Curves with a node in projective spaces
with good postulation

E. Ballico

Abstract. Fix integers d,g,r such that r > 3, g > 0 and d > g +
r. Here we prove the existence of an integral non-special curve C' in
an r-dimensional projective space such that deg(C) = d, p,(C) = g, C
has exactly one node and C' has maximal rank (i.e. it has the expected
postulation), i.e., the general non-special embedding of a general curve
with a single node has maximal rank.
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1 Introduction

Let X C P" be a closed subscheme. We say that X has maxzimal rank if for all integers
t > 1 the restriction map p, x ¢ : H'(P", Opr(t)) — H°(X, Ox(t)) has maximal rank,
i.e. it is either injective or surjective. Now assume that X is a reduced and connected
curve of degree d and arithmetic genus g, spanning P” and with h'(X,Ox(1)) = 0.
Riemann-Roch gives d > g+r. If d = r (and hence X is a rational normal curve) then
we say that X has critical value 1 and that 1 is the critical value of the triple (r, 0, r).
Now assume d > r. Let k be the minimal integer > 2 such that (Ttk) >kd+1—g.
We say that k is the critical value of X and of the triple (d,g,7). X has maximal
rank if and only if h°(Zx (t)) = 0 for all t < k and h*(Zx(t)) = 0 for all ¢ > k. Since
k > 2, we have h'(X,0x(k — 1)) = 0. Hence Castelnuovo-Mumford’s lemma says
that if h'(Zx (k)) = 0, then h'(Zx(t)) = 0 for all ¢t > k. Hence X has maximal rank
if and only if h°(Zx(k — 1)) = 0 and h'(Zx(k)) = 0.

For all integers d, g, such that r > 0, ¢ > 0 and d > g+ r let H(d, g,r) denote
the open subset of the Hilbert scheme Hilb(P") parametrizing the smooth and non-
degenerate curves C' C P such that p,(C) = g, deg(C) = d and h'(C, Oc(1)) = 0.
The set H(d,g,r) is a smooth and irreducible quasi-projective variety (here we use
in an essential way that we only take non-special embeddings, because the Hilbert
scheme of non-degenerate smooth curves of degree d and genus g may be reducible
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even when d is very near to 2g — 2 ([4], [7], [8] and references therein). Let H(d, g,r)’
denote the closure of H(d, g,r) in Hilb(P").

For any integer g > 2 set Ag(g) := {C € M, : C is irreducible and with a unique
node}. The closure Ag(g)" of Ag(g) in M, is the irreducible divisor of M, usually
denoted with Ag. Hence Ag(g) is non-empty, quasi-projective, irreducible and of
dimension 3g — 4. Let Ag(1) denote a set with as its unique element the only integral
nodal curve with arithmetic genus 1. Set H(d, g,7)1 := {C € H(d,g,r)" : C € Ay(g)
and h'(C,0c(1)) = 0}. Set H(d,g,r)y : {C € H(d,g,r) : h*(C,Oc(1)) = 0}. Notice
that H(d, g,r); is a non-empty and irreducible codimension one algebraic subset of
H(d,g,r)". In this paper we extend [5], [1], [2], [3] to general non-special embeddings
of a general element of Ay(g) and prove the following result.

Theorem 1.1. Fiz integersr >3, g > 1 and d > g+ r. Let X C P" be a general
embedding of degree d of a general element of Ag(g). Then X has mazimal rank.

Theorem 1.1 is equivalent to say that a general element of H(d, ¢g,7); has maximal
rank.

2 Preliminaries

For any curve Y C P" with only nodes as singularities let Ny denote its normal
bundle. The sheaf Ny is a rank r» — 1 vector bundle on Y and deg(Ny) = (r +
1)deg(Y) + 2p,(Y) — 2. For any smooth variety W and any nodal curve T C W
let Ny w denote the normal bundle of Y in W.Ny w is a rank (dim(W) — 1) vector
bundle on Y with degree — deg(ww ) + 2pa(T) — 2.

Fix a reduced curve Y C P". We say that a line D is 1-secant (resp. 2-secant) to
Y it (Y N D) =1 (resp. #(Y N D) =2), Y is smooth at each point of Y N D and D
is not a tangent line of Y at one of the points of Y N D.

Lemma 2.1. Let W be a smooth projective variety and F, R smooth and connected
curves in W. Assume that R is a smooth and rational, that R intersects F' at a single
point, P, and quasi-transversal. Assume h'(F,Nrw) = 0 and that Ngw is trivial.
Then h*(F U R, Npurw) = 0 and F U R is smoothable in W.

Proof. Set r := dim(W). The vector bundle Npygr w|F is obtained from Npg
making a positive elementary transformation supported by P ([6], §2). Hence we have
h'(F, Npurw|F) = 0. The vector bundle Npygr w|R is obtained from Ng  making
a positive elementary transformation supported by P ([6], §2). Hence Npugp w|R is
a direct sum of a line bundle of degree 1 and r — 2 line bundles of degree 0. Hence
hY(R, Npurw|R(—P)) = 0. Hence h*(FUR, Npurw) = 0 and F'U R is smoothable
in W ([6], Theorem 4.1 and its proof). O

Lemma 2.2. Let Y C P" be a nodal curve. Set g := p,(Y) and d = deg(Y).
Then Ny is a rank r — 1 vector bundle on' Y and deg(Y) = (r + 1)d + 2g — 2. If
h'(Y,0y (1)) =0, then h*(Y, Ny ) = 0.

Proof. Look at the Euler’s sequence of TP"

(2.1) 0— Opr — O™ (1) = TP - 0.
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Since Y is a curve, we have h?(Y, Oy) = 0. Restricting (2.1) to Y we get h! (Y, TP"|Y) =
0. There is a morphism 7 : TP"|Y — Ny whose cokernel is supported by Sing(Y").
Since Y is a curve, we have h?(Y,Ker(n)) = 0. Since h'(T,P"|Y) = 0, the exact
sequence

0 — Ker(n) — TP"|Y — Im(n) — 0

gives h*(Y,Im(n)) = 0. Since Coker(n) is supported by a finite set, we obtain that
h1(Y, Coker(n)) = 0. Hence the exact sequence

0 — Im(n) — Ny — Coker(n) — 0
gives h'(Y, Ny) = 0. O

Lemma 2.3. Let C C P", r > 3, be a smooth and non-degenerate curve such that
hY(C,0c(1)) = 0. Fiz a line D C P” such that (DN C) = 2 and D is not tangent to
C. FirOeDNC. SetY :=CUD. Then h*(Y,Ny)=0,Y € H(d,g,7)} and Y is
a flat limit of a flat family of elements of H(d,g,r)1 whose singular point goes to O
at the limit.

Proof. By [6], Remark 4.1.1 and Corollary 4.2, or [9], Theorem 5.2, we have h*(Y, Ny)
and Y € H(d,g,r). Since C is smooth, N¢ is a quotient of TP"|C. Hence N¢ is
spanned. Hence h°(C, No(—0)) = h°(C, N¢) — rank(N¢). Since h'(C,N¢) = 0,
Riemann-Roch gives h'(C, No(—0)) = 0. Let 7 : II — P” be the blowing up of O
and Y’ (resp. C’, resp. D’) the strict transform of Y (resp. C, resp. D). Since C
and D are smooth, the morphism 7 induces u : ¢/ — C and D’ = D. Y’ is nodal
and we call P its unique singular point. Since Ny |C is obtained from N¢ making two
positive elementary transformations, Ny|C is obtained from u*(Ng(—0O)) making
some positive elementary transformations. By assumption h'(C, N¢) = 0. Hence
h'(Ny-|C) = 0. Since Np is a direct sum of r — 1 line bundles of degree 1, Np(—0O) is
trivial. Hence Ny-|D’ is obtained from a trivial vector bundle making some positive
elementary transformation. Hence h'(D’, Np/(—P)) = 0. Hence Y’ is smoothable in
IT ([6], Theorem 4.1.1 and its proof) . |

Remark 2.1. Fix integersr > 3, g > 0 and d > g+r. It is easy to prove the existence
of a non-degenerate curve X C P" such that h*(X,Ox (1)) = 0, X is irreducible and
X has an ordinary node as its unique singularity. Since X is non-degenerate, we have
h9(Zx(1)) = 0. Applying Riemann-Roch on X we get h!(Zx(1)) =d — g — r. Hence
if d =g+, then h*(Zx(1)) = 0.

Lemma 2.4. Fix integers d,g,r such thatr >3,9>0,d>g+r and2d+1—-g <
(T'f). Then there is X € H(d,g,r)1 such that h°(Zx (1)) =0 and h'(Zx(t)) =0 for
all t > 2.

Proof. In all cases we construct a certain non-degenerate irreducible curve X C P".
Hence the curve X we will construct will also have h°(Zx (1)) = 0. By Castelnuovo-
Mumford’s lemma it is sufficient to find X € H(d,g,r); such that h'(Ox(2)) = 0.
Fix a general C € H(d — 1,9 — 1,r). Since C' has maximal rank ([1], [2], [3]) and
2(d—1)+1—(g—1) < ("$?), we have h°(C,Z¢(1)) = 0 and h'(Zc(2)) > 0. Let
@ C P" be any quadric hypersurface containing C. Let D C P" be a general 2-
secant line of C'. Since C is non-degenerate and the singular locus of a quadric is a
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linear space, () is smooth at a general P € C. Since D is general, we may assume
that P € C' N D is a smooth point of Q. Since C' is non-degenerate and @ is not a
cone with vertex containing P, D ¢ Q. Hence h®(Zcup(2)) < h°(C,Zc(2)). Since
h%(C' U D,0cup(2)) = h%(C,0c(2)) + 1, we get h'(Zeup(2)) = 0. Apply Lemma
2.3. (Il

Remark 2.2. Fix a closed subscheme W C P" and an effective Cartier divisor D of
P". Set a := deg(D). We will take as D a hyperplane if r > 4 and a smooth quadric
surface if r = 3. Let Resp (W) be the residual scheme of W with respect to H, i.e.
the closed subscheme of P" with Zyw : Zp as its ideal sheaf. If W is reduced, then
Resp (W) is the union of the irreducible components of W not contained in H. For
any t € Z we have the following exact sequence of coherent sheaves

(2.2) 0— IResD(W)(t —a) = Iw(t) = Zwnp,p(t) — 0.
From (2.2) we get

W (Zw (1)) < B (TRes, wy(t — @) + 1 (D, Twnp,p(t),
for alli >0 and all t € Z.

Remark 2.3. Fix a flat family {Y)}xea of curves Y C P", where A is a connected
affine curve. Call u : ) — A the corresponding family. Fix o € A and take a line
D C P” which is 2-secant to Y,. Taking a finite covering of A if necessary, we may
assume that u has two disjoint section s1, s2 with {s1(0),$2(0)} = Y N D. For any
t € A let D; be the line spanned by s1(¢) and s2(t). There is an open neighborhood
A’ of 0 in A instead of A we reduce to the case in which §(Y; N D;) = 2 for all ¢ and
D, is 2-secant to Y; for all t € A’ .

3 Proof of Theorem 1.1

For all integers m > 3 and ¢ > 2 define the integers a,, : and b,, ; by the relations
t
(3.1) (t—=1) - Qg+ 1417 + by = <m+ ) 0 < by <t—2.
m

Set am,0 = am,1 = m and by, 0 = by,,1 = 0. Fix integers d, g, such that r >3, g > 0
and d > g+ 1. Let k be the critical value of the triple (d, g, 7). By the semicontinuity
theorem for cohomology to be of maximal rank is an open condition among non-special
embeddings of curves. Recall that H(d, g,7)} is irreducible. Hence it is sufficient to
prove the existence of X; € H(d,g,r)}, i = 1,2, such that h'(Zx,(k)) = 0 and
h(Zx,(k —1)) = 0. Notice that if kd + 1 — g = ("1*), then any X; as above satisfies
h9(Zx,(k)) = 0 and hence in this particular case we do not need to check the existence
of Xs. For the case k = 1 see Remark 2.1. The case k = 2 is true by Lemma 2.4. From
now on we assume k > 3. In the case r > 4 we only write the proof of the existence
of X7, since the proof of the existence of X is similar (and trivial for & = 2). In the
case r = 3 we only write the proof of the existence of Xa.
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Define the integers u, 4 4—1 and v, 4 4—1 by the relations
r+
(3.2) Y- uryg1tl=(g—1) +vryg1= ( r y)’ 0<vryg1<y—L

Claim 1: To prove the existence of Xy (resp. X3) it is sufficient to find Y €
H(d—1,g — 1,7)" and a line D 2-secant to Y such that h'(Zyyp(k)) = 0 (resp.
h(Zyup(k — 1)) = 0).

Proof of Claim 1: By semicontinuity it is sufficient to prove that Y U D €
H(d,g,r)}. Take a smoothing of YV inside P", say {Y;}ien, 0 € A, and Y; € H(d —
1,9 — 1,r) for all t € A, and call w : ) — A the corresponding family. Taking
a finite covering of A if necessary, we may assume that u has two disjoint sections
81, 82 with {s1(0),s2(0)} = Y N D. For any t € A let D; be the line spanned by
s1(t) and so(t). Taking an open neighborhood of o in A instead of A we reduce to
the case in which §(Y; N D;) = 2 for all ¢t and Y; U D; is nodal. Use the flat family
{Y; UD;}ten C H(d,g,r)" and apply Lemma 2.3.

Let m be the maximal integer x > 0 such that a,, < g — 1. Since d > g + 7,
we have m < k. r > 3. Consider the following assertion: E, ., r > 3, z > 2. Fix
integers u, q such that zu +1— ¢+ 2z < (7"-::33) Then there exists (C, D) such that
C € H(u,q,r), D is a line, 4(C N D) =1, CUD is nodal and h'(Zcup(z)) = 0.

Lemma 3.1. E, , is true for all integers r > 3 and x > 2.

Proof. Let e be the critical value of (u + 2,¢,7). By assumption we have e < z.
Notice that e > 2. Castelnuovo-Mumford’s lemma shows that it is sufficient to find
(C,D) such that C € H(u,q,r), D is a line, §(C N D) = 1, C U D is nodal and
h'(Zcup(e)) = 0. We follow the proofs in [1], [2] and [3] for the genus g := ¢ and
the integer d := u + 1, but we need to modify the very last step of the proofs in the
quoted papers.

(a) First assume r = 3. In this case we take the proof of [2], Lemma V.2, for the
critical value e, i.e. starting with a certain curve, Y, with hi(Zy (e —2)) = 0,3 = 0, 1.
In the quadric surface @) one of the added lines, D’, is linked to the remaining lines or
to C only at one point. We get (Y', D’) with Y’ € H(u,q,3)", 4(Y'nD")=1,Y'UD’
nodal and with h'(Zy+p/(e)) = 0; here contrary to [2], Lemma V.2, we don’t need to
distinguish several subcases, because h®(Y’ U D', Oy+,pr(e)) = (u+ 1)e + 1 — ¢ and
our numerical assumptions give (egg) —(u+1)e—14¢q > e. We smooth Y’ to some
Y € H(u,q,3), say {Y)} and follow this deformation with a family of lines {D,} with
D) 1-secant line of Y (Remark 2.3).

(b) From now on we assume r > 4. Let H C P" be a hyperplane. Assume for
the moment 7 > 5, but also assume that the lemma is true in P*~1. We follow [3], §5,
(with j := e) but in the last step we add in a hyperplane H a curve Y1 UD; C H with
D, 1l-secant to Y;. Let p be the maximal integer ¢ such that a,¢ < ¢ (p is called r in
(3], §2). To see that this construction is possible, we need to check in each subcase
(b1), (b2) and (b3) the numerical obstructions stated in [3]. Set a := deg(Y7) and
y:=pq(Y1). Wehave y < gand (e—1)a+1—-y= (He*l).

T
(b1) First assume e = p. Since e(@y e +7)+1—ape+bpe = (T':e), bre <e—2,

qg>are,u—q¢>q—ar.andeu+1—gqg+2e< (T‘:e), this case is inipossible.
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(b2) Now assume e = p+ 1. Take W € H(aye—1 + T, Gre—1,7) with maximal
rank. Hence h'(Zw (e — 1)) = 0 and h°(Zw (e — 1)) = vy c—1,4 < € — 2. First assume
g > are—1+r—1. Take a general smooth curve U C H such that deg(U) = u—aye_1,
f(UNW) =rand p,(W) = g—ay—1—(r—1). Let T C H be a general line meeting 7.
Hence WUU € H(u,q,r)" and T is 1-secant to WUU. Hence (moving if necessary T as
in Remark 2.3) it is sufficient to prove h!(Zwyuur(e)) = 0. Since h!(Zy (e — 1)) = 0,
it is sufficient to prove h'(H, Tuuruwnm),a(e)) = 0. Since apc 1 <e—2 < (Tfe) -
e(u+1) =1+ ¢, we have {(W N H) — (W NU) + h°(U UT,Opur(e)) < (ijzl)
By the inductive assumption in P"~! we have h'(H,Zyur,m(e)) = 0. Hence it is
sufficient to prove that the points in W N (H \ U) give independent conditions to
HO(H,Zyur u(e)). We want to apply [3], Lemma 1.6, with e = 0, i.e. s=1r,¢” >0
and hence (s—r—2—(d"—¢"—r+1)) <0< g". Now assume ¢ < aye_1+7r—2. In
this case we may take U C H smooth and rational and meeting W at ¢ +1 — a,c—1
points.

(b3) Now assume e > p+ 2. Take W € H(uye—1,4,4,r) with maximal rank.
Hence h'(Zw (e — 1)) = 0 and h°(Zw(e — 1)) = vpe—1,4 < e—2. Let U C H be
a general smooth rational curve of degree u — u,._1,, and T a general line meeting
W at exactly one point and with TN'W € H. Since WUT € H(u,q,r)’, to prove
the lemma in this case it is sufficient to prove h'(Zyuuur(e)) = 0 for general (U, T).
Since h'(Zw (e — 1)) = 0, it is sufficient to prove h'(H, Zyurownm,u(€)) = 0. We
have {(WNH) = uye_1,4 > e+1, because, ¢ < uy_1,—7 and hence (e—1)uye—1,4 >
("t¢"1) +r—(e—1). By the case ¢ = 0 in P"! there is a pair (U, T) in P"~! such that

hY(H,Tyur,u(e)) = 0. Since ("7) —e(u+1) —1+g > 2e > h%(Zy (e — 1)), we have
tWNH)—1< ("7 = hO(H, Zyuru(e)). To get h (H, Tyurownmy,u(e)) = 0 we
want to apply [3], Lemma 1.6, with S a single point (a case even easier than the one
in [3], Lemma 1.6, where £(S) > r).

(¢) Now assume r = 4. Here the situation is simpler, because to control the
postulation of TNH, T C P* a sufficiently general curve and H a hyperplane, we may
use [1], Lemma 1.4, to control TN H and hence we could even prove Lemma 3.1 by
induction on e starting with a pair (Y._1, D) for the critical value e — 1 and arriving
to the pair (Y., D) for the critical value e. O

3.1 Case r =3 of Theorem 1.1

In this subsection we conclude the proof of Theorem 1.1 in the case r = 3. We fixed
the integer g > 0 and called m the maximal integer such that as,, < g — 1. For any
P € P3 let x(P) denote the first infinitesimal neighborhood of P in P3, i.e. the closed
subscheme of P? with (Zp)? as its ideal sheaf. The scheme x(P) has dimension zero,
deg(x(P)) = 3 and x(P)reqa = {P}. We call x(P) the nilpotent with P as its support.

We only prove the existence of X5, i.e. of a pair (C, D) with C € H(d—1,¢9—1,3),
D a 2-secant line of C and h(Zeyp(k — 1)) = 0. The triple (d — 1,g,3) has either
critical value k or critical value k — 1.

(a) In this step we assume that (d—1, g, 3) has critical value k—1. Since (d, g, 3)
has not critical value k — 1, we have

(3.3) (k;2)<kd+1—gg<k‘§2>+k.
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inequality in (3.3) it is sufficient to assume ug g—1,9—1 — U3 k—3,9—1 > U3 k—3,9—1). AS
in [2], Lemma VI4, take (Y,Q,D,D’,S,S’) satisfying R(k — 1) for the genus g — 1
with respect to the integer = 0. Hence Y € H(ugp—3,4-1,9 — 1,3), @ is a smooth
quadric surface intersecting transversally Y, D and D’ are disjoint 1-secant lines of
Y contained in Y, S’ = &, #(5) = v3 4—3,4-1, S C D\ Y N D. Deforming ¥ we may
also assume that no line of @) is 2-secant to Y. Let E;, 0 <7 <d—1—ug}_1,4-1, be
lines of @ intersecting D, not containing the point D N'Y and such that £; NY # 0
if and only if 0 <4 < w3 _34-1. Let Z be the union of Y, D, the lines E;, 1 < i <
d—1—u3,_1,4—1 and the v 3 41 nilpotents x(P), P€ DNE;,; 1 <i<v3,_-34-1.
We have Z € H(d — 1,9 — 1,3)" (2], Corollary 1.4) and E; is a 2-secant line of
Z. The scheme Resg(Z U Ejy) is the union of ¥ and the points P, P € DN E;,
1<i<wgp_34-1. Since §(Y N(Q\ D)) > k+ 1, we see as in [2], lines 12-16 of the
proof of Lemma VI.1) that h° (IResQ(Zqu) (k—1))) = 0. Hence it is sufficient to prove
hO(Q,ZG(]{i—l, d—l—U37k+17g_1)) = 0, where G := Yﬂ(Q\(DUE0U~ .- Ev(g)kJrl,g,l)).
We apply [2], Lemma VIILS8.

(a2) Now assume k > m + 3 and d — 2 — U3 k—3,9-1 < V3 k—39-1. Llake
(Y,Q,D,D’,S,S") satisfying R(k — 3) for the genus g — 1 with respect to the in-
teger @ := v3k_34-1 — (d —3 — Uz gt1,9—1). Here we use [2], Lemma VIIL.2, which
says that 0 < 2z < v p_3,4—1. Deforming ¥ we may assume that Y is transversal
to @ and that ) contains no 2-secant line of Y. Fix d — 2 — u3 p11,4—1 lines Ej,
0<i<d—3—usk+1,9-1, in the linear system of lines in @ intersecting D with the
only condition that F; intersects Y N (Q \ (DU D")) if and only if 1 <i < z. Let Z
be the union of Y, D, D', the lines E;, i # 0, and the nilpotents x(P), P € DN E;,
1<i<vgpt19-1—x,and Pe D'NE;, 1 <i<z. Wehave Ze€ H(d—1,9—1,3),
Ejy is a 2-secant line of Z (it intersects D and D', but not Y) and ZUE, € H(d, g,3)}
(Lemma 2.3).

(a3). Now assume k < m+ 2, i.e. k € {m,m+1,m+ 2}. We use the assertion
H(k — 3) of [2] instead of the assertion R(k — 3). Here need to distinguish four
subcases. In every subcase we start with a solution (Y,Q, D, S) of Hi_3. Let (1,0)
be the system of lines on @ containing D. Deforming if necessary ¥ we may assume
that @ is transversal to Y and that D is the only 2-secant line of Y contained in Q.

(a3.1) Assume g — 1 = a3 —3 (it implies k¥ = m + 2). Since b3 _3 < (k —3)/3
([2], II1.1), we have bg —3 < d — 2 — ag ;—3. Take a line D’ of type (1,0) on @ and
1-secant to Y. Let E;, 0 < i < d — 2 — ag, be lines of type (0,1) on @ such that
D'NY ¢ E; for any i and E; NY # & if and only if 0 << b3 ;3. Let Z be the
union of Y, D', E;, i > 1, and the nilpotents x(D" N E;), 1 <4 < b3 ;_3. We have
Z e H(d—-1,9g—1,3) and Ej is a 2-secant line of Z.

(a32) Assume g— 1 > a3 k—3 + 1 and b37k_3 < d—2— a3 k—3 — (g — 2) Let Ei,
0 <i<d—2-—ag_3, be lines of type (0,1) on @ such that DNY ¢ E; for any ¢
and F; NY # & ifand only if 0 < i < g — 2 — a3 ;—3 + b3 ;—3. Let Z be the union
of Y, D, E;;i>1,and x(E; N D), 1 <4 <bsp_3 Wehave Z € H(d—1,9—1,3)
and Fj is a 2-secant line of Z.

(a3.3) Assume bgp—3 > d+ 1 —agp—3 —¢g and by k_3 + (9 —3 — agk—3) <
3(d—3 — ask—3). Since b3 r_3 < (k—3)/3 ([2], II.1) and g — 1 > a3 x—1, we have
g—1>aszr_3+2. Let D’ be a general 2-secant line of Y. Instead of () we take

(al) First assume k > m + 3 and d — 2 — ug g_3,9-1 > U3 k—3,4—1 (by the first
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a general quadric surface Q' containing D U D', say as lines of type (1,0). Let E;,
0 <i<d—3—ask_3 belines of type (0,1) on @', not intersecting ¥ N (D U D’) and
with B; N D; # & ifand only if 0 <i<g—3 —azx_3+b3r_3—2(d—3—azx_3).
Let Z be the union of Y, D, D', the lines L;, i > 1, the nilpotents x(D N E;), i > 1,
and the nilpotents x(D' N E;), 1 <i < z. we have Z € H(d— 1,9 — 1,e)’ and Ej is
2-secant to Z.

(a3.4) Assume bz j_3 > d+ 1 —b3r_3 — g and b3 s_3 + (g — 3 — azp_3) >
3(d -3 - as k— 3) Since bgk 3 S (k — 3)/3 ([2], IIII), d—1 2 a3 k—1 + 3 and
as p—1 — as k-3 > 2(k — 1) (2], IIL.1), this case cannot occur.

(b) Now assume that (d — 1, g,3) has critical value k. Let = be the maximal

integer x > 0 such that (x,g,3) has critical value < k — 1. It is easy to check
that £ > g + 3 and that z < d. We proved the existence of a pair (C, D) such that
C € H(z,9—1,3), D is a 2-secant line of C, Let E C P® be any smooth rational curve
such that deg(E) = d—x, §(CNE) =1, END = & and E meets quasi-transversally
C (e.g., take as F a general smooth rational curve of degree d — x intersecting C').
Set X5 := (CUE)UD.

3.2 End of the proof of Theorem 1.1 for r > 4

From now on we assume r > 4. We define the following assertions H, ., = > 1,
Riyg-1,y>m,and Ry, .y, ¢ (onlyif r >5and g — 12> vy g1).
H,.: A general C € H(ay, + 7, a,4 — by s, 7) satisfies h'(Zo(x)) =0, i =0,1.
R, 4.g—1, > m: There exists a triple (X, Z,T') such that

(i) X=2ZUT,ZNnT = and hi(Zx(z))=0,i=0,1;
(i) Z € H(urz,g—1 — Vrz,g—1,9 — 1,7) and T is a union of v, , 41 disjoint lines.

R, ,41,49-1 (under the assumptions 7 > 5 and g — 1 > v,,n4-1): There is ¥V €
H(tUrm+1,9g-1,9 — 1 — U m1,g-1,7) such that h*(Zy (m +1)) =0, i =0, 1.

Of course, to see that H, , (resp. R, . 4—1) makes sense for z > 1 (resp. = > m)
we need to check that a, , > b, , for all x > 1 (resp. Ur gz g—1 —Vrzg-1 > 9g—1+7T
for all x > m). These inequalities are true for the following reasons. A stronger
form of the inequality a4, > by, + 4 is [1], Lemma 2, plus that by ; = 0. We have
Udym,g—1 — Vam,g—1 > ¢ — 1+ 4 by [1], Lemma 9. We have us ;g1 — Vaz,9-1 >
g — 144 for all z > m by [1], Lemma 5, and the inequality v4 541 < x — 1. More
restrictive inequalities are proved in [3], §5, for the case r > 5. Granted this, for
any C € H(ayy +7,ar5 — by, 7)) we have h!(Zo(z)) = h°(Ze(x)) by the equation
n (3.2). The equation in (3.1) gives h'(Zzur(z)) = h°(Zzur(x)) for any Z U T
with Z € H(uyg,9-1 — Vrz,9-1,9 — 1,7) and T a union of v, , 41 disjoint lines such
that ZNT = & . Similarly, if g — 1 > vpmt1,9-1 and Y € H(tpmt1,9-1,9 — 1 —
Vrmt1,9-1,7) s then k! (Zy (m+1)) = h°(Zy (m+1)). To prove one of these assertions
H, ., Ry z g1 010 R;ﬁ’m_s_l’g_l it is sufficient to find a “ solution ” which is smoothable
(by semicontinuity). For instance, to prove H, , it is sufficient to prove the existence
of C € H(ayz + 7,075 — bry,7)" such that h'(Zo(z)) = 0. The assertion Hy 4, 7 > 5
and z > 1, are true by [3], Lemma 1. If R, ., ; is defined and r > 5, then
R i1,9-1 18 true ([3], Lemma 3.2). For y > m +1 R, , ;1 implies R, 1141 ([1],
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Lemma 8, for 7 = 4, [3], Lemma 3.6, for r > 5. If r > 5 and R}, ,_; is not defined,
then R, +1,9—1 is true ([3], Lemma 3.3). Rym+1,4—1 is true ([1], Lemma 10). If
r>5and Ry, 1,1 is defined, then R, ;42 g1 is true ([3], Lemma 3.5). Hence we
may use all H,, and all R, 41, except R, yy1,4—1 When r > 5 and R;ﬂ’mﬂ’gfl is
defined. In the latter case we may use R;. .1 , ;. Fix a hyperplane H of P".

(a) Here we assume m = k. Since k >3, ¢ > arm, d>g+rand kd+1—g <
(m:”), we get g = @ and d = a,,, + 7. Take a solution C' of H, ,_1. Hence
C e H(arg—1+rarp—1 —brg_1,7) and h*(Ze(k — 1)) =0, ¢ = 0,1. First assume
d>arg—1+7r+(g—ark—1+brg—1). Since (m—2)a, m—1+r(m—1)+m—3 > (T"Hf_l),
we have @y ;,m—1 —2 > 2m. Hence Lemma 3.1 gives the existence of (U,T) with
UUTCcH, UeH(d-arp-1,9—1,7—1), 8({UNC) =, T a 2-secant line of WU U
and with h'(H,Zyur u(e)) = 0. By Remark 2.2 to prove the existence of X it is
sufficient to prove h'(H, Tvurucnm),a(m)) = 0. Since kd +1 — g < (Tj:k), the case
t=k—1of (3.1) gives

r+k—1

(U UT,Opur(k)) < ( r—1

)—ﬁ(CﬂH)—i—ﬁ(C’ﬂ(UUT)).

The curve U C H is general in H(d—a, x—1,9—1,7—1) by [3], Lemmas 1.5 applied to
the integer r—1. Hence Lemma 3.1 and the generality of UUT gives h*(H, Zyur (k) =
0. Apply [3], Lemma 1.6.

r+k

(b) Now assume k = m+ 1. First assume kd+1—g > (";") — by,;n. In this case
the proof of the case m = k works verbatim, even without knowing the exact values of
d and g. Now assume kd+1—g < (T':k) —bym and d > ay, +2r+1. Sinced > g+,
we have d — @y —7 > g — @y . Take a general C' € H(ay p +7, G m, 7). Since C has
maximal rank ([1], [3]), we have h'(Zc(k — 1)) = 0 and h°(Zo(k — 1)) = byg—1. We
may assume that C' is transversal to H. We claim the existence U UT C H such that
(U, T) satisfies the thesis of Lemma 3.1 and with U € H(d—1—a,x,9—1—arp,7—1),
$(UNC) =1and T 2-secant to C UU. To check the claim it is sufficient to note that
Qpm—1+7—1>2(m+1). Now assume d < a,,, +2r. Since d > g+r > aym +7, We
get d<g+2rand kd+1—g < (Ttk) — 2k. We start with a general C' € H(a, m +
r—1,amm—1,7)and add U'UT C H with U’ € H(d — aym,d — apm — 7+ 1,7 — 1)
with §(U'NC’") =1+ (9 — arm).

(¢) Now assume k > m + 2. First assume d > Upk—1,g—1 + Urk—1,g-1 + 1.
Take (C,A) satisfying R, j—1,4-1. Let U C H be a general rational normal curve
containing exactly one point of each connected component of C'U A, i.e. containing
the set AN H and exactly one point of C N H (C exists, because we assumed d >
Ur k—1,g-1 + Urk—1,g-1 +1). Fix P € C N H with P ¢ U and take a general line T
through P and intersecting C'. For general C, A and U we may assume that T is a 2-
secant line of CUAUU. By Lemma 2.3 it is sufficient to prove h'(Zcuauvur(k)) = 0,
ie. h'(H, Tyuruenm)(k)) = 0. Since (d, g,7) has critical value k, we have

0 r+k—1
RP(CUT,Ocur(k)) +4(CNH)—4(CNU)—4(CNT) < ( . >

Further, we have (C N H) — §(C NU) > 2k, because u,r—14-1 > 3k by (3.2).
Hence Lemma 3.1 implies h'(H,Zyur(k)) = 0 Apply [3], Lemma 1.6. Now assume
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d < Upk—19-1+ Vrk—149-1. Take Y € H(upp-1,4-1,9 — 1,7) with maximal rank.
Hence h'(Zy (k — 1)) = 0. First assume d > u, x—1,4-1 + 2. We add in H the curve
E U D, where E is a smooth rational curve intersecting Y quasi-transversally and
exactly one point and D is a 1-secant line of E passing through one of the points
of YN (H\ E). By Lemma 3.1 we may assume h'(H,Zg,p(k)) = 0. Since D is
a 2-secant line of Y U E, it is sufficient to apply Lemma 2.3 and Remark 2.3. Now
assume d < Uy p—1,9-1 + 1. In this case we have kd +1 — g < (Tjk) — 2k. Take
Y € H(urg—1,9g-1 — 1,9 — 1,r) with maximal rank and add EU D C H with E
smooth and rational and f(ENY’) = 1. O
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