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Abstract. In this paper, the analysis is focused on single-time opti-
mal control problems based on simple integral cost functionals from La-
grangians whose order is smaller than the higher order of ODEs con-
straints. The basic topics of our theory include: variational differential
systems, adjoint differential systems, Legendrian duality, single-time max-
imum principle. The main original results refer to the form of adjoint dif-
ferential systems and the simplified single-time maximum principle, based
on higher order ingredients. For completeness, we added Euler-Lagrange
and Hamilton equations of higher order obtained from the maximum prin-
ciple.
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1 Single-time optimal control problem with
second order ODEs constraints

Our paper has three sources of inspiration: (1) the Analytical Mechanics based on
second order Lagrangians studied, with remarkable results, by many researchers (see
[5]-[7]), (2) some optimization problems via second order Lagrangians solved in the
papers [8]-[10], [13], [22] and (3) the optimal control problem governed by the nonlinear
elastic beam equation (see [4]).

Here we develop our view-point by introducing some new results regarding higher
order Lagrangians and ODEs constraints. Section 1 introduces and studies an optimal
control problem involving second order ODEs constraints and, using the notion of
adjointness, there are given necessary conditions of optimality. Section 2 takes into
account the general case when there are considered higher order ODEs constraints for
an optimal control problem. Section 3 is devoted to higher order Euler-Lagrange and
Hamilton ODEs via simplified single-time maximum principle, highlighting the main
results. Section 4 points out future research.
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Let study an optimal control problem based on a simple integral cost functional
with second order ODEs constraints:

(1.1) max
u(·),xt0

{
I (u(·)) =

∫ t0

0

X (t, x(t), ẋ(t), u(t)) dt

}

subject to

(1.2) ẍi(t) = Xi (t, x(t), ẋ(t), u(t)) , i = 1, n

(1.3) u(t) ∈ U , ∀t ∈ [0, t0]; x(0) = x0, x(t0) = xt0 , ẋ(0) = x̃0, ẋ(t0) = x̃t0 .

Terminology and notations: t ∈ [0, t0] is a parameter of evolution, or single-
time; [0, t0] ⊂ R+ is the time interval; x(t) = (xi(t)), i = 1, n, is a C3-class function,
called state vector; u(t) = (uα(t)), α = 1, k, is a continuous control vector; the running
cost X (t, x(t), ẋ(t), u(t)) is a C1-class function, called non-autonomous Lagrangian.

In this section we are looking for necessary conditions of optimality (for a pair
(x, u)) in the previous optimal control problem. Further, the summation over the
repeated indices is assumed.

We remark that the differential system (1.2) can be rewritten as follows

(1.2′) ẋi(t) := zi(t), żi(t) = Xi (t, x(t), z(t), u(t)) , i = 1, n.

Using the Lagrange function (Lagrangian),

L (t, x(t), ẋ(t), z(t), ż(t), u(t), p(t), q(t)) = X (t, x(t), z(t), u(t))

+ pi(t)
[
zi(t)− ẋi(t)

]
+ qi(t)

[
Xi (t, x(t), z(t), u(t))− żi(t)

]
,

where p(t) = (pi(t)) , q(t) = (qi(t)) , i = 1, n, are called co-state variables or Lagrange
multipliers, we build the control Hamiltonian,

H (t, x(t), z(t), u(t), p(t), q(t)) = X (t, x(t), z(t), u(t)) + pi(t)zi(t)

+ qi(t)Xi (t, x(t), z(t), u(t)) ,

or, equivalently, H = L + piẋ
i + qiż

i (modified Legendrian duality).

1.1 Variational differential system and
adjoint differential system

We start with the ODE system (1.2′), for a fixed control u(t) and a corresponding
solution (x(t), z(t)). Consider the differentiable variations x(t, ε), z(t, ε), fulfilling

ẋi(t, ε) = zi(t, ε)

żi(t, ε) = Xi (t, x(t, ε), z(t, ε), u(t))

x(t, 0) = x(t), z(t, 0) = z(t), i = 1, n.



Optimal control problems with higher order ODEs constraints 73

By a derivation with respect to ε, evaluating at ε = 0, we get the ODE system

ẏi(t) = vi(t), v̇i(t) = Xi
xj (t, x(t), z(t), u(t)) yj(t) + Xi

zj (t, x(t), z(t), u(t)) vj(t),

called variational differential system, where we used the notations xi
ε(t, 0) := yi(t),

zi
ε(t, 0) := vi(t) (see xi

ε(t, 0) as the derivative of xi(t, ε) with respect to ε, evaluated
at ε = 0). The matrix form of the previous variational differential system is Ẇ (t) =
A(t)W (t), where

W (t) :=




y1(t)
y2(t)

...
yn(t)
v1(t)
v2(t)

...
vn(t)




, A(t) :=




On In

(
Xi

xj

) (
Xi

ẋj

)


 .

Denote R(t) := [p1(t) p2(t) · · · pn(t) q1(t) q2(t) · · · qn(t)]T (see MT as the transposed
matrix of M) the matrix of co-state variables. The following differential system

ṗj(t) = −Xi
xj (t, x(t), ẋ(t), u(t)) qi(t)

q̇j(t) = −pj(t)−Xi
ẋj (t, x(t), ẋ(t), u(t)) qi(t)

is called the adjoint differential system of the previous variational differential system
because the scalar product RT (t)W (t) is a first integral of the two systems, i.e.,

d

dt

[
RT (t)W (t)

]
= 0.

The matrix form of the previous adjoint differential system is Ṙ(t) = −AT (t)R(t).
For another viewpoint regarding this subject, we address the reader to the works

[1]-[5].

1.2 The optimal control problem solution:
necessary conditions

The main result of Section 1 is represented by the following

Theorem 1.1. (Simplified single-time maximum principle based on second
order ingredients) Let (x, û) be an optimal pair in (1.1), subject to (1.2) and (1.3).
Then there exist a C1-class co-state variable p = (pi), respectively a C2-class co-state
variable q = (qi), defined over [0, t0], such that

(1.4) ẋj(t) =
∂H

∂pj
(t, x(t), ẋ(t), û(t), p(t), q(t))

ẍj(t) =
∂H

∂qj
(t, x(t), ẋ(t), û(t), p(t), q(t)) , ∀t ∈ [0, t0], j = 1, n
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x(0) = x0, ẋ(0) = x̃0,

the functions p = (pi) , q = (qi) satisfy

(1.5) ṗj(t) = −Hxj (t, x(t), ẋ(t), û(t), p(t), q(t)) , pj(t0) = 0

q̇j(t) = −Hẋj (t, x(t), ẋ(t), û(t), p(t), q(t)) , qj(t0) = 0,

the critical point conditions are

(1.6) Huα (t, x(t), ẋ(t), û(t), p(t), q(t)) = 0, ∀t ∈ [0, t0], α = 1, k

and
∂H

∂xj
(t, x(t), ẋ(t), û(t), p(t), q(t))

− d

dt

[
∂H

∂ẋj
(t, x(t), ẋ(t), û(t), p(t), q(t))− pj(t)

]
+

d2

dt2
[−qj(t)] = 0, ∀t ∈ [0, t0].

Proof. The adjective ”simplified” means that the principle is obtained via techniques
from Variational Calculus, under simplified hypothesis.

We use the Lagrangian L. The solutions of the foregoing optimization problem are
among the solutions of the free maximization problem of the simple integral functional

J (u(·)) =
∫ t0

0

L (t, x(t), ẋ(t), z(t), ż(t), u(t), p(t), q(t)) dt,

with
u(t) ∈ U , p(t), q(t) ∈ P, ∀t ∈ [0, t0]

x(0) = x0, x(t0) = xt0 , ẋ(0) = x̃0, ẋ(t0) = x̃t0 ,

where the set P of co-state variables will be defined later.
Let us suppose that there exists a continuous control û(t) defined on the closed

interval [0, t0], with û(t) ∈ IntU , which is an optimum point of the previous problem.
Consider a control variation, u(t, ε) = û(t)+εh(t), where h is an arbitrary continuous
vector function, and a state variation x(t, ε), t ∈ [0, t0], related by

ẍi(t, ε) = Xi (t, x(t, ε), ẋ(t, ε), u(t, ε)) , i = 1, n, ∀t ∈ [0, t0],

with x(0, ε) = x0, ẋ(0, ε) = x̃0. Since û(t) ∈ IntU and a continuous function on a
compact interval [0, t0] is bounded, there exists a value εh > 0 such that u(t, ε) =
û(t) + εh(t) ∈ IntU , ∀ |ε| < εh. This ε is used in our variational arguments.

For |ε| < εh, let consider the function (integral with parameter)

J (ε) =
∫ t0

0

L (t, x(t, ε), ẋ(t, ε), z(t, ε), ż(t, ε), u(t, ε), p(t), q(t)) dt

=
∫ t0

0

[
H (t, x(t, ε), z(t, ε), u(t, ε), p(t), q(t))− pi(t)ẋi(t, ε)− qi(t)żi(t, ε)

]
dt.

Assume that the co-state variables p(t) = (pi(t)) , q(t) = (qi(t)) are of C1-class. By
derivation with respect to ε, evaluating at ε = 0, we obtain

J ′(0) =
∫ t0

0

[Hxj (t, x(t), z(t), û(t), p(t), q(t)) + ṗj(t)] xj
ε(t, 0)dt



Optimal control problems with higher order ODEs constraints 75

+
∫ t0

0

[Hzj (t, x(t), z(t), û(t), p(t), q(t)) + q̇j(t)] zj
ε(t, 0)dt

+
∫ t0

0

Huα (t, x(t), z(t), û(t), p(t), q(t))hα(t)dt− [
pj(t)xj

ε(t, 0) + qj(t)zj
ε(t, 0)

] |t00 ,

where x(t) is the state variable corresponding to the optimal control û(t). We must
have J ′(0) = 0 for any continuous vector function h(t) = (hα(t)). On the other hand,
the functions xi

ε(t, 0) and zi
ε(t, 0) solve the Cauchy problem

∇txε(t, 0) = zε(t, 0)

∇tzε(t, 0) = Xx (t, x(t), z(t), u(t)) xε(t, 0) + Xz (t, x(t), z(t), u(t)) zε(t, 0)

+ Xu (t, x(t), z(t), u(t))h(t)

t ∈ [0, t0], xε(0, 0) = 0, zε(0, 0) = 0

and consequently they depend on h. To eliminate this dependence, using the adjoint
differential system, define the set P of co-state variables as the set of solutions of the
following problem

ṗj(t) = −Hxj (t, x(t), ẋ(t), û(t), p(t), q(t)) , pj(t0) = 0

q̇j(t) = −Hẋj (t, x(t), ẋ(t), û(t), p(t), q(t)) , qj(t0) = 0.

We have
Huα (t, x(t), ẋ(t), û(t), p(t), q(t)) = 0, ∀t ∈ [0, t0]

∂H

∂xj
(t, x(t), ẋ(t), û(t), p(t), q(t))

− d

dt

[
∂H

∂ẋj
(t, x(t), ẋ(t), û(t), p(t), q(t))− pj(t)

]
+

d2

dt2
[−qj(t)] = 0, ∀t ∈ [0, t0].

Moreover,

ẋj(t) =
∂H

∂pj
(t, x(t), ẋ(t), û(t), p(t), q(t))

ẍj(t) =
∂H

∂qj
(t, x(t), ẋ(t), û(t), p(t), q(t)) , ∀t ∈ [0, t0]

x(0) = x0, ẋ(0) = x̃0.

¤

Remark 1.1. (i) The algebraic system (1.6),

Huα (t, x(t), ẋ(t), u(t), p(t), q(t)) = 0, ∀t ∈ [0, t0],

describes the critical points of the control Hamiltonian H with respect to the control
vector u = (uα).

(ii) The differential equations (1.6), (1.5) and (1.4) represent the Euler-Lagrange
ODEs

∂L

∂uα
− d

dt

∂L

∂u(1)α
= 0, α = 1, k
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∂L

∂xj
− d

dt

∂L

∂x(1)j
= 0,

∂L

∂zj
− d

dt

∂L

∂z(1)j
= 0, j = 1, n

∂L

∂pj
− d

dt

∂L

∂p
(1)
j

= 0,
∂L

∂qj
− d

dt

∂L

∂q
(1)
j

= 0,

corresponding to the new Lagrangian L.

2 Single-time optimal control problem with
higher order ODEs constraints

Next, we shall consider the general case when the constraints are higher order ODEs,
that is, the case k > 2 with k an arbitrary fixed natural number. Also, we accept the
notation: f (k)i(t) = f i(k)(t).

Let be an optimal control problem based on a simple integral cost functional with
higher order ODEs constraints:

(2.1) max
u(·),xt0

{
I (u(·)) =

∫ t0

0

X
(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
dt

}

subject to

(2.2) x(k)i(t) = Xi
(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
, i = 1, n

(2.3) u(t) ∈ U , ∀t ∈ [0, t0]; x(γ)(0) = x̃γ0, x(γ)(t0) = x̃γt0 , γ = 0, k − 1.

As in the previous section, t ∈ [0, t0] ⊂ R+ is a parameter of evolution, or a
single-time; [0, t0] ⊂ R+ is the time interval; x(t) = (xi(t)), i = 1, n, is a Ck+1-
class function, called state vector; x(β)(t), β = 1, k, is the derivative of order β of
the state variable x(t); u(t) = (uα(t)), α = 1,m, is a continuous control vector;
the running cost X

(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
is a C1-class function, called

non-autonomous Lagrangian.
Rewrite the differential system (2.2) using the following auxiliary variables yi

1(t) :=
xi(t), yi

2(t) := x(1)i(t), . . . , yi
k−1(t) := x(k−2)i(t), yi

k(t) := x(k−1)i(t), or, equiva-
lently,

(2.2′)

ẏi
1(t) := yi

2(t)
ẏi
2(t) := yi

3(t)
...

ẏi
k−1(t) := yi

k(t)
ẏi

k(t) := Xi (t, y1(t), ..., yk(t), u(t)) .

The matrix form of the previous differential system is Ẏ (t) = AY (t) + W (t), where
Y (t) := [y1(t) y2(t) · · · yk(t)]T (see MT as the transposed matrix of M ; also, see Op,q

as the (p× q) null matrix and Ip as the unit (identity) matrix of order p) and
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W (t) :=
(

Ok−1,1

X (t, y1(t), ..., yk(t), u(t))

)
, A :=




Ok−1,1 Ik−1

0 O1,k−1


 .

Build the Lagrange function

L
(
t, y1(t), y2(t), . . . , yk(t), ẏ1(t), ẏ2(t), . . . , ẏk(t), u(t), p1(t), p2(t), ..., pk(t)

)

= X (t, y1(t), y2(t), . . . , yk(t), u(t)) + p1
i (t)

[
yi
2(t)− ẏi

1(t)
]

+ . . . + pk
i (t)

[
Xi (t, y1(t), y2(t), . . . , yk(t), u(t))− ẏi

k(t)
]

(each expression k → pk
i (t)ẏi

k(t), indexed after k, contains summation only upon i)
that changes the initial optimal control problem (with higher order ODEs constraints)
into the following problem

max
u(·),xt0

∫ t0

0

L
(
t, Y T (t), Ẏ T (t), u(t), p1(t), p2(t), ..., pk(t)

)
dt

subject to

u(t) ∈ U , {p1(t), ..., pk(t)} ⊆ P, ∀t ∈ [0, t0]

x(γ)(0) = x̃γ0, x(γ)(t0) = x̃γt0 , γ = 0, k − 1,

where the set P of co-state variables will be defined later. Using the control Hamil-
tonian,

H
(
t, Y T (t), u(t), p1(t), p2(t), ..., pk(t)

)

= X
(
t, Y T (t), u(t)

)
+ p1

i (t)y
i
2(t) + p2

i (t)y
i
3(t)

+... + pk−1
i (t)yi

k(t) + pk
i (t)Xi

(
t, Y T (t), u(t)

)
,

or, equivalently,
H = L + p1

i ẏ
i
1 + p2

i ẏ
i
2 + ... + pk

i ẏi
k,

(modified higher order Legendrian duality) we can rewrite the previous problem as

max
u(·),xt0

{ ∫ t0

0

[
H

(
t, Y T (t), u(t), p1(t), p2(t), ..., pk(t)

)]
dt

−
∫ t0

0

[
p1

i (t)ẏ
i
1(t) + p2

i (t)ẏ
i
2(t) + ... + pk

i (t)ẏi
k(t)

]
dt

}

subject to

u(t) ∈ U , {p1(t), ..., pk(t)} ⊆ P, ∀t ∈ [0, t0]

x(γ)(0) = x̃γ0, x(γ)(t0) = x̃γt0 , γ = 0, k − 1.
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2.1 Variational differential system and
adjoint differential system

We consider the ODE system (2.2′) with a fixed control u(t) and the corresponding
solution (y1(t), y2(t), ..., yk(t)). Consider the differentiable variations {y1(t, ε), y2(t, ε),
..., yk(t, ε)}, fulfilling ẏi

1(t, ε) = yi
2(t, ε), ẏi

2(t, ε) = yi
3(t, ε), ..., ẏi

k−1(t, ε) = yi
k(t, ε),

ẏi
k(t, ε) = Xi (t, y1(t, ε), ..., yk(t, ε), u(t)) , yβ(t, 0) = yβ(t), β = 1, k. Let denote

yi
β,ε(t, 0) := vi

β(t), β = 1, k, that is the derivative of yi
β(t, ε) with respect to ε,

evaluated at ε = 0. By a derivation with respect to ε, evaluating at ε = 0, we get

v̇i
1(t) = vi

2(t)

v̇i
2(t) = vi

3(t)
...

v̇i
k−1(t) = vi

k(t)

v̇i
k(t) = Xi

yj
1
(t, y1(t), ..., yk(t), u(t)) vj

1(t) + ... + Xi
yj

k

(t, y1(t), ..., yk(t), u(t)) vj
k(t),

called variational differential system.
The matrix form of the previous variational differential system is V̇ (t) = B(t)V (t)

(see vζ(t) =
[
v1

ζ (t) v2
ζ (t) · · · vn

ζ (t)
]T

, ζ = 1, k), where

V (t) :=




v1(t)
v2(t)

...
vk(t)


 , B(t) :=




On In On ... On

On On In ... On

...
...

... ...
...

On On On ... In

Xy1 Xy2 Xy3 ... Xyk




.

Denote R(t) :=
[
p1(t) p2(t) · · · pk(t)

]T
the matrix of co-state variables. The following

differential system

ṗ1
j (t) = −Xi

xj

(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
p1

i (t)

ṗ2
j (t) = −p1

j (t)−Xi
x(1)j

(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
p2

i (t)

...

ṗk
j (t) = −pk−1

j (t)−Xi
x(k−1)j

(
t, x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
pk

i (t)

is called the adjoint differential system of the previous variational differential system
because the scalar product RT (t)V (t) is a first integral of the two systems, i.e.,

d

dt

[
RT (t)V (t)

]
= 0.

The matrix form of the previous adjoint differential system is Ṙ(t) = −BT (t)R(t).



Optimal control problems with higher order ODEs constraints 79

2.2 Necessary conditions of optimality

Assume there exists a continuous control vector û(t) defined on the closed interval
[0, t0], with û(t) ∈ IntU , which is an optimal solution for our problem. Let take a
variation of the optimal control vector, u(t, ε) = û(t)+ εh(t), where h = (hα(t)), α =
1,m, is an arbitrary continuous vector function. Since û(t) ∈ IntU and a continuous
function on a compact interval [0, t0] is bounded, there exists εh > 0 such that u(t, ε) =
û(t) + εh(t) ∈ IntU , ∀ |ε| < εh. This ε is used in our variational arguments.

Consider x(t, ε) as the state vector corresponding to the control vector u(t, ε), i.e.,

x(k)i(t, ε) = Xi
(
t, x(t, ε), x(1)(t, ε), ..., x(k−1)(t, ε), u(t, ε)

)

i = 1, n, ∀t ∈ [0, t0]

and x(γ)(0, ε) = x̃γ0, γ = 0, k − 1. For |ε| < εh, let define the function (integral with
parameter)

I(ε) :=
∫ t0

0

X
(
t, Y T (t, ε), u(t, ε)

)
dt.

Also, the continuous control vector û(t) must be an optimal control vector. Therefore,
we obtain I(0) ≥ I(ε), ∀ |ε| < εh. We have

∫ t0

0

p1
i (t)

[
yi
2(t, ε)− ẏi

1(t, ε)
]
dt = 0

∫ t0

0

p2
i (t)

[
yi
3(t, ε)− ẏi

2(t, ε)
]
dt = 0

...
∫ t0

0

pk
i (t)

[
Xi

(
t, Y T (t, ε), u(t, ε)

)− ẏi
k(t, ε)

]
dt = 0,

for any continuous vector functions p1 = (p1
i ), ..., p

k = (pk
i ) : [0, t0] → Rn. Necessarily,

we must use the Lagrange function with variations

L
(
t, Y T (t, ε), Ẏ T (t, ε), u(t, ε), p1(t), p2(t), ..., pk(t)

)

= X
(
t, Y T (t, ε), u(t, ε)

)
+ p1

i (t)
[
yi
2(t, ε)− ẏi

1(t, ε)
]

+... + pk
i (t)

[
Xi

(
t, Y T (t, ε), u(t, ε)

)− ẏi
k(t, ε)

]

and the associated function (integral with parameter)

I(ε) =
∫ t0

0

L
(
t, Y T (t, ε), Ẏ T (t, ε), u(t, ε), p1(t), ..., pk(t)

)
dt.

Suppose that the co-state variables {p1 = (p1
i ), ..., p

k = (pk
i )} are of C1-class. Intro-

duce the corresponding control Hamiltonian with variations

H
(
t, Y T (t, ε), u(t, ε), p1(t), p2(t), ..., pk(t)

)
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= X
(
t, Y T (t, ε), u(t, ε)

)
+ p1

i (t)y
i
2(t, ε) + p2

i (t)y
i
3(t, ε)

+... + pk−1
i (t)yi

k(t, ε) + pk
i (t)Xi

(
t, Y T (t, ε), u(t, ε)

)
.

The previous integral with parameter can be rewritten as follows

I(ε) =
∫ t0

0

H
(
t, y1(t, ε), y2(t, ε), ..., yk(t, ε), u(t, ε), p1(t), ..., pk(t)

)
dt

−
∫ t0

0

[
p1

j (t)ẏ
j
1(t, ε) + p2

j (t)ẏ
j
2(t, ε) + ... + pk

j (t)ẏj
k(t, ε)

]
dt,

or (using the formula of integration by parts),

I(ε) =
∫ t0

0

H
(
t, y1(t, ε), y2(t, ε), ..., yk(t, ε), u(t, ε), p1(t), ..., pk(t)

)
dt

+
∫ t0

0

[
ṗ1

j (t)y
j
1(t, ε) + ... + ṗk

j (t)yj
k(t, ε)

]
dt

−
[
p1

j (t)y
j
1(t, ε) + ... + pk

j (t)yj
k(t, ε)

]
|t00 .

By derivation with respect to ε, evaluating at ε = 0, we find

I ′(0) =
∫ t0

0

[
Hyj

1
(t, y1(t), ..., yk(t), û(t), p(t)) + ṗ1

j (t)
]
yj
1,ε(t, 0)dt

+
∫ t0

0

[
Hyj

2
(t, y1(t), ..., yk(t), û(t), p(t)) + ṗ2

j (t)
]
yj
2,ε(t, 0)dt

...

+
∫ t0

0

[
Hyj

k
(t, y1(t), ..., yk(t), û(t), p(t)) + ṗk

j (t)
]
yj

k,ε(t, 0)dt

+
∫ t0

0

Huα (t, y1(t), ..., yk(t), û(t), p(t)) hα(t)dt

−
[
p1

j (t)y
j
1,ε(t, 0) + ... + pk

j (t)yj
k,ε(t, 0)

]
|t00 ,

where x(t) is the state variable corresponding to the optimal control û(t) (see p(t) :=
{p1(t), ..., pk(t)}). We must have I ′(0) = 0 for any continuous vector function h(t) =
(hα(t)). Also, the functions {yi

1,ε(t, 0), ..., yi
k,ε(t, 0)} solve the Cauchy problem

∇tyβ,ε(t, 0) = yβ+1,ε(t, 0), β = 1, k − 1

∇tyk,ε(t, 0) = Xy1 (t, y1(t), y2(t), ..., yk(t), u(t)) y1,ε(t, 0)

+... + Xyk
(t, y1(t), y2(t), ..., yk(t), u(t)) yk,ε(t, 0)

+ Xu (t, y1(t), y2(t), ..., yk(t), u(t))h(t), β = k

t ∈ [0, t0], yβ,ε(0, 0) = 0, ∀β = 1, k.
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Consequently, they are dependent on h. To eliminate this dependence, we use the
adjoint differential system in the previous section, i.e., we consider the set P of co-
state variables as the set of solutions for the following problem

(2.4) p
(1)1
j (t) = −Hxj

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
, p1

j (t0) = 0

p
(1)2
j (t) = −Hx(1)j

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
, p2

j (t0) = 0

...

p
(1)k
j (t) = −Hx(k−1)j

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
, pk

j (t0) = 0.

We have

(2.5) Huα

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
= 0, ∀t ∈ [0, t0]

∂H

∂xi

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)

− d

dt

[
∂H

∂x(1)i

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
− p1

i (t)
]

+
d2

dt2

[
∂H

∂x(2)i

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
− p2

i (t)
]

−... + (−1)k−1 dk−1

dtk−1

[
∂H

∂x(k−1)i

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
− pk−1

i (t)
]

+ (−1)k dk

dtk
[−pk

i (t)
]

= 0, ∀t ∈ [0, t0].

Moreover,

(2.6) x(β)j(t) =
∂H

∂pβ
j

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
, β = 1, k, ∀t ∈ [0, t0]

x(γ)(0) = x̃γ0, γ = 0, k − 1.

Remark 2.1. (i) The algebraic system

Huα

(
t, x(t), ..., x(k−1)(t), û(t), p(t)

)
= 0, ∀t ∈ [0, t0]

describes the critical points of the control Hamiltonian H with respect to the control
vector u = (uα).

(ii) We can obtain the result via the Euler-Lagrange ODEs

∂L

∂uα
− d

dt

∂L

∂u(1)α
+

d2

dt2
∂L

∂u(2)α
− ... + (−1)k dk

dtk
∂L

∂u(k)α
= 0, α = 1,m

∂L

∂xi
− d

dt

∂L

∂x(1)i
+

d2

dt2
∂L

∂x(2)i
− ... + (−1)k dk

dtk
∂L

∂x(k)i
= 0, i = 1, n

∂L

∂pβ
j

− d

dt

∂L

∂p
(1)β
j

+
d2

dt2
∂L

∂p
(2)β
j

− ... + (−1)k dk

dtk
∂L

∂p
(k)β
j

= 0, β = 1, k, j = 1, n,

where L is a suitable Lagrangian.
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In summary, we get the simplified single-time Pontryagin maximum principle,
a result that gives us only necessary conditions for the optimal point u = (uα).
The adjective ”simplified” means that the principle is obtained via techniques from
Variational Calculus, under simplified hypothesis.

Theorem 2.1. (Simplified single-time maximum principle based on higher
order ingredients) Assume that the problem of maximizing the functional (2.1),
subject to the higher order ODEs constraints (2.2) and to the conditions (2.3), with
X, Xi of C1-class, has an interior solution û(t) ∈ IntU which determines the optimal
state vector x(t) =

(
xi(t)

)
. Then there exist the Cβ-class co-state variables, pβ =(

pβ
j

)
, β = 1, k, defined over [0, t0], such that the relations (2.4), (2.5), (2.6) hold.

3 Euler-Lagrange and Hamilton ODEs via
single-time Pontryagin maximum principle

To get the (higher order) Euler-Lagrange and Hamilton ODEs from the single-time
Pontryagin maximum principle, based on higher order ingredients, let consider the
following simple integral cost functional

max
u(·),xt0

{
I (u(·)) =

∫ t0

0

X
(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
dt

}

subject to

x(k)i(t) = ui
k(t), i = 1, n, k ≥ 2 (fixed natural number)

t ∈ [0, t0] ⊂ R+, x(γ)(0) = x̃γ0, γ = 0, k − 1.

Here, the running cost X
(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
is a C1-class autonomous

Lagrangian and the control matrix u(t) =
(
ui

k(t)
)
.

For solving the problem we need the control Hamiltonian,

H
(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)

= X
(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ p1

i (t)y
i
2(t) + p2

i (t)y
i
3(t)

+... + pk−1
i (t)yi

k(t) + pk
i (t)ui

k(t),

where {y1(t), ..., yk(t)} are auxiliary variables defined as yi
1(t) := xi(t), yi

2(t) :=
x(1)i(t), ..., yi

k−1(t) := x(k−2)i(t), yi
k(t) := x(k−1)i(t). Using the relations

Hx(η)i

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
= −p

(1)η+1
i (t), η = 0, k − 1

Hui
k

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
= 0,

obtained from (2.4) and (2.5), and

(3.1) Hxi

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)
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= Xxi

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
;

Hx(η)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)

= Xx(η)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pη

i (t), η = 1, k − 1;

Hui
k

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)

= Hx(k)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)

= Xui
k

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pk

i (t)

= Xx(k)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pk

i (t),

obtained from (3.1), we have the following relations

(3.2) Xxi

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ p

(1)1
i (t) = 0

Xx(η)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pη

i (t) + p
(1)η+1
i (t) = 0, η = 1, k − 1

Xx(k)i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pk

i (t) = 0.

Assume that the running cost X
(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
is a Ck+1-class func-

tion. Consequently, by a direct computation (a simple substitution of terms) at (3.3),
we get the higher order Euler-Lagrange ODEs

∂X

∂xi
− d

dt

∂X

∂x(1)i
+

d2

dt2
∂X

∂x(2)i
− ... + (−1)k dk

dtk
∂X

∂x(k)i
= 0, i = 1, n.

Let u(t) =
(
ui

k(t)
)

be an optimal control vector, x(t) =
(
xi(t)

)
the optimal evolution,

and {p1 = (p1
i ), ..., p

k = (pk
i )} the solution for

p
(1)η+1
i (t) = −Hx(η)i

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
, η = 0, k − 1,

(see (2.4)) corresponding to u(t) and x(t). The critical point equations,

(3.3) Hui
k

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), p2(t), ..., pk(t)

)

= Xui
k

(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
+ pk

i (t) = 0, i = 1, n,

define the co-state variable pk(t) =
(
pk

i (t)
)

as a non-standard (modified) moment. Let
suppose that (3.4) has a unique solution

ui
k(t) = ui

k

(
x(t), x(1)(t), ..., x(k−1)(t), p1(t), p2(t), ..., pk(t)

)
= x(k)i(t).
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By a direct computation (see (3.1) and ui
k(t) = x(k)i(t)), we get the first part of the

higher order single-time Hamilton ODEs

(3.4) x(β)i(t) =
∂H

∂pβ
i

(
x(t), x(1)(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
, β = 1, k.

We have (see (2.5))

∂H

∂xi

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)

− d

dt

[
∂H

∂x(1)i

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
− p1

i (t)
]

+
d2

dt2

[
∂H

∂x(2)i

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
− p2

i (t)
]

−... + (−1)k−1 dk−1

dtk−1

[
∂H

∂x(k−1)i

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
− pk−1

i (t)
]

+ (−1)k dk

dtk
[−pk

i (t)
]

= 0, ∀t ∈ [0, t0].

Knowing that the running cost X
(
x(t), x(1)(t), ..., x(k−1)(t), u(t)

)
satisfies the higher

order single-time Euler-Lagrange ODEs in the previous and taking p̃η
i := −Xx(η)i =

pη
i − Hx(η)i , η = 1, k − 1, and p̃k

i := pk
i , we get the second part of the higher order

single-time Hamilton ODEs

(3.5)
k∑

β=1

(−1)β+1 dβ

dtβ
p̃β

i (t) = −∂H

∂xi

(
x(t), ..., x(k−1)(t), u(t), p1(t), ..., pk(t)

)
.

4 Conclusion and further development

In this work we introduced and studied single-time optimal control problems which
involve higher order ODEs constraints. Reducing the constraints to first order dif-
ferential equations, employing variational and adjoint differential systems, we have
derived necessary conditions of optimality for our optimization problems (see Theo-
rems 1.1 and 2.1). Of course, we can work directly with a constraint as ODE of order
k, but then it just uses a single Lagrange multiplier with its derivatives of order k.

Section 3 is dedicated to Euler-Lagrange and Hamilton ODEs, of superior or-
der, via single-time Pontryagin maximum principle based on higher order ODEs con-
straints.

The main results of this research paper are original and they complement previ-
ously known results. Further, we shall direct our research to the development of the
multitime case for similar problems (see [13]-[21]).

For other different but connected viewpoints to this subject, the reader is addressed
to the research papers [1], [2] and [12], [13].
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Mathématique des Processus Optimaux, Edition MIR, Moscou, 1974.

[12] D. F. M. Torres, A. Yu. Plakhov, Optimal Control of Newton type problems of
minimal resistance, Rend. Sem. Mat. Univ. Pol. Torino 64, 1 (2006), 79-95.
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