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Abstract. In this paper we are interested in obtaining characterizations
of the Euclidean complex space form (C™, J, (,)) using specific conformal
vector fields on a Kaehler manifold. On the Euclidean complex space form
there exist a conformal vector field, whose expression for its covariant
derivative motivates the definition of a specific vector field on a Kaehler
manifold, which we call a special conformal vector field. We show that a
complete simply connected complex space form M (c) (a Kaehler manifold
of constant holomorphic sectional curvature ¢) admits a special conformal
vector field if and only if it is isometric to the Euclidean complex space
form. We also show that a complete simply connected Kaehler manifold
(M, J,g) that admits a non-parallel harmonic special conformal vector
field, is isometric to the Euclidean complex space form.
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1 Introduction

Characterizations of important spaces such as the Fuclidean space R”, the Euclidean
sphere S™, and the complex projective space CP", is an important problem in differ-
ential geometry and was taken up by several authors (cf. [1], [8]-[14]). In most of
these characterizations conformal vector fields play a notable role. Conformal vector
fields are important objects for studying the geometry of several kinds of manifolds.
They have been widely studied on Riemannian manifolds (cf. [2, 3, 5, 7, 10, 12, 14]).
However, although the Kaehler geometry is quite rich, conformal vector fields have
not been studied intensively on a Kaehler manifold. The main reason for this is per-
haps the result “on a compact Kaehler manifold a conformal vector field is Killing”
(cf. [8, 13]), however, on a non-compact Kaehler manifold the non-Killing conformal
vector fields are in abundance. For example, consider the Euclidean space C™ of real
dimension 2n, which is a Kaehler manifold with natural canonical complex structure
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J. The vector field £ = ¥ + J1 is a conformal vector field on the Kaehler manifold
(C™, J,{(,)) which is not Killing, where ¢ is the position vector field and (,) is the
Euclidean metric on C". If V is the Levi-Civita connection on (C",J, (,)), then we
have

Vxé=X+JX, XeX(C"),

where X(C™) is the Lie algebra of smooth vector fields on C™. This conformal vector
field ¢ satisfies A = 0, where A is the Laplacian operator acting on smooth vector
fields, that is, £ is a harmonic vector field on (C™, J,{,)). A natural question can be
raised “whether the existence of this vector field is a characteristic property of the
Euclidean complex space form (C™, J, (,))?” The answer to this question is affirmative
as seen in the following results, which is the aim of this paper. Motivated by this
example, we call a vector field £ on a Kaehler manifold (M, J, g) a special conformal
vector field if it satisfies

Vxé=pX + fIX, X e X(M),

for some smooth real functions p, f € C°(M). It is interesting to note that on a
complete simply connected complex space form M (c) (Kaehler manifold of constant
holomorphic sectional curvature ¢) the presence of a non-Killing special conformal
vector field render it to be isometric to (C™, J, (,)). In fact we prove the following

Theorem 1.1. Let M(c) be a complete simply connected complex space form with
dim M > 2. Then M(c) admits a non-Killing special conformal vector field if and
only if it is isometric to (C",J, (,)).

For complete simply connected Kaehler manifold that admit a non-parallel har-
monic special conformal vector field we prove the following

Theorem 1.2. Let (M, J,g) be a complete simply connected Kaehler manifold with
dim M > 2. Then (M, J,g) admits a non-parallel harmonic special conformal vector
field if and only if it is isometric to (C™, J,(,)).

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with metric g. We denote by
V the Levi-Civita connection and by X(M) the Lie algebra of smooth vector fields on
M. The curvature tensor field R and the Ricci tensor field Ric of M are defined by

R(X.Y)Z =VxVyZ -VyVxZ—VxyZ,
Ric(X,Y) = try(Z — R(Z, X)Y),
where XY, Z € X(M), and tr, denotes the trace with respect to g.

Recall that a smooth vector field £ € X(M) is said to be a conformal vector field
on M if

(2.1) Le(g) = 2pg ,

for a smooth function p € C°°(M), where £¢ is the Lie derivative with respect to .
We call the smooth function p the potential function associated to conformal vector
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field £. Let us denote by 1 the 1-form dual to the conformal vector field £, then we
can define a skew-symmetric tensor field ¢ of type (1,1) on M by

(2.2) dn(X,Y) =29(¢X,Y), XY € X(M).

We will call ¢ the skew-symmetric tensor associated to the conformal vector field &.
We use the well known irreducible orthogonal decomposition

TM @TM =R& S5(M)®A*(M)

and the identification of the tangent bundle T'M with the cotangent bundle 7™M
using the Riemannian metric g, together with the fact that the covariant derivative
V¢ is a section of the bundle TM ® T* M, to deduce the following expression

(2.3) Vxé=pX + 06X, XeX(M)

for a conformal vector field £ on a Riemannian manifold (M, g) with potential function
p and skew-symmetric tensor ¢.

We recall that if S is an (1,1) tensor then its divergence div(S) € X(M) is the
vector field defined by

g(div(S), X) = try(Z — (V29)(X Zg (Ve,8)(X),e), X eXx(M),

where {e1,...,e,} is a local orthonormal frame on M (cf. [11]), and (VxS)(Y) =
VxSY — SVxY, for X, Y € X(M).

The Ricci operator @ is a symmetric (1,1) tensor field defined by Ric(X,Y) =
9(Q(X),Y), for X, Y € X(M).

Lemma 2.1. Let £ be a conformal vector field on a n-dimensional Riemannian mani-
fold (M, g) with potential function p and skew-symmetric tensor ¢. Then div(§) = np
and the Ricci operator Q of M satisfies

Q) = —(n = 1)Vp +div(e).

Proof. Let {ey,...,e,} be alocal orthonormal frame on M. Using equation (2.3) we
get

le(E) = Zg(v€¢§7 ei) = Zpg(e7,7 e’i) + g(¢€i7ei) =np,
since ¢ is skew-symmetric. For the second claim we use again equation (2.3) to obtain
(24)  RX,Y)E=X(p)Y =Y(p)X + (Vx9)(Y) = (Vyo)(X), X,Y € X(M).

Consequently using (2.4), the definition of div(¢), and the fact that (Vx¢) is an
skew-symmetric tensor, we get

Ric(X,€) = —(n = 1)g(Vp, X +Zg Ve, 9)(X ei)—zg((vx¢)(6i)»6i)

—(n—1)g(Vp, X) + g(dIV(ﬂb), X).
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On a Riemannian manifold (M, g) the Hessian operator H; of a smooth function
f € C>®(M) is the (1, 1)-tensor defined by

Hp(X)=VxVf, XeX(M).

The Hessian operator is symmetric and also can be viewed as the symmetric (0, 2)-
tensor given by H¢(X,Y) = g(H¢(X),Y), for X,Y € X(M) (cf. [11, 4]). The
Laplacian A f of the smooth function f is related to the Hessian H; by Af = try(Hy).
Recently Garcia-Rio and others [6] have initiated the study of the Laplacian operator
A X(M) — X(M), defined on a Riemannian manifold (M, g) by

n

AX =Y (Vo Ve X —Vy, o X), XeX(M),

=1

where {e1,...,e,} is a local orthonormal frame on M. This operator is a self adjoint
elliptic operator with respect to the inner product (,) on the set X.(M) of compactly
supported vector fields in X(M), defined by

(X,Y) = /Mg(X, Y), X.Y € X.(M).

A vector field X is said to be harmonic if AX = 0. Note that a parallel vector field is
harmonic, therefore we shall call a harmonic vector field nontrivial harmonic vector
field if it is not parallel. We shall denote by A both the Laplacian operators, the one
acting on smooth functions on M as well as that acting on smooth vector fields.

Let (M, J, g) be a 2n-dimensional Kaehler manifold with complex structure J and
Hermitian metric g. We denote by V the Levi-Civita connection and by X(M) the
Lie algebra of smooth vector fields on M. Then we have

(2.5) VxJY = JVyY, g¢(JX,JY)=g(X,Y), X,Y eX(M).

The curvature tensor field R and the Ricci tensor field Ric of a Kaehler manifold
(M, J,g) satisfy

(2.6)  g(R(JX,JY)JZ, JW) = g(R(X,Y)Z,W), Ric(JX,JY)=Ric(X,Y)
for X,Y,Z,W € X(M).

Lemma 2.2. Let £ be a conformal vector field on a 2n-dimensional Kaehler manifold
(M, J,g) with potential p and skew-symmetric tensor ¢. Then

2(n —1)Vp =div(¢) — div(J@J) — JVitrg(J¢) .

Proof. We will compute Q(J€). From (2.5) it follows that R(Z, X)J¢ = JR(Z, X )¢,
for X,Z € X(M). Let {eq,...,ea,} be an orthonormal frame on M, then

Rie(X,J€) =} g(ei(p)JX = X (p)Jei + (Ve, JO)(X) = (VxTO)(ei), i)

= —g(JVp, X) + g(div(J9), X) — Zg((vxw)(eo, ei),
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where we have used (2.4) jointly with the fact that J(Vx¢) = (VxJ¢), for X €
X(M), and also that J is skew-symmetric. On the other hand we know that (cf. [11])

Zg((vxﬂb)(%% ei) = trg(Vx J9)) = X(trg(J9)).

Therefore we have proved that
(2.7) Q(JE) = —JVp+div(Jp) — Virg(J¢).

On a Kaehler manifold (M, J, g), it is well known that Q(JX) = J(Q(X)), for X €
X(M), hence by Lemma 2.1 and (2.7) we obtain

2(n —1)Vp = div(¢) + Jdiv(J¢) — JViry(Jo) .

Since (Vx¢)(JY) = (VxoJ)(Y), X,Y € X(M), we get that Jdiv(J¢) = —div(JpJ),
which finishes the proof. O

Lemma 2.3. Let u € C°(M) be a smooth function on a 2n-dimensional Kaehler
manifold (M, J,g). Then div(JVu) = 0.

Proof. Let {e1,...,e2,} be an local orthonormal frame on M. We compute
div(JVu) =3 g(Ve, JVu, &) = > g(JVe,Vu, &) = Y g(THu(e:), €).

Since ‘H,, is symmetric we can choose an orthonormal basis that diagonalizes H,,, that
is, Hyu(e;) = Kse; for i = 1,...,2n. Therefore g(JH,(e;), e;) = kig(Je;, e;) = 0, which
finishes the proof. |

A Kaehler manifold of constant holomorphic sectional curvature ¢ is called a com-
plex space form and it is denoted by M (c). The curvature tensor field of a complex
space form M (c) has the expression

(2.8) R(X,Y)Z = g {9(Y, 2)X — g(X, 2)Y + g(JY, Z)JX
—g(JX,2)JY +29(X,JY)JZ}.

Now consider the Kaehler manifold (C™, J, (,)), where C* = R2" is the 2n-dimensional
Euclidean space, J and (,) are the canonical complex structure and the Euclidean
metric on C", respectively. We denote the position vector field of C™ by 1. Then on
the Kaehler manifold (C™, J, (,}), the vector field £ = ) + Jv is a conformal vector
field, as one can verify that it satisfies

Vyé=X+JX, XeXxC),

where the potential function p = 1 is a constant, the skew-symmetric tensor field
¢ = J, and that £ is not Killing. Motivated by this vector field, and the expression
of its covariant derivative, we define what we call a special conformal vector field on
a Kaehler manifold in the following
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Definition 2.1. Let (M, J,g) be a Kaehler manifold. A conformal vector field £ €
X (M) with skew-symmetric tensor ¢ is said to be a special conformal vector field if
¢ = fJ for some smooth function f € C*(M).

We would like to point out that the special conformal vector fields in the above
definition are particular case of the vector fields considered in [9]. We also remark
that for a special conformal vector field £ on a Kaehler manifold (M, J, g) it follows
from ¢ = fJ that J¢J = —¢ and therefore

(2.9) div(¢) = —JV, div(JoJ) = JV, trg(Jo) = —2nf.
Hence from Lemma 2.2 we get

(n—1){Vp— JVf} =0,
which proves the following

Lemma 2.4. Let £ be a special conformal vector field on a 2n-dimensional Kaehler
manifold (M, J,g). Then eithern=1 or Vp=JVf.

3 Proof of theorems

Initially we will prove in the following proposition a slightly more general result than
was enunciated in Theorem 1.1.

Proposition 3.1. Let £ be a non-Killing conformal vector field with potential p and
skew-symmetric tensor ¢ on a complete simply connected complex space form M/(c)
with dim M > 2. If div(¢) = JVu and div(J¢J) = JVv for some smooth functions
u,v € C®°(M), then M(c) is isometric to the Euclidean complex space (C",J, (,)).

Proof. As M(c) has constant holomorphic curvature c¢ it follows from (2.8) that
Ric(X,Y) = §(n+ 1)g(X,Y) which gives

(3.1) Q) = 5(n+ 1)
By using that div(¢) = JVu and (3.1) in Lemma 2.1 we obtain
—(2n—1)Vp+ JVu = Q(€) = g(n F1)E.

On taking the divergence in the above equation and using Lemma 2.1, the equation
(2.3), we get

(3.2) —(2n—1)Ap =n(n+ 1)cp.

On the other hand using that div(¢) = JVu and div(J¢J) = JVv in Lemma 2.2 we
have
2(n—1)Vp=JV(u—v—try(J¢)).

Consequently, by taking the divergence in the above equation and using Lemma 2.3
we arrive at 2(n — 1)Ap = 0. Thus as dimM > 2 we obtain Ap = 0, and hence
equation (3.2) gives either p = 0 or ¢ = 0. If the potential function p = 0, by equation
(2.1) it would mean that £ is Killing, which is a contradiction as £ is a non-Killing
vector field. Hence ¢ = 0 and this proves that M(c) is isometric to (C™, J,(,)). O
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Now the proof of Theorem 1.1 follows easily from Proposition 3.1. In fact, as
already observed in (2.9) a special conformal vector field £ satisfies div(¢) = —JV f
and div(J¢J) = JVf and hence from Proposition 3.1 we conclude that M(c) is
isometric to (C",J,(,)). The converse of Theorem 1.1 is trivial since £ = 9 + Jib,
where v is position vector field of C", is a non-Killing special conformal vector field
on (C",J,{(,)). This ends the proof of Theorem 1.1.

A direct consequence of Theorem 1.1 is the following

Corollary 3.2. On a hyperbolic complex space form there does not exist a non-Killing
special conformal vector field.

Now we will prove Theorem 1.2. Suppose that £ is a nontrivial (non-parallel) har-
monic special conformal vector field on a 2n-dimensional Kaehler manifold (M, J, g).
Then the skew-symmetric tensor of £ satisfies ¢ = fJ for some smooth function
f € C™(M). In that case equation (2.3) allow us to write

(3.3) Vxé=pX+ fJX, X eX(M).
Using the above equation we easily get
VxVy€—Vywé=X(p)Y + X(f)JY, XY eX(M).
Also, using the definition of the Laplacian A¢ in the above equation we get
AE=Vp+ JVf.

Since ¢ is harmonic, the above equation together with Lemma 2.4 (as dim M > 2)
gives Vp = Vf = 0, that is, the functions p and f are constants. Thus there exist
constants ¢y, ¢ such that the equation (3.3) acquires the form

(34) ng = ClX +CQJX, X e X(M)

Define a smooth function h € C*°(M) by

1

It is easy to see that the gradient of the function h and its Hessian operator are
respectively given by

(3.5) Vh=c1&—cJE and Hp(X)=c1VxE—caJVxE, X eX(M).
Therefore by using (3.4) we get
(3.6) HL(X) = (3 +c3)X =cX, X eX(M).

Suppose the constant ¢ = 0, then by equation (3.4) we shall have Vx& = 0 for all
X € X(M) that will mean that & is a parallel vector field which is a contradiction, as
¢ is a nontrivial harmonic vector field. Now suppose that the function A is constant,
then from the first equation in (3.5) we get 0 = VA = 1€ — ¢ J€, and as both ¢; and
c2 cannot be simultaneously zero, we get £ = 0, which again is a contradiction as £ is a
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nontrivial harmonic vector field. Thus the equation (3.6) gives that the non-constant
function h on the complete and simply connected Kaehler manifold (M, J, g) satisfies

Hu(X,Y) =cg(X,Y), X,Y €X(M)

for a nonzero constant ¢, which is Tashiro’s equation (cf. [14]), which confirms that
(M, J, g) is isometric to the Euclidean space C".
The converse of Theorem 1.2 is trivial, since the vector field decomposes as & =

¥ + Jv, where 1 is the position vector field of C™, is a nontrivial harmonic special
conformal vector field on C™. ]

Acknowledgements. S. Deshmukh is supported by King Saud University, Dean-
ship of Scientific Research, Research Group Project number-RGP-VPP-182. J.M.
Malacarne is partially supported by Instituto Nacional de Ciéncia e Tecnologia de
Matematica - INCTMat, Brazil. The authors would like to thank the referees for
their helpful comments and suggestions which led to the improvement of this paper.

References

[1] A. L. Besse, Finstein Manifolds, Springer Verlag, 1987.

[2] S. Deshmukh and F. R. Al-Solamy, Conformal gradient vector fields on a compact
Riemannian manifold, Colloq. Math. 112, 1 (2008), 157-161.

[3] S. Deshmukh, Characterizing spheres by conformal vector fields, Ann. Univ. Fer-
rara 56, 2 (2010), 231-236.

[4] S. Deshmukh and A. Al-Eid, Curvature bounds for the spectrum of a compact
Riemannian manifold of constant scalar curvature, J. Geom. Anal. 15, 4 (2005),
589-606.

[5] S. Deshmukh and J. M. Malacarne, Compact submanifolds in space forms, J.
Geom. 98 (2010), 23-31.

[6] E. Garcia-Rio, D. N. Kupeli, and B. Unal, On a differential equation character-
izing Euclidean spheres, J. Differential Equations 194, 2 (2003), 287-299.

[7] M. Kanai, On a differential equation characterizing a Riemannian structure of a

manifold, Tokyo J. Math. 6, 1 (1983), 143-151.

[8] A. Lichnerowicz, Geometry of groups of transformations, Noordhoff International
Publishing, Leyden, 1977.

[9] L. Nicolescu and G. Pripoae, Champs F-plans dans l’algebré associée & un champ
tensoriel de type (1,2), Bull. Math. Soc. Sci. Math. R.S.R. 31 (79), 4 (1987), 313—
326.

[10] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a
sphere, J. Math. Soc. Japan 14 (1962), 333-340.

[11] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171,
Springer, 1998.

[12] S. Tanno and W. Weber, Closed conformal vector fields, J. Differential Geom. 3
(1969), 361-366.



Characterizations of the Euclidean complex space form 19

[13] Y. Tashiro, On conformal and projective transformations in Kahlerian manifolds,
Tohoku Math. J. 14 (1962), 317-320.

[14] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer.
Math. Soc. 117 (1965), 251-275.

Author’s address:

Sharief Deshmukh

Department of Mathematics, College of Science, King Saud University,
P.O.Box 2455, Riyadh 11451, Saudi Arabia.

E-mail: shariefd@ksu.edu.sa

Jose Miguel Malacarne

Departamento de Matematica, Universidade Federal do Espirito Santo,
Av. Fernando Ferrari, 514, Vitéria-ES, 29075-910, Brazil.

E-mail: jose.malacarne@ufes.br



