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Abstract. We investigate the existence of a CAT(−1) metric on a piece-
wise hyperbolic cubical complex of edge lengths ε whose cells represent
only finitely many isometry classes, and satisfying a combinatorial curva-
ture condition called local 5-largeness. We will show that, for some ε, the
star of any cell of a locally 5-large cubical complex is locally a CAT(−1)
space, whereas any 5-systolic cubical complex is a CAT(−1) space. The
key step of our proof is to show that the link of any vertex of an 5-large
regular piecewise hyperbolic cubical complex is a flag piecewise spherical
simplicial cell complex with no empty 4-circuits.
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1 Introduction

Considering tessellations of the hyperbolic 3-space by cubes, we note that the link
of each vertex of such space is the boundary of an icosahedron. In this paper we
show that the inverse of sorts of this statement holds as well, moreover, in any finite
dimension. Namely, we prove that the piecewise hyperbolic metric for which the cells
are regular hyperbolic with edge lengths ε > 0, on any finite dimensional 5-systolic
cubical complex with finitely many shapes of cells is, for some ε, CAT(−1).

So in this paper we investigate connections between simplicial nonpositive curva-
ture conditions and metric nonpositive curvature conditions on piecewise hyperbolic
cubical complexes. The combinatorial curvature condition we consider is called local
5−largeness. It was introduced on simplicial complexes by T. Januszkiewicz and J.
Swiatkowski in [11] and independently by F. Haglund in [10]. It is defined in terms
of links in the complex by very simple combinatorial means. The metric curvature
condition we have in mind is given by the so called CAT(k) inequality, k ≤ 0 (see [1],
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[2], [4], [3]). The most important case is when k = 0; the case k < 0, however, is also
interesting. We focus in this paper on this second case.

Links between the two curvature conditions were studied before (see [11], [12]). It
turns out that in dimension two they are equivalent: a polyhedral space has curvature
≤ −1 (is nonpositively curved) if and only if every injective loop in the link of each
of its vertices has length strictly greater than 2π (greater than 2π) (see [2], chap-
ter II.5, page 216, page 207). Local 7-largeness (local 5-largeness, local 4-largeness,
local 3-largeness) therefore coincides with the CAT(−1) property of piecewise hyper-
bolic metrics for which the cells are regular hyperbolic on simplicial (cubical, pen-
tagonal, hexagonal) 2-complexes. Similarly, local 6-largeness (local 4-largeness, local
3-largeness) is equivalent to the CAT(0) property of standard piecewise Euclidean
metrics on simplicial (cubical, hexagonal) 2-complexes. 4−systolic cubical complexes
are, according to M. Gromov’s combinatorial description of nonpositively curved cubi-
cal complexes (see [8], Appendix I.6, page 516), CAT(0) spaces (see [13]). Moreover,
under a technical condition, both CAT(0) and systolic simplicial complexes of di-
mension 3 or less endowed with the standard piecewise Euclidean metric, simplicially
collapse to a point (see [6], [14]). Unfortunately, the equivalence no longer holds in
higher dimensions (see [11], chapter 14, page 51).

Still, one implication remains true on simplicial complexes of dimensions greater
than two. Namely, in [11] (chapter 14, page 52) it is shown that there exists a
constant k(n) ≥ 6 such that the piecewise hyperbolic (piecewise Euclidean) metric
on a k(n)-systolic, n-dimensional simplicial complex whose simplices represent only
finitely many isometry classes, is CAT(−1) (CAT(0)). It is also proven there that there
exists a constant k(n) ≥ 6 such that the piecewise spherical metric on a k(n)-large, n-
dimensional simplicial complex with finitely many shapes of simplices, is CAT(1). M.
Gromov’s combinatorial characterization of nonpositively curved piecewise Euclidean
cubical complexes given in [8] (Appendix I.6, page 516) guarantees that an implication
similar to the one proven in the paper holds on 4−systolic cubical complexes. Namely,
the standard piecewise Euclidean metric on any 4-systolic cubical complex is CAT(0)
(see [13]).

In [11] (chapter 2, page 14) it is proven that the 1-skeleton of any 7-systolic
simplicial complex with its standard hyperbolic metric is hyperbolic. More precisely,
geodesic triangles in the 1-skeleton of such complex, with vertices at vertices of the
complex, are 5

2 -slim. It is the paper’s object to show that for some ε > 0, 5-systolicity
on cubical complexes endowed with the piecewise hyperbolic metric for which the cells
have edge lengths ε, also ensures hyperbolicity. Our proof relies on a combinatorial
description of piecewise hyperbolic cubical complexes of curvature ≤ −1 given in [8]
(see Appendix I.6, page 520). The description is an immediate consequence of L.
Siebenmann’s flag-no-square condition given in [8] (see Appendix I.6, page 518).

The paper is divided as follows. In section 3 we prove certain well known results
in small cancelation theory on cubical complexes of arbitrary dimensions. Similar
results were obtained by T. Januszkiewicz and J. Swiatkowski on simplicial complexes
in [11]. In particular we show that any 5-systolic cubical complex is 5-large. This is a
combinatorial analogue of the fact that simply connected spaces of curvature ≤ −1,
are CAT(−1) spaces. In section 4 we show our main result.
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2 Preliminaries

We present in this section the notions we shall work with and the results we shall
refer to.

Let k be a real number. Let Mn
k denote a simply connected, complete, Riemannian

n−manifold of constant curvature k. So X2
0 is the Euclidean plane R2. If k < 0, M2

k

is the hyperbolic plane. If k > 0, M2
k is the 2-sphere with its metric re-scaled so that

its curvature is k (i.e., it is the sphere of radius 1√
k
).

Let (X, d) be a metric space. Given a path γ : [a, b] → X in X, its length is defined
by L(γ) = sup{∑n

i=1 d(γ(ti−1), γ(ti))}, where the supremum is taken over all possible
subdivisions of [a, b], a = t0 < t1 < ... < tn = b.

We call (X, d) a geodesic space if given two points p, q in X, there is a path from p
to q whose length equals d(p, q). Such a distance minimizing path is called a geodesic
segment and we denote it by [p, q].

Let (X, d) be a geodesic space. A geodesic triangle in X consists of three points
p, q, r ∈ X, called vertices, and a choice of three geodesic segments [p, q], [q, r], [r, p]
joining them, called sides. Such a geodesic triangle is denoted by 4 = 4(p, q, r). If
a point x ∈ X lies in the union of [p, q], [q, r] and [r, p], then we write x ∈ 4. A
triangle 4 = 4(p, q, r) in M2

k is called a comparison triangle for 4 = 4(p, q, r) if
d(p, q) = dM2

k
(p, q), d(q, r) = dM2

k
(q, r) and d(r, p) = dM2

k
(r, p). A point x ∈ [q, r] is

called a comparison point for x ∈ [q, r] if d(q, x) = dM2
k
(q, x).

A metric space X is a CAT(k) space if it is a geodesic space all of whose geodesic
triangles satisfy the so called CAT(k)-inequality. Namely, for any geodesic triangle
4(p, q, r) ⊂ X (with l(4) < 2π√

k
if k > 0), and any two points x, y ∈ 4, we have:

d(x, y) ≤ dM2
k
(x, y), where x, y are the corresponding points in the comparison triangle

4.
A metric space X has curvature ≤ k if the CAT(k)- inequality holds locally in X.

If X has curvature ≤ 0, we say it is nonpositively curved.
Let δ > 0. A geodesic triangle in a metric space is said to be δ−slim if each of

its sides is contained in the δ−neighborhood of the union of the other two sides. A
geodesic space is said to be δ−hyperbolic if each of its geodesic triangles is δ−slim. If
k < 0 then every CAT(k) space is δ−hyperbolic, where δ depends only on k (for the
proof see [2], chapter III.H.1, page 399).

A convex Mn
k polyhedral cell P is the convex hull of a finite subset in Mn

k . The
support of a point x ∈ P , denoted supp(x), is the unique face of P containing x in
its interior. Suppose Mn

k has tangent space V . Let TP denote the tangent space of
P , i.e., TP is the linear subspace of V consisting of all vectors of the form t(x − y),
where x, y ∈ P and t ∈ R. Given x ∈ P , define CxP , the inward-pointing tangent
cone at x, to be the set of all v ∈ TP such that x + tv ∈ P for all t ∈ [0, α) for some
α > 0. CxP is a linear polyhedral cone in TP . Suppose F is a proper face of P . If
x, y are both in int(F ), then CxP and CyP have the same image in TP/TF . This
common image is an essential polyhedral cone, denoted by Cone(F, P ). The link of F
in P , denoted Lk(F, P ), is the intersection of Cone(F, P ) with an affine hyperplane
in TP/TF which intersects every nonzero face of Cone(F, P ). Lk(F, P ) is a convex
polytope in this affine hyperplane of dimension dimP − dimF − 1.

The proof of the main result of the paper makes use of the following relation
proven in [8], Appendix A.6, page 419.
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Lemma 2.1. Suppose v is a vertex of a cell F in some convex cell complex X. Then
Lk(σF , Lk(v, X)) = Lk(F, X), where σF denotes the cell of Lk(v, X) corresponding
to F .

A cubical complex X is the quotient of a disjoint union of cubes L =
⋃

Λ Jλ by
an equivalence relation ∼. The restrictions pλ : Jλ → X of the natural projection
p : L → X = L|∼ are required to satisfy:

1. for every λ ∈ Λ, the map pλ is injective;

2. if pλ(Jλ)
⋂

pλ′(Jλ′) 6= f¡ , then there is an isometry hλ,λ′ from a face Tλ ⊂ Jλ

onto a face Tλ′ ⊂ Jλ′ such that pλ(x) = pλ′(x′) if and only if x′ = hλ,λ′(x).

We note that the definition of a cubical complex mimicks the one of a simplicial
complex. There are many interesting polyhedral complexes all of whose cells are
simplices (cubes) but which do not satisfy all conditions from the definition of a
simplicial (cubical) complex. We use the term simplicial cell complex (cubed complex)
to describe this larger class of complexes and introduce it below.

Let (Pλ : λ ∈ Λ) be a family of convex Mn
k -polyhedral cells and let L = ∪λ∈Λ(Pλ×

{λ}) denote their disjoint union. Let ∼ be an equivalence relation on L and let
X = L|∼. Let p : L → X be the natural projection and define pλ : Pλ → X by
pλ(x) := p(x, λ). X is called an n-dimensional Mn

k -polyhedral complex if:

1. for all λ ∈ Λ, the restriction of pλ to the interior of each face of Pλ is injective;

2. for all λ1, λ2 ∈ Λ and x1 ∈ Pλ1 , x2 ∈ Pλ2 , if pλ1(x1) = pλ2(x2) then there
is an isometry h : supp(x1) → supp(x2) such that pλ1(y) = pλ2(h(y)) for all
y ∈ supp(x1).

|X| denotes the underlying space of X, and X(k) denotes the k-skeleton of X.
A simplicial cell complex (cubed complex) is a Mn

k -polyhedral complex whose 2-
cells have three (four) 1-dimensional faces. What distinguishes simplicial (cubical)
complexes among simplicial cell complexes (cubed complexes) is that the intersection
of any two simplices (cells) in such complex is either the empty set or a single common
simplex (cell). In a simplicial cell complex (cubed complex) such intersection may be
a union of faces.

Suppose X is a Mn
k -polyhedral complex. A path γ : [a, b] → X is piecewise geodesic

if there is a subdivision a = t0 < t1 < ... < tn = b so that for 1 ≤ i ≤ n, γ([ti−1, ti]) is
contained in a single (closed) cell of X and so that the restriction of γ to [ti−1, ti] is
a geodesic segment in that cell. The length of the piecewise geodesic γ is defined by
L(γ) =

∑n
i=1 d(γ(ti−1), γ(ti)). X has a natural length metric d(x, y) := inf{L(γ)|γ is

a piecewise geodesic from x to y}. The length space X is called a piecewise constant
curvature polyhedron. As k equals +1, 0 or 1, we say that it is, respectively, piecewise
spherical, piecewise Euclidean, or piecewise hyperbolic.

A piecewise spherical simplex is all right if each of its edges has length π
2 . It has

size < π
2 if each of its edges has length < π

2 . A piecewise spherical simplicial cell
complex is all right (has simplices of size < π

2 ) if the corresponding property holds
for each of its simplices.

The link of any cell in a piecewise hyperbolic cubical complex is a piecewise spher-
ical simplicial cell complex with simplices of size < π

2 .



A connection between 5-systolicity and CAT(−1) metrics 51

Suppose X is a simplicial cell complex (cubed complex). A set V of vertices in X
spans a complete graph if any two distinct elements of V span an edge in X. We call
X a flag complex if any set of vertices which spans a complete graph actually spans
a simplex (cell).

Let σ be a cell of X. The (closed) star of σ in X, denoted St(σ,X), is the union
of all cells of X that contain σ. A cycle in X is a subcomplex γ of X isomorphic to a
triangulation of S(1). We denote by |γ| the number of 1-cells contained in γ and we
call |γ| the length of γ. A subcomplex L in X is called full (in X) if any cell of X
spanned by a set of vertices in L, is a cell of L. A full cycle in X is a cycle that is full
as subcomplex of X. We define the systole of X by

sys(X) = min{|γ| : γ is a full cycle in X}.
Let k ≥ 4 (k ≥ 3) be a natural number. We call X k-large if sys(X) ≥ k

(sys(X) ≥ 2k) and sys(Lk(σ,X)) ≥ k (sys(Lk(σ,X)) ≥ 2k) for each simplex (cell)
σ of X. We call X locally k-large if the star of every simplex (cell) of X is k-large.
We call X k-systolic if it is connected, simply connected and locally k-large. We
abbreviate 6-systolic to systolic.

Note that a (locally) k-large complex is (locally) m-large for k ≥ m. Note further
that a simplicial cell complex is flag if and only if it is 4-large whereas a cubed complex
is flag if and only if it is 3-large.

Remark 2.1. Every cycle of length less than k in a k-large simplicial cell complex
X has some two consecutive edges contained in a common 2-simplex of X (see [11],
chapter 1, page 10).

An empty 4−circuit in a simplicial cell complex X is a circuit of 4 edges such that
neither pair of opposite vertices is connected by an edge. In other words, the 4-circuit
is a full subgraph of X(1). If X is a flag complex, a 4-circuit is empty if and only if
it is not the boundary of two adjacent 2-simplices. We say X satisfies the no-square
condition if it has no empty 4-circuits.

The main result of the paper uses the following result proven in [8], chapter I.6,
page 518− 520.

Theorem 2.2. Suppose X is a locally finite cubical complex endowed with the hyper-
bolic metric obtained by declaring each cube to be isometric to a regular cube of edge
length ε > 0 in the hyperbolic space. Further suppose that there are only finitely many
isomorphism types of links of vertices in X. Then X has curvature ≤ 1 for some ε
if and only if the link of each of its vertices is a flag complex satisfying the no-square
condition.

We shall study a cubed complex X by associating to each cycle γ in X a diagram
in the Euclidean plane, called a van Kampen diagram, which contains all the essential
information about γ (see [15]).

A combinatorial map f : X1 → X2 between two cubed complexes X1 and X2 is a
homeomorphism which maps each open cell of X1 onto an open cell of X2. We call
a combinatorial map nondegenerate if it is injective on each cell of the cellulation. A
combinatorial 2-complex is a 2-dimensional cell complex whose 2-cells are attached
along continuous maps from S(1) to the 1-skeleton of the complex. A combinatorial
disk is a combinatorial 2-complex homeomorphic to a disk.
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Let γ = e0e1...en be a cycle in X. A van Kampen diagram for γ is a pair (D, φ).
D is a finite, simply connected combinatorial disk embedded in the Euclidean plane,
bounded by the cycle β = f0f1...fn. φ : D → K is a combinatorial map assigning
to each edge fi of β in D an edge φ(fi) = ei of γ in X such that φ(f−1

i ) = φ(fi)−1

for all 0 ≤ i ≤ n. A region is a 2-cell of D. The area of the diagram is given by the
number of regions of D.

Let v be a vertex of X. The degree of v, denoted by deg v, is the number of edges
having v as initial vertex.

An almost cubed 2-complex is a cubed complex whose cells are glued to lower
dimensional skeleta through nondegenerate maps, i.e. such that multiple edges and
loops are allowed in the 1-skeleton of the complex, and the interior of each boundary
edge of a 2-cell is glued through homeomorphisms to the 1-skeleton on the interior
of some 1-cell. A cell map from an almost cubed 2-complex to a cubed complex is
determined by its values at the vertices as an ordinary cell map, i.e. a loop is mapped
to a vertex.

3 The geometry of 5−systolic cubical complexes

In this section we proof certain well known results in small cancelation theory (see
[15], chapter V, page 237−242) on 5-systolic cubical complexes of higher dimensions.
The main purpose of the section is to show that any 5-systolic cubical complex is
5-large. Similar results were obtained by T. Januszkiewicz and J. Swiatkowski in [11]
(see chapter 1, page 10− 14) on systolic simplicial complexes. Our approach is based
on their considerations.

We start by proving a combinatorial Gauss-Bonnet theorem on cubical disks.

Lemma 3.1. Let D be a cubical disk. Then:

4 =
∑

v∈int(D)

(4− deg v) +
∑

v∈∂D

(3− deg v),

where we take the sums over the interior vertices of D and over the boundary vertices
of D, respectively.

Proof. We denote the set of interior vertices of D by int(D). As well, V , Vint, Vext,
E, Eext and F will accordingly represent the number of vertices, interior vertices,
exterior vertices, edges, exterior edges and 2-cells of D. It is known that the following
relations hold true, in any cubical disk:

1 = V − E + F, 2E − Eext = 4F, Vext = Eext,
∑

v

deg v = 2E.

Using these relations, we obtain:

6 = 6(V − E + F ) = 6V − 3
2 · 2E − 3

2Vext

= 6V − 3
2 (

∑
v∈int(D)

deg v +
∑

v∈∂D

deg v)− 3
2Vext

= 3
2 (4Vint −

∑
v∈int(D)

deg v) + 3
2 (3Vext −

∑
v∈∂D

deg v).
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Hence we infer 4 =
∑

v∈int(D)

(4− deg v) +
∑

v∈∂D

(3− deg v). ¤

The purpose of the following lemma is analogous to reducing van Kampen dia-
grams in small cancelation theory.

Lemma 3.2. Given k ≥ 3 natural, let X be a k-large cubed complex. Let S
(1)
2m denote

the triangulation of S(1) with 2m 1-cells. If m < k then any combinatorial map
f : S

(1)
2m → X extends to a combinatorial map from the disk D(2), triangulated so

that triangulation on the boundary is S
(1)
2m and so that there are no interior vertices

in D(2).

Proof. Note first that, because k ≥ 3, X is flag.
The proof is by induction on m. For m = 2, because X is flag, the result follows. For
m ≥ 3, take some non-consecutive vertices u, v of S

(1)
2m such that the vertices f(u) and

f(v) are joined by none or at least one edge of X. The case when f(u) and f(v) are
joined by at least two edges, is clear due to flagness of X. Consider further the other
two cases. Dividing S

(1)
2m into two edge-paths, say A and B, with endpoints u and v

and adding the edge [u, v] to A and B, respectively, we get new triangulations of S
(1)
2m

denoted by S
(1)
A and S

(1)
B . By the choice of u and v, restrictions of the map f to A

and B extend uniquely to the combinatorial maps fA : S
(1)
A → X and fB : S

(1)
B → X,

respectively. The choice of u and v further implies that neither S
(1)
A nor S

(1)
B consists

of more than 2m edges. Therefore, by the inductive assumption, there are two 2-
disks D

(2)
A and D

(2)
B with no interior vertices, and triangulated so that triangulation

on the boundary is S
(1)
A and S

(1)
B , respectively, and there are combinatorial maps

FA : D
(2)
A → X and FB : D

(2)
B → X extending the maps fA and fB , respectively. We

glue D
(2)
A to D

(2)
B along the edge [u, v] and we take as F the union of the maps FA

and FB . Because u and v are joined by a unique edge, and D
(2)
A and D

(2)
B have no

interior vertices, so does their union. So the map F is the extension of f from the
disk D(2) to X as required. ¤

The following theorems represent higher dimensional versions of certain well known
results in small cancellation theory. They will be useful when showing the main result
of the section.

Theorem 3.3. Let X be a simply connected cubical complex and let γ be a cycle in
X. Then there exists a nondegenerate van Kampen diagram (D, φ) for γ (i.e. φ is a
nondegenerate combinatorial map) such that φ is an isomorphism from the boundary
of D to γ.

Proof. Let (D0, φ0) be a van Kampen diagram for γ. We will modify this diagram
such that it becomes nondegenerate. We do this by constructing another van Kampen
diagram (D′

0, φ
′
0) for γ such that D′

0 is an almost cubical disk. Let e be an edge in
D0 which is mapped by φ0 to a vertex. Then there are two 2-cells in D0 adjacent
to e. We delete the interior of the union of these two 2-cells from D0 such that the
two distinct vertices of e are identified. We obtain an almost cubical 2-complex D′

and a combinatorial map φ′ : D′ → X induced from φ0. We repeat the modification
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procedure with the new cellulation. Now, due to the fact that the cellulation is almost
cubical, we must consider two more cases.

The first case is that e is a loop. It then bounds a sub-disk 4 of D′. There exists
a 2-cell C outside 4 which is adjacent to e. If all edges of C are loops, then we have
a nested family of disks bounded by them; take the outermost loop e∗ and repeat the
argument with e∗ in place of e. We eventually arrive at the situation where the three
remaining edges of C are embedded. We delete further in D′ the interior of the union
of some other 2-cells with at least one 1-dimensional face mapped by φ′ to a vertex
and get a new almost cubical disk D′′ with the combinatorial map φ′′ : D′′ → X
induced from φ′.

The second case is that e is adjacent on both sides to the same 2-cell C of D′.
Then e is not a loop, and plays the role of two out of the four boundary edges of C.
The remaining two edges of C are necessarily loops; thus we are in the situation as
in the previous case, and we perform, for each one of the two loops, the modifications
as above.

Since a modification reduces the number of 2-cells in D′, we eventually obtain
a van Kampen diagram (D′

0, φ
′
0) for γ such that D′

0 is almost cubical, and φ′0 is a
nondegenerate map on the 1-skeleton of D′

0, and therefore nondegenerate.
The next step is to further modify the van Kampen diagram so that it remains

nondegenerate but it is no longer almost cubical, i.e. such that the 1-skeleton of D′
0

does not contain loops or multiple edges (edges sharing both endpoints). Because φ′0
is nondegenerate, D′

0 does not have loop edges. So it is sufficient to eliminate multiple
edges, while keeping induced maps to X nondegenerate.

Let e1, e2 be edges of D′
0 with common endpoints. Their union bounds a subdisk

4 of D′
0. Remove the interior of4 from D′

0 by gluing the resulting two free edges with
each other, getting a new disk D1 with a new nondegenerate combinatorial map φ1

to X induced from the previous one. The procedure terminates because the number
of 2-cells in D′

0 decreases. The applied algorithm does not change the map φ1 on the
boundary. (D1, φ1) is therefore a nondegenerate van Kampen diagram for γ. ¤

Theorem 3.4. Given k ≥ 3, let X be a k-systolic cubical complex and let γ be a cycle
in X. Let (D, φ) be a nondegenerate van Kampen diagram for γ. If D has minimal
area, then D is k-systolic. If moreover γ is full, then D has at least one interior
vertex and any second boundary vertex of D is contained in at least two 2-cells of D.

Proof. Let (D1, φ1) be a nondegenerate van Kampen diagram for γ. Let v be an
interior vertex of D1 with degree less than k. We construct another van Kampen
diagram (D′

1, φ
′
1) for γ such that D′

1 has one interior vertex less than D1. Namely,
we delete the interior of the subdisk St(v,D1), replace it by some cellulation given
by Lemma 3.2, and define φ′1 so that it coincides with φ1 on D1 \ [St(v,D1)]. The
resulting van Kampen diagram is not necessarily nondegenerate and it has fewer cells.
We apply to it procedure used in the proof of the previous theorem and we produce
a nondegenerate van Kampen diagram with fewer cells. Because D′

1 is finite, the
procedure terminates after finitely many steps yielding a cubical disk D2 of minimal
area and a combinatorial map φ2 : D2 → X which coincides with φ′1 on the boundary
of D2. The pair (D2, φ2) is therefore another van Kampen diagram for γ which is
nondegenerate, of minimal area, and with no interior vertices of degree less than k.
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Suppose that every exterior vertex of D2 has degree exactly 2. Every exterior
vertex of D2 is then contained in a single 2-cell of D2. Suppose further that D2 has
no interior vertices. In both cases the boundary ∂D2 is not full in D2 implying that
γ is not a full cycle in X which is a contradiction. So every second exterior vertex
of D has degree at least 3, and D has at least one interior vertex. Note that every
exterior vertex of D lying between two exterior vertices with degree at least 3, has
degree exactly 2. ¤

We give further the main result of the section.

Theorem 3.5. For k ≥ 4 natural, any k-systolic cubical complex X is k-large.

Proof. We need to show that sys(X) ≥ 2k. Let γ be a full cycle in X. Because X
is simply connected, there exists a van Kampen diagram (D, φ) for γ. Using relative
Simplicial Approximation Theorem for cell complexes (see [5], chapter II.4, page 146),
we can arrange that D is a cubical disk and φ is a combinatorial map (which is a
cell homeomorphism on the boundary). We choose the disk D to be of minimal area.
Theorem 3.4 guarantees that the degree of every interior vertex of D is at least k,
and the degree of every second exterior vertex of D is at least 3. Note that there
exists, between any two exterior vertices of D with degree is at least 3, an exterior
vertex with degree exactly 2. D being cubical, the number of exterior vertices of D
with degree exactly 2 equals the number of exterior vertices of D with degree at least
3 and it is equal to ](∂D)

2 . Lemma 3.1 implies that

4 =
∑

v∈int(D)

(4− deg v) +
∑

v∈∂D

(3− deg v).

The first sum of the above equation is at most 4− k, while the second sum is at most
](∂D)

2 . So ](∂D)
2 ≥ k and therefore |γ| = ](∂D) ≥ 2k. Thus sys(X) ≥ 2k. ¤

4 The main result

In this section we show that the piecewise hyperbolic structure on a 5-systolic cubical
complex in which each cube is a regular hyperbolic cube of edge length ε > 0, and
with only finitely many shapes of cells is, for some ε, CAT(−1).

We start by giving a combinatorial characterization of the link of a vertex in a
5-large cubical complex.

Lemma 4.1. Let X be a p−dimensional 5-large cubical complex. Then the link of
any vertex of X is a 5-large simplicial cell complex.

Proof. Let v be a vertex of X. We note that Lk(v,X) is a piecewise spherical simplicial
cell complex of size < π

2 and of dimension p− 1. Because X is 5-large, we have

(4.1) sys(Lk(v,X)) ≥ 5.

We note further that for any cell α(j+1) ∈ X such that v is one of its vertices, there
exists a simplex σ

(j)
α ∈ Lk(v, X), j ∈ {0, ..., p− 1}. Lemma 2.1 guarantees that

Lk(σα, Lk(v,X)) = Lk(α, X).
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X being 5−large, we have sys(Lk(α, X)) ≥ 5. Thus it follows that

(4.2) sys(Lk(σα,Lk(v, X))) ≥ 5,

for any simplex σ
(j)
α ∈ Lk(v, X), j ∈ {0, ..., p−1}. In conclusion, the relations 4.1 and

4.2 ensure that Lk(v, X) is 5-large. ¤

The link L of a vertex of a cubical complex of edge lengths ε > 0 in hyperbolic
space is a regular piecewise spherical simplex cell complex whose edges have length
< π

2 . As ε increases from 0, each simplex in L is a deformation of the all right regular
piecewise spherical simplex. So, the piecewise spherical structure on L deforms from
its usual all right structure. For small ε, this deformation remains CAT(1) if and only
if in the all right structure on L, for each simplex σ ∈ L, the infimum of the lengths
of all closed geodesics in Lk(σ,L) is strictly greater than 2π, condition called extra
largeness. Any all right, piecewise spherical flag simplicial complex is, according to
L. Siebenmann, extra large if and only if it satisfies the no-square condition (see [8],
Appendix I.6, page 518). So extra largeness holds for L if and only if it satisfies the
flag-no-square condition. A polyhedral complex with finitely many shapes of cells,
has curvature ≤ −1 if and only if the link of each of its vertices is a CAT(1) space
(see [8], Appendix I.3, page 509). Thus, the piecewise hyperbolic cubical structure
on a complex of edge lengths ε has curvature ≤ −1, for some ε, if and only if the link
of each of its vertices satisfies the flag-no-square condition.

Theorem 4.2. Let X be a finite dimensional locally 5-large cubical complex endowed
with the piecewise hyperbolic metric obtained by declaring each cube to be isometric
to a regular hyperbolic cube of edge length ε > 0, and whose simplices represent only
finitely many isometry classes. Then the star of any cell of X has, for some ε,
curvature ≤ −1.

Proof. Let τ be any cell of X. We denote the star of τ in X, St(τ, X), by S. We note
that S is a 5-large cubical complex. Let v be any vertex in S and let L denote the
link of v in S. According to Lemma 4.1, L is a 5-large piecewise spherical simplicial
cell complex of size < π

2 . So L is 4-large and therefore flag. L being 5-large, any cycle
in L of length less than 5 has, according to Remark 2.1, some two consecutive edges
contained in a common 2-simplex of L. Because in a flag complex such cycle is not an
empty 4-circuit, and because sysL ≥ 5, L contains no empty 4-circuits. So the link of
any vertex of S is a flag simplicial cell complex with no empty 4-circuits. According
to Theorem 2.2, this guarantees that, for some ε > 0, S has curvature ≤ −1. ¤

Because an 5-systolic cubical complex is, according to Theorem 3.5, 5-large, the
above theorem implies that such complex has curvature ≤ −1. Because a simply
connected, locally CAT(−1) space, is a CAT(−1) space, the main result of the paper
follows.

Corollary 4.3. The piecewise hyperbolic metric obtained by declaring each cube to be
isometric to a regular hyperbolic cube of edge length ε > 0 on any finite dimensional 5-
systolic cubical complex whose simplices represent only finitely many isometry classes,
is, for some ε, a CAT(−1) metric.
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”Politehnica” University of Timişoara, Department of Mathematics,
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