely, this means that D is a subbundle
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of rank n and the restriction of 〈·, ·〉+ to D×D vanishes identically; see for instance
[6].

Define the Courant bracket on Γ(TM ⊕ T ∗M), that is, the skew–symmetric R–
bilinear operation defined by:

(4.3) [(X, α), (Y, β)]C =
(

[X, Y ],LXβ − LY α +
1
2
d(α(Y )− β(X))

)
,

where [·, ·] is the usual Lie bracket of vector fields and LX = d ◦ iX + iX ◦ d is the Lie
derivation by X.

The bracket [·, ·]C is skew-symmetric but, in general, does not satisfy the Jacobi
identity. Denote by (J1, J2) the Jacobiator corresponding to [·, ·]C , i.e.

(J1, J2) = [[(X, α), (Y, β)]C , (Z, γ)]
C

+ [[(Y, β), (Z, γ)]C , (X, α)]
C

+ [[(Z, γ), (X, α)]C , (Y, β)]
C

,

for all (X, α), (Y, β), (Z, γ) ∈ Γ(TM ⊕ T ∗M). Clearly,

J1 = [[X, Y ], Z] + [[Y,Z], X] + [[Z, X], Y ] = 0.

On the other hand for J2 the following result holds:

Lemma 4.1. The second component J2 of the Jacobiator corresponding to the Courant
bracket [·, ·]C is given by:

J2 =
1
4
d (LX(β(Z)− γ(Y )) + LY (γ(X)− α(Z)) + LZ(α(Y )− β(X)))

+
1
2
d (γ([X,Y ]) + α([Y,Z]) + β([Z,X])) ,(4.4)

for all (X, α), (Y, β), (Z, γ) ∈ Γ(TM ⊕ T ∗M).
In particular, the restriction of J2 to an almost Banach Dirac bundle D is given

by:

J2 =
1
2
d (LX(β(Z)) + LY (γ(X)) + LZ(α(Y )))

+
1
2
d (γ([X, Y ]) + α([Y, Z]) + β([Z, X])) .(4.5)

Definition 4.2. Define the map T : (Γ(TM ⊕ T ∗M))3 → R by:

T ((X,α), (Y, β), (Z, γ)) = 〈[(X, α), (Y, β)]C , (Z, γ)〉+,

where (X,α), (Y, β), (Z, γ) ∈ Γ(TM ⊕ T ∗M).

Theorem 4.2. Let D be an almost Banach Dirac bundle. Then TD, the restriction
of T to D satisfies the following identity:

TD((X,α), (Y, β), (Z, γ)) = α([Y, Z]) + β([Z, X]) + γ([X, Y ])
+LX (β(Z)) + LY (γ(X)) + LZ (α(Y )) .(4.6)
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Moreover, the second component J2 of the Jacobiator restricted to D and the restric-
tion TD of T to D are related as follows:

(4.7) J2 ¹D ((X, α), (Y, β), (Z, γ)) =
1
2
d (TD((X,α), (Y, β), (Z, γ))) .

A new useful formula is stated within the next result.

Lemma 4.3. Let D be an almost Banach Dirac bundle. Then:

TD((X,α), (Y, β), (Z, γ)) = −dα(Y,Z)− dβ(Z, X)− dγ(X, Y )
+LX (γ(Y )) + LY (α(Z)) + LZ (β(X)) .(4.8)

Define on the total space of sections of TM ⊕T ∗M the following skew–symmetric
bilinear form:

(4.9) 〈(X, α), (Y, β)〉− = α(Y )− β(X),

for all (X, α), (Y, β) ∈ Γ(TM ⊕ T ∗M).
Furthermore, define the map U : (Γ(TM ⊕ T ∗M))3 → R by:

U((X, α), (Y, β), (Z, γ)) = −dα(Y,Z)− dβ(Z,X)− dγ(X,Y )

−1
2
LX (〈(Y, β), (Z, γ)〉−)− 1

2
LX (〈(Z, γ), (X,α)〉−)(4.10)

−1
2
LZ (〈(X,α), (Y, β)〉−) ,

where (X,α), (Y, β), (Z, γ) ∈ Γ(TM ⊕ T ∗M).
It is easily seen that U is a totally skew–symmetric form. Moreover, it can be

shown that the maps T and U do not coincide on the whole (Γ(TM ⊕ T ∗M))3.
However, a special case is stated within the next results.

Lemma 4.4. Assume that M is a smooth Banach manifold and that D is an almost
Banach Dirac bundle on M . Then UD = TD.

Thus we have

Theorem 4.5. Assume that M is a smooth Banach manifold and that D is an almost
Banach Dirac bundle on M . Then TD is a (0, 3)–tensor field.

Now we define the notions of Banach Dirac bundles and Banach Dirac manifolds,
respectively.

Definition 4.3. A Banach Dirac bundle, or a Banach Dirac structure on M is an
almost Banach Dirac bundle D which is integrable in the sense that the space of all
sections of D is closed under the Courant bracket. In this case, the pair (M, D) is
called a Banach Dirac manifold.

In what follows two basic examples of Banach Dirac manifolds are presented.
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Examples:

1. Integrable Banach subbundles. Let E be a subbundle of the tangent bundle
TM . One says that E is integrable in a point p ∈ M if there exists a sub–
manifold M ′ of M containing p such that the tangent map of the inclusion
M ′ ↪→ M induces a vector bundle isomorphism of TM ′ with the subbundle E
restricted to M ′. By the Frobenius Theorem, E is integrable if and only if the
set of its sections Γ(E) is closed under the Lie bracket of vector fields on M .
Then, it can be easily seen that

D = {(X, α) : X ∈ E , α ∈ annE}
is a Banach Dirac bundle if and only if the vector subbundle E is integrable.

2. Presimplectic Banach 2–forms. Any 2-form ω on M induces a mapping
ω : TM 7→ T ∗M by ω(X) = iXω. The 2-form ω is called symplectic if the map
ω is non–singular and the 2-form ω is closed. Furthermore, one says that the
2-form ω is presymplectic if the map ω is singular and the 2–form ω is closed.
It is easy to check that for a presymplectic 2-form the graph of the map ω is a
Banach Dirac bundle.

The next theorems offer characterizations for the integrability of almost Banach
Dirac bundles. For proofs we refer to [3].

Theorem 4.6. Assume that M is a smooth Banach manifold and that D is an almost
Banach Dirac bundle on M . Then, D is a Banach Dirac bundle if and only if TD = 0.

Theorem 4.7. Assume that M is a smooth Banach manifold and that D is an almost
Banach Dirac bundle on M . Then D is integrable if and only if

(4.11) (LXβ) (Z) + (LY γ) (X) + (LZα) (Y ) = 0,

for all (X, α), (Y, β), (Z, γ) ∈ Γ(D).

Remark 4.4. It should be emphasized that Theorems 4.5 and 4.6 show that, in fact,
the integrability of an almost Banach Dirac bundle is determined by the vanishing of
a (0, 3)–tensor field on D.

Remark 4.5. In the algebraic general setting from [9] (see especially [9, Theorem
2.1]) the condition (4.11) was chosen as the definition of closeness (or integrability)
of almost Dirac structures.

The next result obtained by a straightforward calculus provides some preparatory
ingredients.

Lemma 4.8. Let (X, α) and (Y, β) ∈ Γ(TM ⊕ T ∗M) and f ∈ C∞(M). Then

[f · (X, α), (Y, β)]C = f · [(X, α), (Y, β)]C − Y (f) · (X,α)

+
(

0,
1
2
〈(X, α), (Y, β)〉+ · df

)
.(4.12)

In particular, if (X,α) and (Y, β) ∈ Γ(D) where D is an almost Banach Dirac
bundle, then

[f · (X, α), (Y, β)]C = f · [(X, α), (Y, β)]C − Y (f) · (X, α).(4.13)
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Furthermore, we recall that the bundle TM ⊕T ∗M is an anchored Banach vector
bundle with the anchor say ρ, cf. Example 1. On Γ(TM⊕T ∗M) consider the Courant
bracket. It is called an almost Banach Lie bracket with respect to the anchor ρ if
it satisfies the following Leibniz rule:

[f · (X, α), (Y, β)]C = f · [(X, α), Y, β)]C − (ρ(Y, β)) (f) · (X, α)

for any function f ∈ C∞(M).
It follows from Lemma 4.8 that this condition holds if, for instance (X, α) and

(Y, β) belong to an almost Dirac structure D.
Thus, the pair (D, ρ ¹D) is an anchored Banach bundle for which the Courant

bracket is an almost Banach Lie bracket with respect to ρ ¹D. An almost Lie bracket
with respect to the anchor ρ is called a Lie bracket if it satisfies the Jacobi identity.
In such a case the mapping induced by the anchor on sections becomes a Lie algebra
morphism and (D, ρ ¹D, [·, ·]C) is a Banach Lie algebroid. More precisely, the following
result holds.

Theorem 4.9. Assume that M is a smooth Banach manifold. An almost Banach
Dirac bundle D on M is a Banach Dirac bundle if and only if (D, ρ ¹D, [·, ·]C) is a
Banach Lie algebroid.

Acknowledgements. The author was partially supported by a grant of the Ro-
manian National Authority for Scientific Research, ANCS-UEFISCDI, project number
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