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Abstract. In Theorem 2.1 we present, in the case when the eigenvalues of
the matrix are pairwise distinct, a direct way to determine the Rodrigues
coefficients of the exponential map for the linear general group GL(n,R)
by reducing the Rodrigues problem to the system (2.3). The method is
illustrated for the special orthogonal group SO(n), when n = 2, 3, 4.
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1 Introduction

The exponential map exp : gl(n,R) = Mn(R) → GL(n,R), where GL(n,R) denotes
the Lie group of real invertible m × n matrices, is defined by (see for instance C.
Chevalley [4], J.E. Marsden and T.S. Ratiu [11], or F. Warner [16])

(1.1) exp(X) =
∞∑

k=0

1
k!

Xk.

According to the well-known Hamilton-Cayley theorem, it follows that every power
Xk, k ≥ n, is a linear combination of X0, X1, . . ., Xn−1, hence we can write

(1.2) exp(X) =
n−1∑

k=0

ak(X)Xk,

where the real coefficients a0(X), . . . , an−1(X) are uniquely defined and depend on
the matrix X. From this formula, it follows that exp(X) is a polynomial of X.
The problem to find a reasonable formula for exp(X) is reduced to the problem to
determine the coefficients a0(X), . . . , an−1(X). We will call this general question, the
Rodrigues problem, and the numbers a0(X), . . . , an−1(X) the Rodrigues coefficients
of the exponential map with respect to the matrix X ∈ Mn(R).
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The origin of this problem is the classical Rodriques formula (1840) for the special
orthogonal group SO(3):

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2,

where
√

2θ = ||X|| is the Frobenius norm of the matrix X (for details see Subsection
3.1). There are at least two arguments pointing out the importance of this formula:
the study of the rigid body rotation in R3, and the parametrization of the rotations
in R3.

An important property of the Rodrigues coefficients is the invariance under the
matrix similarity, that is for every invertible matrix U the following relations hold

(1.3) ak(UXU−1) = ak(X), k = 0, . . . , n− 1.

Indeed, if we assume that

exp(UXU−1) =
n−1∑

k=0

a′k(UXU−1)k,

where a′k = a′k(UXU−1), k = 0, . . . , n− 1, then using the well-known property of the
exponential map exp(UXU−1) = U exp(X)U−1 (see for instance J. Gallier [6]), we
can write

exp(UXU−1) = U exp(X)U−1 = U

(
n−1∑

k=0

ak(X)Xk

)
U−1 =

n−1∑

k=0

ak(X)(UXU−1)k,

and the property immediately follows from the uniqueness of the Rodrigues coeffi-
cients.

The invariance under matrix similarity points out the importance of the spectrum
of the matrix X in relation (1.2). An important method to obtain the Rodrigues
coefficients following this idea, is so-called Putzer method (the original reference is
E. J. Putzer [15]). This method consists in the following steps. Firstly, consider the
characteristic polynomial of matrix X,

f(t) = det(tIn −X) = tn + cn−1t
n−1 + . . . + c1t + c0,

and define the Putzer matrix

C =




c1 c2 . . . cn−1 1
c2 c3 . . . 1 0
. . . . . . . . . . . . . . .

cn−1 1 . . . 0 0
1 0 . . . 0 0




.

In the second step, construct the scalar function z which is the solution of the linear
homogeneous differential equation with constant coefficients

z(n) + cn−1z
(n−1) + . . . c1z

′ + c0z = 0,
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satisfying the initial conditions

z(0) = z′(0) = . . . = z(n−2)(0) = 0, z(n−1)(0) = 1.

The following relation holds

(1.4) A = C · Z,

where A is the n×1 matrix with entries the Rodrigues coefficients a0(X), . . . , an−1(X),
and Z is the n× 1 matrix with the entries z(1), z′(1), . . . , z(n−1)(1).

2 The Rodrigues formula for exp : gl(n,R) → GL(n,R)

In this section we will indicate a way to determine the Rodrigues coefficients a0(X), . . .,
an−1(X) in (1.2). The main idea consists in the reduction of (1.2) to a linear system
with the unknowns a0(X), . . . , an−1(X). In this respect we multiply both sides of
(1.2) by the power Xj , j = 0, . . . , n− 1, and we obtain the matrix relations

(2.1) Xj exp(X) =
n−1∑

k=0

akXk+j , j = 0, . . . , n− 1,

where ak = ak(X), k = 0, . . . , n − 1. Now, considering the matrix trace in the both
sides of (2.1), we obtain the linear system

(2.2)
n−1∑

k=0

tr(Xk+j)ak = tr(Xj exp(X)), j = 0, . . . , n− 1,

with the coefficients functions of the matrix X. Now, assume that λ1, . . . , λn are the
eigenvalues of matrix X. Then, it is well-known that the matrix Xk+j has the eigenval-
ues λk+j

1 , . . . , λk+j
n , and the matrix Xj exp(X) has the eigenvalues λj

1e
λ1 , . . . , λj

neλn .
Indeed, the function fj : C → C, f(z) = zjez, is analytic, hence the eigenvalues of
the matrix fj(X) are fj(λ1), . . . , fj(λn). But, clearly we have fj(λs) = λj

se
λs , s =

1, . . . , n, and the property is proved.
According to the considerations above, the system (2.2) is equivalent to

(2.3)
n−1∑

k=0

(
n∑

s=1

λk+j
s

)
ak =

n∑
s=1

λj
se

λs , j = 0, . . . , n− 1.

From the system (2.3) we obtain the following result concerning the solution to the
Rodrigues problem for the group GL(n,R):

Theorem 2.1. 1) The Rodrigues coefficients in formula (1.2) are solutions to the
system (2.3).

2) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then the
Rodrigues coefficients a0, . . . , an−1 are perfectly determined by the system (2.3) and
they are linear combinations of eλ1 , . . . , eλn having the coefficients rational functions
of λ1, . . . , λn, i.e. we have

ak = b
(1)
k eλ1 + . . . + b

(n)
k eλn , k = 0, . . . , n− 1.
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Proof. The first statement was already proved.
For the second statement, observe that the determinant of the system (2.3) can

be written as

Dn = det




S0 S1 . . . Sn−1

S1 S2 . . . Sn

. . . . . . . . . . . .
Sn−1 Sn . . . S2n−1,




where Sl = Sl(λ1, . . . , λn) = λl
1 + . . . + λl

n, l = 0, . . . , 2n− 1.
It is clear that

Dn = det




1 . . . 1
λ1 . . . λn

. . . . . . . . .
λn−1

1 . . . λn−1
n


 · det




1 λ1 . . . λn−1
1

1 λ2 . . . λn−1
2

. . . . . . . . . . . .
1 λn . . . λn−1

n




= V 2
n =

∏

1≤i<j≤n

(λi − λj)
2
,

where Vn = Vn (λ1, . . . , λn) is the Vandermonde determinant of order n. According
to the well-known formulas giving the solution a0, . . . , an−1 to the system (2.3), the
conclusion follows. ¤

The following consequence shows how to determine directly the matrix Z in the
Putzer method, in the case when the eigenvalues of X are pairwise distinct, only in
terms of eigenvalues of X.

Corollary 2.2. If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct,
then the n× 1 matrix Z in the Putzer method is given by

Z = (SC)−1B,

where the matrix S is defined by



S0 S1 . . . Sn−1

S1 S2 . . . Sn

...
...

. . .
...

Sn−1 Sn . . . S2n−1


 ,

C is the Putzer matrix, and B is the n× 1 matrix having the entries

bj =
n∑

s=1

λj
se

λs , j = 0, . . . , n− 1.

Proof. According to the Putzer method we have A = C ·Z, and from the system (2.3)
we have S · A = B. Because the eigenvalues of the matrix X are distinct, it follows
that the matrix S is invertible, hence we obtain C · Z = S−1 ·B. Therefore,

Z = C−1 · S−1 = (SC)−1B,

and we are done. ¤



Computing the Rodrigues coefficients of the exponential map 5

Remark 2.1. Comparing with the Putzer method, our result contained in Theorem
2.1 is simpler in the case when the eigenvalues λ1, . . . , λn of matrix X are pairwise
distinct, because in this case we have just to solve the linear system (2.3). The Putzer
method is better in the situations when we have multiplicities of the eigenvalues of
matrix X. In concrete situations, when the multiplicities of the eigenvalues are also
involved, we need to combine both methods (see the subsection 3.2).

3 The Rodrigues coefficients of
the special orthogonal group SO(n)

It is easy to check that the set of real n×n orthogonal matrices forms a Lie group under
multiplication, denoted by O(n). The subset of O(n) consisting of those matrices
having the determinant equal to +1 is a subgroup, denoted by SO(n) and called the
Special Orthogonal Group of the Euclidean space Rn. Due to geometric reasons, the
matrices in SO(n) are also called rotation matrices.

It is well-known that the Lie algebra so(n) of SO(n) consists in all skew-symmetric
matrices in Mn(R) and the Lie bracket is the standard matrices commutator [A,B] =
AB − BA. The exponential map exp : so(n) → SO(n) is defined by the same
formula (1.1) because it is given by the restriction exp |so(n) of the exponential map
exp : gl(n,R) → GL(n,R). It is known that for every compact connected Lie group
the exponential map is surjective (see T. Bröcker, T. tom Dieck [3], D. Andrica,
I.N. Casu [1] for the standard proof, or R.-A. Rohan [16] for a new idea of proof
given by T. Tao), that is every compact connected Lie group is exponential (see the
monograph of M. Wüstner [18] for details about the exponential groups). Because
the group SO(n) is compact it follows that the exponential map exp : so(n) → SO(n)
is surjective. The surjectivity of exp for the group SO(n) is an important property.
Indeed, it implies the existence of a locally inverse function log : SO(n) → so(n), and
this has interesting applications. In the paper of J.Gallier, D.Xu [5] is mentioned that
the functions exp and log for the group SO(n) can be used for motion interpolation
(see M.-J. Kim, M.-S. Shin [9], [10] and F.C. Park, B. Ravani [12], [13]). Motion
interpolation and rational motions have also been investigated by B. Jüttler [7], [8].
Also, the surjectivity of the exponential map for the group SO(n) gives the possibility
to describe the rotations of the Euclidean space Rn (see R.-A. Rohan [16]). The
connection with the noncommutative differential geometry is given the paper of L.I.
Piscoran [14].

The matrices in so(n) have two essential properties which simplify the computation
of the Rodrigues coefficients:

• If n is odd, then they are singular, i.e. they have one eigenvalue equal to 0
(possible with a multiplicity);

• The non-zero eigenvalues are purely imaginary and, of course, conjugated.

3.1 Illustrating the classical cases n = 2 and n = 3

Clearly, when X = On, we have exp(X) = In hence, in this situation we have a0 = 1,
a1 = . . . = an−1 = 0.
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When n = 2, a skew-symmetric matrix X 6= O2 can be written as

X =
(

0 a
−a 0

)
, a ∈ R∗,

having the eigenvalues λ1 = ai, λ2 = −ai.
The system (2.3) is in this case

{
2a0 + (λ1 + λ2)a1 = eλ1 + eλ2

(λ1 + λ2)a0 + (λ2
1 + λ2

2)a1 = λ1e
λ1 + λ2e

λ2 ,

hence immediately we obtain

a0 =
1
2

(
eai + e−ai

)
= cos a,

a1 =
λ1e

λ1 + λ2e
λ2

λ2
1 + λ2

2

=
eai − e−ai

2a
=

sin a

a
,

and then
exp(X) = (cos a)I2 +

sin a

a
X.

It follows that
a0(X) = cos a, a1(X) =

sin a

a
.

When n = 3, a real skew-symmetric matrix X is of the form

X =




0 −c b
c 0 −a
−b a 0


 ,

having the characteristic polynomial

pX(t) = t3 + (a2 + b2 + c2)t = t3 + θ2t,

where θ =
√

a2 + b2 + c2. The eigenvalues of X are λ1 = θi, λ2 = −θi, λ3 = 0. It is
clear that X = O3 if and only if θ = 0, hence it suffices to consider only the situation
θ 6= 0. The system (2.3) is equivalent to





3a0 − 2θ2a2 = 1 + eθi + e−θi

−2θ2a1 = θi(eθi − e−θi)
−2θ2a0 + 2θ4a2 = −θ2(eθi + e−θi)

Because θ 6= 0, it follows that

a0 = 1, a1 =
sin θ

θ
, a2 =

1− cos θ

θ2
,

giving the well-known classical formula due to Rodrigues

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2.
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3.2 The case n = 4

The general skew-symmetric matrix X ∈ so(4) is

X =




0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0


 ,

and the corresponding characteristic polynomial is given by

pX(t) = t4 + (a2 + b2 + c2 + d2 + e2 + f2)t2 + (af − be + cd)2.

Let λ1,2 = ±αi, λ3,4 = ±βi be the eigenvalues of the matrix X, where α, β ∈ R.
After simple algebraic manipulations, the system (2.3) becomes

(3.1)





2a0 − (α2 + β2)a2 = cos α + cosβ

−(α2 + β2)a1 + (α4 + β4)a3 = −α sinα− β sinβ

−(α2 + β2)a0 + (α4 + β4)a2 = −α2 sin α− β2 sin β

(α4 + β4)a1 − (α6 + β6)a3 = α3 sin α + β3 sin β

We consider the following three cases:

Case 1. If α 6= β, α, β ∈ R∗, then by grouping the first equation with the third one,
and the second equation with the last one, we obtain the Rodrigues coefficients

a0 =
β2 cos α− α2 cosβ

β2 − α2
,

a1 =
β3 sin α− α3 sinβ

αβ(β2 − α2)
,

a2 =
cosα− cos β

β2 − α2
,

a3 =
β sin α− α sin β

αβ(β2 − α2)
.

In this case it follows the corresponding Rodrigues formula in the form:

exp(X) =
β2 cosα− α2 cosβ

β2 − α2
I4 +

β3 sin α− α3 sin β

αβ(β2 − α2)
X(3.2)

+
cos α− cosβ

β2 − α2
X2 +

β sin α− α sinβ

αβ(β2 − α2)
X3.

Case 2. If α 6= 0 and β = 0, then we will use the Putzer method described in the first
section. In this situation the characteristic polynomial simplifies to pX(t) = t4 +α2t2

and the Putzer matrix is given by

C =




0 α2 0 1
α2 0 1 0
0 1 0 0
1 0 0 0


 .
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The scalar function z, solution to the differential equation z(4) + α2z(2) = 0 with the
initial conditions z(0) = z′(0) = z′′(0) = 0, z(3) = 1, is z(u) = − sin αu

α3 + u
α2 . The 4×1

matrix Z is

Z =




α−sin α
α3

1−cos α
α2

sin α
α

cos α




.

Using the formula (1.4) we obtain

A = C · Z =




1
1

1−cos α
α2

α−sin α
α3


 ,

therefore, the corresponding Rodrigues formula to this case is

(3.3) exp(X) = I4 + X +
1− cos α

α2
X2 +

α− sin α

α3
X3.

Case 3. If α = β 6= 0, then we will use again the Putzer method. The characteristic
polynomial of matrix X is pX(t) = t4 + 2α2t2 + α4, and the Putzer matrix is defined
by

C =




0 2α2 0 1
2α2 0 1 0
0 1 0 0
1 0 0 0


 .

According to the general theory of the linear homogeneous differential equations with
constant coefficients, the scalar function z satisfying z(4) + 2α2z(2) + α4 = 0 is of
the form z(u) = (C1 + C2u) cos αu + (C3 + C4u) sin αu. From the initial conditions
z(0) = z′(0) = z′′(0) = 0, z(3) = 1, after simple computations, we obtain the function

z(u) = − u

2α2
cos αu +

1
2α3

sinαu.

The 4× 1 matrix Z is in this case

Z =




sin α−α cos α
2α3

sin α
2α

sin α+α cos α
2α

2 cos α−α sin α
2




.

Using the formula (1.4) we obtain in this case

A = C · Z =




α sin α+2 cos α
2

3 sin α−α cos α
2α

sin α
2α

sin α−α cos α
2α3




,



Computing the Rodrigues coefficients of the exponential map 9

and the Rodrigues formula is

exp(X) =
α sin α + 2 cos α

2
I4 +

3 sin α− α cos α

2α
X(3.4)

+
sin α

2α
X2 +

sin α− α cosα

2α3
X3.

Remark 3.1. J. Gallier and D. Xu [5, Theorem 2.2], has proved the following Ro-
drigues type formula for the group SO(n) : Given any non-null skew-symmetric n×n
matrix B, where n ≥ 3, if {iθ1,−iθ1, . . . , iθp,−iθp} is the set of distinct eigenvalues of
B, where θj > 0 and each iθj (and −iθj) has multiplicity kj ≥ 1, there are p unique
skew-symmetric matrices B1, . . . , Bp such that:

B = θ1B1 + . . . + θpBp, BiBj = BjBi = On, i 6= j, B3
i = −Bi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n. Furthermore:

exp(B) = exp(θ1B1 + . . . + θpBp) = In +
p∑

i=1

[(sin θi)Bi + (1− cos θi))B2
i ],

and {θ1, . . . , θp} is the set of distinct eigenvalues of the symmetric matrix

−1
4
(B −BT )2,

where m = k1 + . . . + kp.

Because the difficulty to determine the matrices B1, . . . , Bp, this result is implicit.
It is clear that these matrices depend on the eigenvalues of the matrix B, but it is
not easy to write down the dependence.
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