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Abstract. We give a new sufficient condition in order that the curvature
determines the metric: generically, if two Riemannian manifolds have the
same ”surjective” (1,3)-curvature tensor fields, then their metrics split into
product ones, having the corresponding factors homothetic. The same
result holds for some specific pairs of manifolds with indefinite metrics.
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1 Introduction

An important and difficult topic in Global Riemannian Geometry (as a particular
case of the so called equivalence problem) is the determination of the metric, by
imposing (sufficient) restrictions on some geometric invariants, especially curvature-
related. The ideas trace back to Riemann ([12]), but the first explicit result belongs
to E. Cartan ([4], p.238; [5], p. 157): omitting the details, it asserts that

the (0,4) or the (1,3)- curvature tensor fields, together with the parallel transport,
locally determine the Riemannian metric, up to an isometry.
The theorem of Cartan was extended from local to global by Ambrose ([1]).

Nomizu and Yano proved a similar result ([10], [11]): in dimension greater than
one, the (1,3)-curvature tensor field, together with its covariant derivatives of any
order, determine the Riemanian metric, up to a homothety. This suggests that (the
redundant) ”(1,3)-curvature + holonomy” determines the metric, up to a homothety.

One may ask if one needs all the holonomy information or it suffices only a part
of it. K. Teleman showed ([13]) that the (1,3)-curvature tensor field of an irreducible
Riemannian manifold determines the metric, up to a homothety. (Here the ”irre-
ducibility” is considered with respect to a subgroup on the holonomy group, spanned
only by the curvature operators, without operators provided by the covariant deriva-
tives of the curvature).

Kulkarni ([7], [8]) and Yau ([15]) proved that in dimension greater than 3, the
(0,4)-curvature tensor field (or, equivalently, the sectional curvature), completely de-
termines the Riemannian metric, on the set of non-isotropic points. In dimensions 2
and 3, this assertion is not true.
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For more details, see the monograph A Panoramic View of Riemannian Geometry
([2]), where Marcel Berger analyses other progress made for extending and generaliz-
ing the ”Cartan’s philosophy”. The dominant belief that emerges from this survey is
that the problem of the metric determination by the (0,4)-curvature tensor field is ba-
sically solved, through the works of Kulkarni and Yau, previously quoted; by contrast,
the problem of the metric determination by the (1,3)-curvature tensor field is open,
the existing partial results treating only some particular cases. (Given a Riemannian
manifold, the information carried by the (0,4)-curvature tensor is equivalent with the
information carried by the (1,3)-curvature tensor. It may seem quite strange that the
curvature determination of the metric differs so much, in function of the type of the
curvature tensor.)

Consider (M (i), g(i)) Riemannian manifolds and ρi positive real numbers, with i =
1, k. Then (M (1)×...×M (k), g(1)×...×g(k)) and (M (1)×...×M (k), ρ1g(1)×...×ρkg(k))
have the same curvature (1,3)-tensor field.So, it is clear that only the (1,3)-curvature
tensor does not determine the metric (up to a homothety). Then, what are the weakest
sufficient (additional) conditions in order that the (1,3)-curvature tensor determines
the metric, up to a homothety ?

The purpose of this paper is to prove a local and a global result:

Theorem 1.1. (the local version) Let M be a connected differentiable manifold and
g, g̃ two Riemannian metrics on M . Suppose the (1,3)-curvature tensor fields R and
R̃ are surjective and equal. Then:

(i) locally, there exists a natural number k and a splitting M (1) × ... × M (k) of
M ; there exist k Riemannian metrics g(i)onM (i), i = 1, k; there exist k positive real
valued functions ρ1, ..., ρk such that

g = g(1) × ...× g(k) , g̃ = ρ1 g(1) × ...× ρk g(k).

Moreover, if n = 2 or n = 3, then k = 1.

(ii) if for some j we have dimM (j) > 3, or dimM (j) = 3 and Ric(j) is non-
degenerate, then ρj is constant.

(iii) if for some j we have dimM (j) = 2, then the function lnρj is harmonic.

Theorem 1.2. (the global version) Let M be a connected real analytic manifold and
g, g̃ two complete Riemannian metrics on M . Suppose the (1,3)-curvature tensor
fields R and R̃ are surjective and equal. Then:

(i) there exists a natural number k and a splitting M (1) × ... ×M (k) of M ; there
exist k Riemannian metrics g(i)onM (i), i = 1, k; there exist k positive real valued
functions ρ1, ..., ρk such that

g = g(1) × ...× g(k) , g̃ = ρ1 g(1) × ...× ρk g(k);

(ii) if for some j we have dimM (j) > 3, or dimM (j) = 3 and Ric(j) is non-
degenerate, then ρj = 1.

(iii) if for all i = 1, k we have dimM (i) > 3, or dimM (i) = 3 and Ric(i) is
non-degenerate, then g = g̃.
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2 Proof of Theorem 1.1

(i) Consider on M the local coordinates (x1,...,xn) and an orthogonal system of con-
gruences such that the line elements of g and g̃ write ds2 = (ds1)2 + ... + (dsn)2 and
ds̃2 = θ2

1(ds1)2 + ... + θ2
n(dsn)2, respectively. Here, θ2

1, ... , θ2
n are the eigenvalues

of g̃ with respect to g; we suppose that all of them are positive. We use the local
transformations from [14]:

dsa = λa
i dxi , ds̃a = λ̃a

i dxi , dxi = µi
adsa , dxi = µ̃i

ads̃a , λ̃a
i = θaλa

i , µi
a = θaµ̃i

a.

Denote by γa
bcd and γ̃a

bcd the curvature coefficients with respect to the system of
congruences. We have

γa
bcd = Ri

jklλ
a
i µj

bµ
k
cµl

d.

Due to the hypothesis R̃i
jkl = Ri

jkl, we obtain ([14])

θ−1
a θbθcθdµ̃

a
bcd = γa

bcd.

By permuting the indices a and b, then using the skew-symmetry of γa
bcd in a and b,

we derive

(2) (θ2
a − θ2

b )γa
bcd = 0 , (θ2

a − θ2
b )γ̃a

bcd = 0

for any indices a, b, c, d = 1, n. Due to the surjectivity of R, if n = 2 or n = 3, it
follows that all the eigenvalues θi coincide.

Consider n > 3. In a fixed point, let a = 1, n; then, there exist b, c, d such that
γa

bcd 6= 0. It follows that there exists a positive integer k ≥ 1 such that, locally, modulo
an eventual renumbering, we have θ1 = ... = θi1 , ..., θik−1+1 = ... = θn. If k = 1,
then the metrics g and g̃ are locally conformal. Without restraining the generality,
we suppose in what follows that k = 2. (The general case is very similar, with only
additional significance-less details). So, we have

(3) θ1 = ... = θm = C1 , θm+1 = ... = θn = C2 , C1 6= C2.

We denote by a, b, c, ... = 1, n; i, j, k, ... = 1,m; α, β, δ, ... = m + 1, n. From (2), (3)
and the first Bianchi identity, it results γi

αab = 0, γi
aαb = 0. We use the second Bianchi

identity and obtain
γi

jklγ
j
αβ = 0 , γα

βδcγ
β
ij = 0,

where
γa

bc :=
∂λa

d

∂xe
− |fde| λa

f )µd
bµ

e
c.

A short calculation gives γi
αβ = 0 and λα

ij = 0. The Pfaffian systems λi
adxa = 0

and λα
adxa = 0 are then completely integrable. So, λi

α = 0 and λα
i = 0; thus

gαi = g̃αi = 0. On another hand, ∂gij

∂xα = 0 and ∂gαβ

∂xi = 0. Similar relations are
obtained for the coefficients of g̃.

In conclusion, locally, we get g̃ij = C2
1gij and g̃αβ = C2

2gαβ , where C1 and C2

depend only on x1, ..., xm and respectiely on xm+1, ..., xn.
(ii) is a direct consequence of the
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Lemma 2.1. ([9]) Let M be a connex n-differentiable manifold ( n > 3) and g, g̃
two conformal Riemannian metrics on M . Suppose the (1,3)-curvature tensor fields
R and R̃ are surjective and equal. Then g and g̃ are homothetic.

In dimension 3, the surjectivity of the (1,3)-curvature tensor does not assure any-
more the homothety of the metrics. We need the stronger hypothesis of Ricci non-
degeneracy (which implies the surjectivity of the (1,3)-curvature tensor):

Lemma 2.2. Let M be a connected 3-dimensional manifold and g, g̃ two conformal
Riemannian metrics on M . Suppose R = R̃ and Ric is non-degenerated. Then g and
g̃ are homothetic.

Proof. Suppose g̃ = e2fg, with f ∈ F(M).
In dimension 3, the (1,3)-curvature tensor has the form

R(Z,W )Y = Ric(Y, W )Z −Ric(Y, Z)W + g(Y,W )ricZ−

−g(Y, Z)ricW − s

2
g(Y,W )Z +

s

2
g(Y,Z)W

for any vector fields Y, Z,W . We denoted by ric the associated Ricci tensor of type
(1,1) and by s the scalar curvature. From the equality R = R̃, we derive Ric(U,X)Y =
Ric(U, Y )X, where U = gradf . By contracting and by using the non-degeneracy of
Ric, we obtain U = 0. The conformal factor e2f is a constant, hence the metrics are
homothetic. ¤

(iii) We use the

Lemma 2.3. Let M be a connected 2-dimensional manifold, f a real valued differ-
entiable function on M and g̃ = e2fg. Then R = R̃ if and only if f is harmonic.

Proof. From [3], pag.58 we know that R̃ = e2f{R−g
⊗

(∇df−df
⊗

df+ 1
2 || df ||2 g)},

where the curvature tensors are of type (0,4) and
⊗

is the Kulkarni-Nomizu product.
From the equality of the (1,3)-curvature tensors, we derive

{(∇Xdf)Z − df(X)df(Z) +
1
2
|| df ||2 g(X,Z)}Y − {(∇Y df)Z − df(Y )df(Z)+

+
1
2
|| df ||2 g(Y,Z)}X + g(X,Z){∇V gradf − df(Y )gradf +

1
2
|| df ||2 Y }−

−g(Y, Z){∇Xgradf − df(X)gradf +
1
2
|| df ||2 X} = 0

for any vector fields X, Y, Z. We contract Y and obtain ∆f = 0, where the Laplacian
is determined by using g.

For the converse statement, suppose ∆f = 0 and calculate the two curvature
tensors in isothermal coordinates. ¤
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3 Proof of Theorem 1.2

By Theorem 1.1,(i) the Riemannian manifold M splits locally as M (1) × ... ×M (k).
The real analiticity allows to prolong this relation globally. As (M, g) is complete, it
follows that each factor (M (i), g(i)) is complete. Then (i) is proved.

Consider now an index j as in the hypothesis of (ii); then, by Theorem 1.1, (ii),
one obtains that g is homothetic with g̃ on M (j).

We need now the following lemma:

Lemma 3.1. ([6],vol.I, p.242). If N is a complete Riemannian manifold which is
not locally Euclidean, then every homothetic transformation of N is an isometry.

Since (M (j), g(j)) is not locally Euclidean (due to the surjectivity of the curvature
tensor field R(j)), it follows that g is isometric with g̃ on M (j). The assertion (ii) is
thus proved.

The conclusion (iii) is a direct consequence of (ii), when applied for every index
i = 1, k.

4 Comments

(i) Obviously, a curvature tensor R is surjective iff, for every point p ∈ M , the tensor
Rp is surjective. As examples of Riemannian manifolds with surjective curvature, we
have:

- every surface with nowhere vanishing Gauss curvature;
- every non-flat constant sectional curvature manifold;

- products of manifolds with surjective curvature;

- non-flat invariant submanifolds (in particular, totally geodesic ones) of Rieman-
nian manifolds with surjective curvature.

(ii) For the assertions (ii) and (iii) of the Theorem 1.1, the ”surjective” curvature
hypothesis is only sufficient. It is not necessary, as may be observed from simple
product metrics (for example, on R× S1, consider dt2 + dσ2 and dt2 + f2 dσ2, with
f a non-negative real valued function on S1).

(iii) The hypothesis concerning the dimension cannot be much improved in Theo-
rem 1.1,(ii), (iii). Indeed, on 2-dimensional manifolds, the surjective curvature prop-
erty do not imply that conformal metrics are necessarly homothetic. In what concerns
the dimension 3, Lemma 1 cannot be applied; we don’t know if a counterexample may
be constructed, as in [15], or if Theorem 1.1 (ii), (iii) may be proved, by a different
argument.

(iv) We may ”explain” Theorem 1.1 by the following heuristic and speculative
remarks: due to the de Rham decomposition theorem ([6]), the Riemannian manifolds
(M, g) and (M, g̃) were known to split into irreductible factors, with respect to the
holonomy groups.As R = R̃, the holonomy groups are ”close” (even not identical),
which determines ”some” (local) decompositions of M to coincide (the decomposition
in Theorem 1.1 is not necessarly the same as de Rham decomposition). The fact that,
on each factor, the metrics g and g̃ are conformal is, perhaps, a reminiscence of the
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surfaces behaviour (via an ”isothermal-like transformation”), induced by the fact that
their curvature is the same.

The assertion (ii) of Theorem 1.1 has an intuitive ”justification”: on each factor of
the (local) decomposition of M , the metrics g and g̃ are conformal; the surjectivity of
the curvature tensors determines a kind of reduction (similar to Liouville’s theorem
[5],p.170), and conformal transformations reduce to homotheties.

(v) In [11] is proved the following result: Let (M, g) be a Riemannian manifold with
dimM ≥ 3. If a conformal change g → ρ2g preserves the (1,3)-curvature R and ∇R,
then R = 0 or the function ρ is constant. The dichotomy ”curvature flatness” versus
”homothety” anticipates the assertion of Theorem 1.1; however, it is not completely
clear how may be filled the gap between curvature flatness and the non-surjectivity
of the (1,3)-curvature tensor field.

(vi) The next step on this topic is to investigate a possible generalization of Theo-
rems 1.1 in the semi-Riemannian setting. For example, the respective result remains
true if we replace the hypothesis ”Riemannian manifolds” by ”semi-Riemannian mani-
folds, of the same index and with the metrics (locally) simultaneously diagonalizable”.
The additional assumptions are necessary, as may be seen by considering the canon-
ical metrics on the 2-dimensional sphere and on two pseudo-spheres, with different
time axis (they have the same curvature tensor, but cannot be homothetic).
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