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Abstract. In this paper we are interested in obtaining characterizations
of the Euclidean complex space form (Cn, J, 〈, 〉) using specific conformal
vector fields on a Kaehler manifold. On the Euclidean complex space form
there exist a conformal vector field, whose expression for its covariant
derivative motivates the definition of a specific vector field on a Kaehler
manifold, which we call a special conformal vector field. We show that a
complete simply connected complex space form M(c) (a Kaehler manifold
of constant holomorphic sectional curvature c) admits a special conformal
vector field if and only if it is isometric to the Euclidean complex space
form. We also show that a complete simply connected Kaehler manifold
(M, J, g) that admits a non-parallel harmonic special conformal vector
field, is isometric to the Euclidean complex space form.
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1 Introduction

Characterizations of important spaces such as the Euclidean space Rn, the Euclidean
sphere Sn, and the complex projective space CPn, is an important problem in differ-
ential geometry and was taken up by several authors (cf. [1], [8]-[14]). In most of
these characterizations conformal vector fields play a notable role. Conformal vector
fields are important objects for studying the geometry of several kinds of manifolds.
They have been widely studied on Riemannian manifolds (cf. [2, 3, 5, 7, 10, 12, 14]).
However, although the Kaehler geometry is quite rich, conformal vector fields have
not been studied intensively on a Kaehler manifold. The main reason for this is per-
haps the result “on a compact Kaehler manifold a conformal vector field is Killing”
(cf. [8, 13]), however, on a non-compact Kaehler manifold the non-Killing conformal
vector fields are in abundance. For example, consider the Euclidean space Cn of real
dimension 2n, which is a Kaehler manifold with natural canonical complex structure
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J . The vector field ξ = ψ + Jψ is a conformal vector field on the Kaehler manifold
(Cn, J, 〈, 〉) which is not Killing, where ψ is the position vector field and 〈, 〉 is the
Euclidean metric on Cn. If ∇ is the Levi-Civita connection on (Cn, J, 〈, 〉), then we
have

∇Xξ = X + JX, X ∈ X(Cn),

where X(Cn) is the Lie algebra of smooth vector fields on Cn. This conformal vector
field ξ satisfies ∆ξ = 0, where ∆ is the Laplacian operator acting on smooth vector
fields, that is, ξ is a harmonic vector field on (Cn, J, 〈, 〉). A natural question can be
raised “whether the existence of this vector field is a characteristic property of the
Euclidean complex space form (Cn, J, 〈, 〉)?” The answer to this question is affirmative
as seen in the following results, which is the aim of this paper. Motivated by this
example, we call a vector field ξ on a Kaehler manifold (M, J, g) a special conformal
vector field if it satisfies

∇Xξ = ρX + fJX, X ∈ X(M),

for some smooth real functions ρ, f ∈ C∞(M). It is interesting to note that on a
complete simply connected complex space form M(c) (Kaehler manifold of constant
holomorphic sectional curvature c) the presence of a non-Killing special conformal
vector field render it to be isometric to (Cn, J, 〈, 〉). In fact we prove the following

Theorem 1.1. Let M(c) be a complete simply connected complex space form with
dim M > 2. Then M(c) admits a non-Killing special conformal vector field if and
only if it is isometric to (Cn, J, 〈, 〉).

For complete simply connected Kaehler manifold that admit a non-parallel har-
monic special conformal vector field we prove the following

Theorem 1.2. Let (M, J, g) be a complete simply connected Kaehler manifold with
dim M > 2. Then (M,J, g) admits a non-parallel harmonic special conformal vector
field if and only if it is isometric to (Cn, J, 〈, 〉).

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with metric g. We denote by
∇ the Levi-Civita connection and by X(M) the Lie algebra of smooth vector fields on
M . The curvature tensor field R and the Ricci tensor field Ric of M are defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

Ric(X,Y ) = trg(Z → R(Z, X)Y ),

where X, Y, Z ∈ X(M), and trg denotes the trace with respect to g.
Recall that a smooth vector field ξ ∈ X(M) is said to be a conformal vector field

on M if

(2.1) £ξ(g) = 2ρg ,

for a smooth function ρ ∈ C∞(M), where £ξ is the Lie derivative with respect to ξ.
We call the smooth function ρ the potential function associated to conformal vector
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field ξ. Let us denote by η the 1-form dual to the conformal vector field ξ, then we
can define a skew-symmetric tensor field φ of type (1, 1) on M by

(2.2) dη(X, Y ) = 2g(φX, Y ), X, Y ∈ X(M).

We will call φ the skew-symmetric tensor associated to the conformal vector field ξ.
We use the well known irreducible orthogonal decomposition

TM ⊗ TM = R⊕ S2
0(M)⊕ Λ2(M)

and the identification of the tangent bundle TM with the cotangent bundle T ∗M
using the Riemannian metric g, together with the fact that the covariant derivative
∇ξ is a section of the bundle TM ⊗ T ∗M , to deduce the following expression

(2.3) ∇Xξ = ρX + φX, X ∈ X(M)

for a conformal vector field ξ on a Riemannian manifold (M, g) with potential function
ρ and skew-symmetric tensor φ.

We recall that if S is an (1, 1) tensor then its divergence div(S) ∈ X(M) is the
vector field defined by

g(div(S), X) = trg(Z → (∇ZS)(X)) =
n∑

i=1

g((∇eiS)(X), ei), X ∈ X(M),

where {e1, . . . , en} is a local orthonormal frame on M (cf. [11]), and (∇XS)(Y ) =
∇XSY − S∇XY , for X, Y ∈ X(M).

The Ricci operator Q is a symmetric (1, 1) tensor field defined by Ric(X, Y ) =
g(Q(X), Y ), for X, Y ∈ X(M).

Lemma 2.1. Let ξ be a conformal vector field on a n-dimensional Riemannian mani-
fold (M, g) with potential function ρ and skew-symmetric tensor φ. Then div(ξ) = nρ
and the Ricci operator Q of M satisfies

Q(ξ) = −(n− 1)∇ρ + div(φ).

Proof. Let {e1, . . . , en} be a local orthonormal frame on M . Using equation (2.3) we
get

div(ξ) =
∑

i

g(∇eiξ, ei) =
∑

i

ρg(ei, ei) + g(φei, ei) = nρ,

since φ is skew-symmetric. For the second claim we use again equation (2.3) to obtain

(2.4) R(X, Y )ξ = X(ρ)Y − Y (ρ)X + (∇Xφ)(Y )− (∇Y φ)(X), X, Y ∈ X(M).

Consequently using (2.4), the definition of div(φ), and the fact that (∇Xφ) is an
skew-symmetric tensor, we get

Ric(X, ξ) = −(n− 1)g(∇ρ,X) +
∑

i

g((∇eiφ)(X), ei)−
∑

i

g((∇Xφ)(ei), ei)

= −(n− 1)g(∇ρ,X) + g(div(φ), X).

¤
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On a Riemannian manifold (M, g) the Hessian operator Hf of a smooth function
f ∈ C∞(M) is the (1, 1)-tensor defined by

Hf (X) = ∇X∇f, X ∈ X(M).

The Hessian operator is symmetric and also can be viewed as the symmetric (0, 2)-
tensor given by Hf (X,Y ) = g(Hf (X), Y ), for X, Y ∈ X(M) (cf. [11, 4]). The
Laplacian ∆f of the smooth function f is related to the Hessian Hf by ∆f = trg(Hf ).
Recently Garćıa-Ŕıo and others [6] have initiated the study of the Laplacian operator
∆ : X(M) → X(M), defined on a Riemannian manifold (M, g) by

∆X =
n∑

i=1

(∇ei∇eiX −∇∇ei
eiX

)
, X ∈ X(M),

where {e1, . . . , en} is a local orthonormal frame on M . This operator is a self adjoint
elliptic operator with respect to the inner product 〈, 〉 on the set Xc(M) of compactly
supported vector fields in X(M), defined by

〈X,Y 〉 =
∫

M

g(X,Y ), X, Y ∈ Xc(M).

A vector field X is said to be harmonic if ∆X = 0. Note that a parallel vector field is
harmonic, therefore we shall call a harmonic vector field nontrivial harmonic vector
field if it is not parallel. We shall denote by ∆ both the Laplacian operators, the one
acting on smooth functions on M as well as that acting on smooth vector fields.

Let (M,J, g) be a 2n-dimensional Kaehler manifold with complex structure J and
Hermitian metric g. We denote by ∇ the Levi-Civita connection and by X(M) the
Lie algebra of smooth vector fields on M . Then we have

(2.5) ∇XJY = J∇XY, g(JX, JY ) = g(X, Y ), X, Y ∈ X(M).

The curvature tensor field R and the Ricci tensor field Ric of a Kaehler manifold
(M, J, g) satisfy

(2.6) g(R(JX, JY )JZ, JW ) = g(R(X, Y )Z,W ), Ric(JX, JY ) = Ric(X, Y )

for X,Y, Z,W ∈ X(M).

Lemma 2.2. Let ξ be a conformal vector field on a 2n-dimensional Kaehler manifold
(M, J, g) with potential ρ and skew-symmetric tensor φ. Then

2(n− 1)∇ρ = div(φ)− div(JφJ)− J∇trg(Jφ) .

Proof. We will compute Q(Jξ). From (2.5) it follows that R(Z, X)Jξ = JR(Z, X)ξ,
for X,Z ∈ X(M). Let {e1, . . . , e2n} be an orthonormal frame on M , then

Ric(X, Jξ) =
∑

i

g(ei(ρ)JX −X(ρ)Jei + (∇eiJφ)(X)− (∇XJφ)(ei), ei)

= −g(J∇ρ,X) + g(div(Jφ), X)−
∑

i

g((∇XJφ)(ei), ei),
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where we have used (2.4) jointly with the fact that J(∇Xφ) = (∇XJφ), for X ∈
X(M), and also that J is skew-symmetric. On the other hand we know that (cf. [11])

∑

i

g((∇XJφ)(ei), ei) = trg((∇XJφ)) = X(trg(Jφ)).

Therefore we have proved that

(2.7) Q(Jξ) = −J∇ρ + div(Jφ)−∇trg(Jφ).

On a Kaehler manifold (M, J, g), it is well known that Q(JX) = J(Q(X)), for X ∈
X(M), hence by Lemma 2.1 and (2.7) we obtain

2(n− 1)∇ρ = div(φ) + Jdiv(Jφ)− J∇trg(Jφ) .

Since (∇Xφ)(JY ) = (∇XφJ)(Y ), X, Y ∈ X(M), we get that Jdiv(Jφ) = −div(JφJ),
which finishes the proof. ¤

Lemma 2.3. Let u ∈ C∞(M) be a smooth function on a 2n-dimensional Kaehler
manifold (M,J, g). Then div(J∇u) = 0.

Proof. Let {e1, . . . , e2n} be an local orthonormal frame on M . We compute

div(J∇u) =
∑

i

g(∇eiJ∇u, ei) =
∑

i

g(J∇ei∇u, ei) =
∑

i

g(JHu(ei), ei).

Since Hu is symmetric we can choose an orthonormal basis that diagonalizes Hu, that
is, Hu(ei) = κiei for i = 1, . . . , 2n. Therefore g(JHu(ei), ei) = κig(Jei, ei) = 0, which
finishes the proof. ¤

A Kaehler manifold of constant holomorphic sectional curvature c is called a com-
plex space form and it is denoted by M(c). The curvature tensor field of a complex
space form M(c) has the expression

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX(2.8)

−g(JX,Z)JY + 2g(X,JY )JZ} .

Now consider the Kaehler manifold (Cn, J, 〈, 〉), where Cn = R2n is the 2n-dimensional
Euclidean space, J and 〈, 〉 are the canonical complex structure and the Euclidean
metric on Cn, respectively. We denote the position vector field of Cn by ψ. Then on
the Kaehler manifold (Cn, J, 〈, 〉), the vector field ξ = ψ + Jψ is a conformal vector
field, as one can verify that it satisfies

∇Xξ = X + JX, X ∈ X(Cn),

where the potential function ρ = 1 is a constant, the skew-symmetric tensor field
φ = J , and that ξ is not Killing. Motivated by this vector field, and the expression
of its covariant derivative, we define what we call a special conformal vector field on
a Kaehler manifold in the following
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Definition 2.1. Let (M, J, g) be a Kaehler manifold. A conformal vector field ξ ∈
X(M) with skew-symmetric tensor φ is said to be a special conformal vector field if
φ = fJ for some smooth function f ∈ C∞(M).

We would like to point out that the special conformal vector fields in the above
definition are particular case of the vector fields considered in [9]. We also remark
that for a special conformal vector field ξ on a Kaehler manifold (M,J, g) it follows
from φ = fJ that JφJ = −φ and therefore

(2.9) div(φ) = −J∇f, div(JφJ) = J∇f, trg(Jφ) = −2nf.

Hence from Lemma 2.2 we get

(n− 1){∇ρ− J∇f} = 0,

which proves the following

Lemma 2.4. Let ξ be a special conformal vector field on a 2n-dimensional Kaehler
manifold (M,J, g). Then either n = 1 or ∇ρ = J∇f .

3 Proof of theorems

Initially we will prove in the following proposition a slightly more general result than
was enunciated in Theorem 1.1.

Proposition 3.1. Let ξ be a non-Killing conformal vector field with potential ρ and
skew-symmetric tensor φ on a complete simply connected complex space form M(c)
with dim M > 2. If div(φ) = J∇u and div(JφJ) = J∇v for some smooth functions
u, v ∈ C∞(M), then M(c) is isometric to the Euclidean complex space (Cn, J, 〈, 〉).
Proof. As M(c) has constant holomorphic curvature c it follows from (2.8) that
Ric(X, Y ) = c

2 (n + 1)g(X,Y ) which gives

(3.1) Q(ξ) =
c

2
(n + 1)ξ .

By using that div(φ) = J∇u and (3.1) in Lemma 2.1 we obtain

−(2n− 1)∇ρ + J∇u = Q(ξ) =
c

2
(n + 1)ξ.

On taking the divergence in the above equation and using Lemma 2.1, the equation
(2.3), we get

(3.2) −(2n− 1)∆ρ = n(n + 1)cρ.

On the other hand using that div(φ) = J∇u and div(JφJ) = J∇v in Lemma 2.2 we
have

2(n− 1)∇ρ = J∇(u− v − trg(Jφ)).

Consequently, by taking the divergence in the above equation and using Lemma 2.3
we arrive at 2(n − 1)∆ρ = 0. Thus as dim M > 2 we obtain ∆ρ = 0, and hence
equation (3.2) gives either ρ = 0 or c = 0. If the potential function ρ = 0, by equation
(2.1) it would mean that ξ is Killing, which is a contradiction as ξ is a non-Killing
vector field. Hence c = 0 and this proves that M(c) is isometric to (Cn, J, 〈, 〉). ¤
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Now the proof of Theorem 1.1 follows easily from Proposition 3.1. In fact, as
already observed in (2.9) a special conformal vector field ξ satisfies div(φ) = −J∇f
and div(JφJ) = J∇f and hence from Proposition 3.1 we conclude that M(c) is
isometric to (Cn, J, 〈, 〉). The converse of Theorem 1.1 is trivial since ξ = ψ + Jψ,
where ψ is position vector field of Cn, is a non-Killing special conformal vector field
on (Cn, J, 〈, 〉). This ends the proof of Theorem 1.1.

A direct consequence of Theorem 1.1 is the following

Corollary 3.2. On a hyperbolic complex space form there does not exist a non-Killing
special conformal vector field.

Now we will prove Theorem 1.2. Suppose that ξ is a nontrivial (non-parallel) har-
monic special conformal vector field on a 2n-dimensional Kaehler manifold (M, J, g).
Then the skew-symmetric tensor of ξ satisfies φ = fJ for some smooth function
f ∈ C∞(M). In that case equation (2.3) allow us to write

(3.3) ∇Xξ = ρX + fJX, X ∈ X(M).

Using the above equation we easily get

∇X∇Y ξ −∇∇XY ξ = X(ρ)Y + X(f)JY, X, Y ∈ X(M).

Also, using the definition of the Laplacian ∆ξ in the above equation we get

∆ξ = ∇ρ + J∇f.

Since ξ is harmonic, the above equation together with Lemma 2.4 (as dim M > 2)
gives ∇ρ = ∇f = 0, that is, the functions ρ and f are constants. Thus there exist
constants c1, c2 such that the equation (3.3) acquires the form

(3.4) ∇Xξ = c1X + c2JX, X ∈ X(M).

Define a smooth function h ∈ C∞(M) by

h =
1
2
g(ξ, ξ).

It is easy to see that the gradient of the function h and its Hessian operator are
respectively given by

(3.5) ∇h = c1ξ − c2Jξ, and Hh(X) = c1∇Xξ − c2J∇Xξ, X ∈ X(M).

Therefore by using (3.4) we get

(3.6) Hh(X) = (c2
1 + c2

2)X = cX, X ∈ X(M).

Suppose the constant c = 0, then by equation (3.4) we shall have ∇Xξ = 0 for all
X ∈ X(M) that will mean that ξ is a parallel vector field which is a contradiction, as
ξ is a nontrivial harmonic vector field. Now suppose that the function h is constant,
then from the first equation in (3.5) we get 0 = ∇h = c1ξ− c2Jξ, and as both c1 and
c2 cannot be simultaneously zero, we get ξ = 0, which again is a contradiction as ξ is a
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nontrivial harmonic vector field. Thus the equation (3.6) gives that the non-constant
function h on the complete and simply connected Kaehler manifold (M,J, g) satisfies

Hh(X,Y ) = cg(X, Y ), X, Y ∈ X(M)

for a nonzero constant c, which is Tashiro’s equation (cf. [14]), which confirms that
(M, J, g) is isometric to the Euclidean space Cn.

The converse of Theorem 1.2 is trivial, since the vector field decomposes as ξ =
ψ + Jψ, where ψ is the position vector field of Cn, is a nontrivial harmonic special
conformal vector field on Cn. ¤
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