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Abstract. Our original results refer to dualistic structure on primal-
dual interior-point methods for symmetric cone programs with linear con-
straints. It is shown that scalings by the Nesterov-Todd direction are gen-
erated by middle points of geodesics joining with primal interior points and
dual interior points. Finally we relate power classes of search directions
with geodesics and weighted geometric means.
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1 Introduction

Commutative classes of search directions for linear programming over symmetric cones
were proposed. For instance MZ∗ family, which is a subfamily of MZ (Monteiro-
Zhang) family, for semi-definite programming was extended for linear programming
over symmetric cones. In addition the HRVW/KSH/M (Helmberg-Rendl-Vanderbei-
Wolkowicz/Kojima-Shindoh-Hara/Monteiro) direction and the NT (Nesterov-Todd)
direction for linear programming were extended over symmetric cones by Muramatsu,
who defined power classes including these directions [5].

Monotone operators were made use for convex programming by Nesterov and
Nemirovskii [6]. Sturm discussed relations between the NT direction and geometric
means on symmetric cones [13].

Tools from Riemannian geometry (suitable Riemannian metrics, Riemann-Newton
method, Riemann interior point method, exponential map, search along geodesics,
covariant differentiation, sectional curvature etc) are now intensively used in Math-
ematical Programming to obtain deeply theoretical results and practical algorithms
[15]-[21].

On these backgrounds, we discuss information geometric (i.e. dualistic structural)
properties of power classes of search directions. First we describe linear programming
over symmetric cones. In section 3 we talk about dualistic structure of primal-dual
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interior-point methods for linear programming over symmetric cones. In section 4 we
mention that the middle point of the geodesic with respect to the Levi-Civita con-
nection defines the NT direction of primal-dual interior-point methods for symmetric
cones. In section 5 we show that the 1 : q internally dividing point on a geodesics (i.e.
weighted geometric means) defines a q power class of search directions of primal-dual
interior-point methods for symmetric cones.

2 Linear programming over symmetric cones

In this section we note primal-dual interior-point methods for linear programming
over symmetric cones in terms of Jordan algebras [3] [5]. See [2] on Jordan algebras
and symmetric cones.

Let V be an Euclidean Jordan algebra and Ω a symmetric cone associated with V .
Let X be a vector subspace of V and X⊥ its orthogonal complement relative to an
inner product 〈x, y〉 = tr(x ◦ y). Consider the following optimization problems with
linear constraints on symmetric cones; Given a ∈ X, b ∈ X⊥,

primal problem (P) : 〈a, x〉 → min, s.t. x ∈ (b + X) ∩ Ω̄ = P,

dual problem (D) : 〈b, y〉 → min, s.t. y ∈ (a + X⊥) ∩ Ω̄ = D.

Here we assume that relative interiors of feasible regions P , D are not empty sets,
i.e., ri(P ) = (b + X) ∩ Ω 6= f¡ , ri(D) = (a + X⊥) ∩ Ω 6= f¡ .

Lemma 2.1. (Faybusovich, [3]) For a positive number β, give the pair of optimization
problems

(Pβ) : fβ(x) = β〈a, x〉 − log det(x) → min, s.t. x ∈ ri(P ),

(Dβ) : gβ(y) = β〈b, y〉 − log det(y) → min, s.t. y ∈ ri(D),

where det is defined in the sense of Jordan algebras. Then the following are necessary
and sufficient conditions for that x(β), y(β) are optimal solutions of minimization
problems (Pβ), (Dβ), respectively:

(2.1) x(β) ∈ ri(P ), y(β) ∈ ri(D), x(β) ◦ y(β) =
e

β
.

In addition x(β), y(β) converge to optimization solutions (P), (D), respectively as
β → +∞.

The trajectory of x(β) as β → +∞ is called a central path of a primal problem
(P). Similarly the trajectory of y(β) as β → +∞ is called a central path of the dual
problem (D). We often consider the trajectory of a pair (x(β), y(β)) a central path of
an optimal problem on ri(P )× ri(D). (Solving an optimization problem practically,
we also define the slack variable for (x(β), y(β)) and trace its trajectory.)

The following proposition is used to prove Lemma 2.1.

Lemma 2.2. (Faybusovich, [3]) For optimal solutions of x(β) and y(β),

x(β) ∈ ri(P ), y(β) ∈ ri(D),
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βa− x(β)−1 ∈ X⊥, βb− y(β)−1 ∈ X, y(β) =
1
β

x(β)−1,

where x−1 is the inverse of x ∈ Ω relative to Jordan product. Conversely, optimal
solutions of (Pβ), (Dβ), which hold these conditions, are uniquely determined, respec-
tively.

3 Dualistic structure of
primal-dual interior-point methods

Let V be an Euclidean Jordan algebra and Ω be the symmetric cone associated with
V . Let {e1, . . . , en} be a basis of V . The formula x = xi(x)ei, for x ∈ V , defines
the component functions x1, . . . , xn on V . We shall consider {x1, . . . , xn} as an affine
coordinate system on V . Set ψ = − log det = (r/n) log ϕ, where r is the rank of V
and ϕ is the characteristic function of Ω. Then the dual affine coordinate system
{x1′ , . . . , xn′}, a Riemannian metric g, the canonical flat affine connection ∇, and the
dual flat affine connection ∇′ are defined, respectively, by:

xi′ = xi ◦ ι = − ∂ψ

∂xi
, g =

∑

i,j

∂2ψ

∂xi∂xj
dxidxj ,

(3.1) ∇ ∂

∂xi

∂

∂xj
= 0,

∇′ ∂

∂xi

∂

∂xj
= ι−1

∗ (∇ι∗( ∂

∂xi )ι∗(
∂

∂xj
)),

where ι is the restriction of a map x ∈ {x | x : invertible} 7→ x−1 ∈ V on Ω. We often
call ∇′ the dual connection simply. Note that

(3.2) ∇′ ∂

∂xi′

∂

∂xj′ = 0.

By (3.1), (3.2), the triple (g,∇,∇′) is called dually flat structure. The triple (Ω,∇, g)
is a flat statistical manifold, and (Ω,∇′, g) the dually flat statistical manifold. Includ-
ing the case for non-flat connections ∇ or ∇′, we call the similar structure as dualistic
structure or information geometric structure [1] [10] [12] [22].

Let (ri(P ),∇, g) be a statistical submanifold which is the restriction of (Ω,∇, g) on
ri(P ), and (ri(P ),∇′, g) a statistical submanifold which is the restriction of (Ω,∇′, g)
on ri(P ). Ohara and Tsuchiya showed that, as β → +∞, an optimal solution x(β) of
a minimization problem (Pβ) converges to an optimal solution of primal problem (P)
along a geodesic on (ri(P ),∇′, g) [11]. This fact includes results similar to LP ([14])
or to SDP ([8]). In [8] [11], it is shown that we have as many iterations on Newton’s
methods as large embedded curvature of a submanifold (ri(P ),∇′, g) in (Ω,∇′, g).

4 The NT direction and dualistic structure

We treat a set of conditions (2.1) given by Lemma 2.1,

x(β) ∈ ri(P ), y(β) ∈ ri(D), x(β) ◦ y(β) =
e

β
,
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a pair of the optimization problems (Pβ) and (Dβ). Researchers on optimization
problems are interested in how to seek limits of (x(β), y(β)) for β → +∞ by Newton’s
method.

The Newton’s direction is given as a pair (∆x,∆y) satisfying an equation

L(y)∆x + L(x)∆y =
e

β
− x ◦ y for x ∈ ri(P ), y ∈ ri(D), ∆x ∈ X, ∆y ∈ X⊥.

For x, y in V , let L(x) and P (x) be endomorphisms of V defined by

L(x)y = x ◦ y, P (x) = 2L(x)2 − L(x2).

Newton’s directions scaled by elements in G(Ω) are useful. For example next direc-
tions are suggested in [5] [7] [23].

(1) HRVW/KSH/M direction : primal scaling

(∆x, ∆y) := (P (y)−
1
2 ∆x̃, P (y)

1
2 ∆ỹ) ∈ V × V,

where (x̃, ỹ) := (P (y)
1
2 x, P (y)−

1
2 y) = (P (y)

1
2 x, e).

(2) NT direction : primal-dual scaling

(∆x, ∆y) := (P (z)−
1
2 ∆x̃, P (z)

1
2 ∆ỹ) ∈ V × V,

where (x̃, ỹ) := (P (z)
1
2 x, P (z)−

1
2 y) for ∃1z ∈ Ω such that P (z)

1
2 x = P (z)−

1
2 y.

Note that ∆x̃ ∈ X, ∆ỹ ∈ X⊥ and that for invertible w, v ∈ Ω

w
1
2 ◦ w

1
2 = w, w

1
2 ∈ Ω,

P (w)
1
2 = P (w

1
2 ) ∈ G, P (w)−1 = P (w−1),

P (w)−
1
2 w = e, (P (w)v)−1 = P (w−1)v−1,

where G is the connected component of the identity of G(Ω) the automorphism group
of Ω [2]. On the NT direction we have

Theorem 4.1. For an automorphism P (z)
1
2 appearing in the NT direction, the point

(4.1) z = P (x−
1
2 )(P (x

1
2 )y)

1
2

is the middle point of the geodesic joining x−1 to y, determined by the Levi-Civita
connection (∇+∇′)/2.

Proof. Sturm described that z by (4.1) is a spectral geometric mean in [13]. Co-
incidence with a spectral geometric mean and a middle point of a geodesic by the
Levi-Civita connection is mentioned in Ohara [9], where ”middle” means a parameter
s = 1/2 on the geodesic P (x−

1
2 )(P (x

1
2 )y)s (s ∈ [0, 1]) joining x−1 (s = 0) to y (s = 1).

Thus Theorem 4.1 holds. ¤
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Geometric means are defined on symmetric cones as above, extended from geo-
metric means on matrixes or on linear operators [4]. For matrices x and y, we have

z = x−
1
2 (x

1
2 yx

1
2 )

1
2 x−

1
2

following by P (w)v = wvw for matrices w, v.
Suppose x(β) ∈ ri(P ), y(β) ∈ ri(D) again. Setting a parameter s ∈ [0, 1] along a

geodesic P (y
1
2 )(P (y−

1
2 )x−1)s, we obtain

Corollary 4.2. For an automorphism P (z)
1
2 appearing in the NT direction, the point

z = P (y
1
2 )(P (y−

1
2 )x−1)

1
2

is the middle point of the geodesic joining y to x−1, determined by the Levi-Civita
connection (∇+∇′) / 2.

5 Power classes and dualistic structure

In this section we talk about the family of search direction called a power class of
search directions and dualistic structure on linear programming over symmetric cones.

Muramatsu proposed a primal-dual interior-point algorithm using

G(x, y) = {g ∈ G | gx and g−∗y share a Jordan frame} for (x, y) ∈ Ω× Ω,

where G is the connected component of the identity of G(Ω) the automorphism group
of Ω, and −, ∗ are the inverse, the adjoint, respectively. For example, g ∈ G(x, y)
given by

(5.1) g−∗y = (gx)q

defines the power class of search directions, which has an index q (q = 0, 1, 2, · · · ) [5].
It is known that, to decide g for the q power class (5.1), we choose

g = P (z)
1
2 , z = P (x−

1
2 )(P (x

1
2 )y)

1
q+1 .

Then the next follows by a description of a geodesic with respect to Levi-Civita
connection in proof of Theorem 4.1.

Theorem 5.1. For an automorphism P (z)
1
2 appearing in the q power class of search

direction, the point
z = P (x−

1
2 )(P (x

1
2 )y)

1
q+1

is a weighted geometric mean (or a 1/(q + 1) power mean) of x−1 and y, i.e., the
1 : q internally dividing point on a geodesic joining x−1 to y, and determined by the
Levi-Civita connection (∇+∇′)/2.

”1 : q” means a parameter s = 1/(q + 1) on the geodesic P (x−
1
2 )(P (x

1
2 )y)s

(s ∈ [0, 1]) joining x−1 to y with respect to the Levi-Civita connection. For matrices
x and y, we have

z = x−
1
2 (x

1
2 yx

1
2 )

1
q+1 x−

1
2 .

In the case of q = 0, q = 1, Theorem 5.1 is applied to the HRVW/KSH/M direction,
the NT direction, respectively [5].

Along a geodesic P (y
1
2 )(P (y−

1
2 )x−1)s, we obtain
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Corollary 5.2. For an automorphism P (z)
1
2 appearing in the q power class of search

direction, the point
z = P (y

1
2 )(P (y−

1
2 )x−1)

q
q+1

is a weighted geometric mean of y and x−1, i.e., the q : 1 internally dividing point on
a geodesic joining y to x−1, and determined by the Levi-Civita connection (∇+∇′)/2.

We treat an element z = P (x−
1
2 )(P (x

1
2 )y)

1
q+1 again. If y = x−1/β (cf. Lemma

2.2), it holds that

g−∗y = P (z)−
1
2 y =

e

β
q

q+1
= (P (z)

1
2 x)q = (gx)q.

6 Conclusion

Our original results are related to q power classes of search direction of primal-dual
interior-point methods for symmetric cones with respect to information geometry.
The paper underlines that some surveying (geodesics) plays a central role in the cone
optimization problems with linear constraints. For real values q, not only for non
negative integers q, we have to investigate q power classes.
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[2] J. Faraut, A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford
1994, Oxford University Press, New York 2002.

[3] L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point
algorithms, J. Computational and Applied Math. 86 (1997), 149-175.

[4] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1980),
205-224.

[5] M. Muramatsu, On commutative class of search directions for linear programming
over symmetric cones, J. Optim. Theory Appl. 112, 3 (2002), 595-625.

[6] Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex
Programming, SIAM, Philadelphia 1994.

[7] Y. Nesterov, M. J. Todd, Primal-dual interior-point methods for self-scaled cones,
SIAM J. Optim. 8 (1998), 324-364.

[8] A. Ohara, Information geometric analysis of an interior point method for
semidefinite programming, O.Barndorf-Nielsen and V.Jensen eds., Proc. of Ge-
ometry in Present Day Science, World Sci., Singapore 1999, 49-74.

[9] A. Ohara, Geodesics for dual connections and means on symmetric cones, Integr.
Eq. Oper. Theory 50 (2004), 537-548.



Power classes of search directions and dualistic structure 89

[10] A. Ohara, N. Suda, S. Amari, Dualistic differential geometry of positive defi-
nite matrices and its applications to related problems, Linear Algebra Appl. 247
(1996), 31-53.

[11] A. Ohara, T. Tsuchiya, An information geometric approach to polynomial-time
interior-point algorithms: Complexity bound via curvature integral, Research
Memorandum, The Institute of Statistical Mathematics 1055 (2007).

[12] H. Shima, The Geometry of Hessian Structures, World Sci., Singapore 2007.
[13] J. F. Sturm, Similarity and other spectral relations for symmetric cones, Linear

Algebra Appl. 312 (2000), 135-154.
[14] K. Tanabe, Center flattening transformation and a centered Newton method for

linear programming, Manuscript presented at MP seminar, The Operations Re-
search Society of Japan, July (1987).
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