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Abstract. The aim of the paper is to prove that every smooth general-
ized vector subbundle D of a vector bundle E is the image of a smooth
endomorphism Φ on the fibers of E that induces authomorphisms of fibers
of D and is called here a natural anchor. Two new constructions of finite
sets of smooth generators of the fibers of D are obtained, using any fi-
nite set of generators of the module Γ(E). Natural anchors on generalized
subbundles and almost regular Dirac subbundle of the Pontryagin vector
bundle P (E) are constructed.
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1 Introduction

A generalized vector subbundle D, according to [2], or a singular subbundle in [9]
of a vector bundle π : E → M is a collection of vector subspaces Dx of fibers Ex

in all the points x of the base M . Then D is a smooth one if every vector in its
fiber is a restriction of a smooth local section that is a section of the generalized
vector subbundle as well. Basic aspects of smooth generalized vector subbundles,
or smooth singular subbundles, are discussed in [1, 2, 3, 9]. According to [2], a
cosmooth vector subbundle D of a vector bundle E is a generalized vector subbundle
of E such that its annihilator D⊥ ⊂ E∗ is smooth. But other generalized vector
subbundles can be associated with a given D. For example, we prove that if D is
smooth, then the set EndD(E), of endomorphisms of the fibers of E that have their
image in the fibers of D, is a smooth generalized vector subbundle of End(E), the
vector bundle of endomorphisms on the fibers of E (Proposition 3.5). In Theorem
4.1, the main result of the paper, we prove in fact that this smooth subbbundle has
a global smooth section, called a natural anchor, having its image onto the fibers
of D. Considering smooth morphisms of smooth vector subbundles as restrictions
of morphisms of vector bundles, we prove that the natural anchors we construct are
restricting to automorphisms of D. Moreover, if D′′ ⊂ D′ ⊂ E are smooth (we say
that D′′ is a smooth subbundle of D′), then the natural anchors Φ′ and Φ′′ constructed
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on D′ and D′′ respectively have the property that Φ′′ ◦ Φ′ restricts on D′ to an onto
map on the fibers of D′′ (Proposition 4.6).

These facts can be extended to constructions in tensor vector bundles or in the
duality smooth-cosmooth, but these facts are beyond the scope of this work, where
we focus mainly on some geometric properties derived from orthogonal projections on
the fibres of smooth generalized vector subbundles.

There are some important differences between the regular vector subbundles and
their generalized smooth counterparts. One of the major differences is the smooth-
ness of orthogonality. The basic constructions in the paper use a scalar product g
on the fibres of E. The g-orthogonality related to a generalized vector subbundle is
somewhat different from the classical notion of orthogonality. For example, the or-
thogonal D⊥g ⊂ E of the smooth D ⊂ E is isomorphic with D⊥ and consequently it
is a cosmooth generalized vector subbundle. Instead of this, we consider the smooth
orthogonal D`g as the smooth one generated by D⊥g and the smooth orthogonal com-
pletion D|=g = D+D`g ; some of properties of D`g and D|=g are stated in Propositions
2.1 and 4.7. For example, the subset of M of maximal dimension for D|=g is a dense
open subset of the base M , where the fibers of D|=g and E are the same. Since in the
case when D is singular, the smooth orthogonal can not be equal with the cosmooth
orthogonal, then D|=g can not be E. A special natural sum anchor is considered
on D|=g in Proposition 4.7. In the case of a regular vector subbundle D ⊂ E, the
constructions fit in the well-known case: D`g = D⊥g and D|=g = E. (See 4. of Propo-
sition 2.1.) These results give Propositions 4.8 and 4.9, where the Pontryagin bundle
P (E) = E⊕E∗ of the vector bundle E is used as support for Dirac type subbundles.
Related to almost regular Dirac structures of the Pontryagin vector bundle P (E) of
a vector bundles there is proved that there are two natural transverse anchors that
give an adapted anchor for D (Proposition 4.8) and that a Dirac vector subbundle
can be induced on a dense open subset of the base (Proposition 4.9). We notice that
the basic orthogonal used in this paper comes from a Riemannian metric on the fibers
of E; it is different from the orthogonal considered in [4], according to the canonical
pseudo-Riemannian metric of signature (k, k) in the fibers of the Pontryagin bundle,
where k is the dimension of the fibers of E.

Some basic tools used in the paper are classical results of Whitney and properties
of extension of smooth sections on closed subsets (see [6, 7, 10]), but in a slight
different form. A first fact is the existence of a test function ϕM0 for any closed
subset M0 ⊂ M , i.e. a positive smooth real function on M , bounded by [0, 1] and
having the set of zeros exactly M0, where all its differentials also vanish (Proposition
3.3). An other basic ingredient used in the paper, in the spirit of [5, 6], is a smooth
section sM0 defined on a closed subsets M0 of the base M of E (the section is smooth
if it is locally the restriction of a local smooth section of the vector bundle E on an
open subset of M) and the property of sM0 to extend to a smooth section on the
whole M (Proposition 3.4).

In the points of Σmin, i.e. of minimal dimension for D, the orthogonal projection
on the fibres of D is smooth, extending to a global endomorphism (Proposition 3.6).
We prove also that for any constant dimension level Σr ⊂ M of D, the orthogonal pro-
jection on the fibres of D is smooth, modulo a test function, extending also to a global
endomorphism (Proposition 3.6). The sum of all the endomorphisms corresponding to
all the constant dimension level of D give the natural anchor Φ of Theorem 4.1. The
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surjection of Φ on D, as well as of the restriction Φ′′ ◦Φ′ : D′ → D′′, for D′′ ⊂ D′ ⊂ E,
given by Proposition 4.6, follow using some technical Lemmas 4.2 and 4.3.

Using the above construction, a corresponding finite set of smooth generators of
the fibres of D can be considered, starting from a given finite set of generators of Γ(E)
(Proposition 3.9 and Corollary 4.5). This result is not new, proved in [2, Theorem
4.1] and in [9, Theorem 1.]. But our proof uses different arguments, relating a finite
set of global generators of Γ(E) with a set of global generators on the fibres of D,
using orthogonal projections (in Proposition 3.9) or sums of orthogonal projections
(in Corollary 4.5), both modulo multiplications with test functions. The number of
generators we obtain in Corollary 4.5 is equal to the number of the smooth global
generators of Γ(E), as in [9, Theorem 1.]. In [2], this number is multiplied by the
maximal rank of the fibers of D. Notice that in [2] it is pointed out that in general,
when D is not a regular vector subbundle, there is not a finite set of generators for
Γ(D).

The content of the paper is as follows. In section 2 we give some preliminaries,
consisting of basic definitions and notations, as well as a short view of orthogonality
concerning generalized vector subbundles. In section 3 we prove the existence of
test functions and we use them to construct certain global smooth prolongations
and smooth projections. Using these constructions, the main Theorem 4.1 and some
related properties are proved in the last section.

2 Generalities

A vector bundle is denoted by π : E → M , or E for short, when no confusion is
possible.

A generalized vector subbundle (a g.v.s. for short), according to [2] (or a singular
vector subbundle in [9]) of the vector bundle E is a subset D ⊂ E such that there is an
assignment of a vector subspace Dx = D ∩ Ex ⊂ Ex = π−1(x) ⊂ E to every x ∈ M .

A vector Xx ∈ Dx is allowed if there is a smooth section Y of D|Ux
on an open

neighborhood Ux of x, such that Yx = Xx. Denote by A(D)x ⊂ Dx the set of allowed
vectors in x. The null vector 0̄x ∈ Ex is obviously allowed since 0̄x ∈ A(D)x, thus
A(D)x is non-void. It is easy to see that A(D) = ∪

x∈M
A(D)x is a generalized vector

subbundle. A g.v.s. D is smooth if A(D) = D. In general, for an arbitrary D, A(D)
is smooth, according to its construction.

Let us observe that if D1 and D2 are smooth g.v.s.’s of E, then D1 + D2 ⊂ E is
also a smooth g.v.s.

Let E and E′ be two vector bundles over the same base M . If D ⊂ E and D′ ⊂ E′

are g.v.s.’s, a morphism of g.v.s. is f : D → D′ covered by a collection of linear maps
fx : Dx → D′x, (∀)x ∈ M , such that there is a linear morphism of vector bundles
F : E → E′ that restricts to f in every fiber. An isomorphism is obviously given by
the existence of a couple of inverse morphisms f : D → D′ and f−1 : D′ → D that
are mutually inverse. Notice that in this case the extending linear morphisms F of f
and F ′ of f−1 may be not necessary isomorphisms, but an isomorphism of E and E′

induces an isomorphism of g.v.s.
Let D ⊂ E be a g.v.s. of E. Consider a Riemannian metric g on the fibers of E and

let D⊥g ⊂ E be the orthogonal g.v.s., i.e. D⊥g
x = (Dx)⊥g , (∀)x ∈ M . Then (∀)x ∈ M ,
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the vector space D⊥g
x is canonically isomorphic with the annihilator D⊥x = {ωx ∈ E∗

x,
ωx(Xx) = 0, (∀)Xx ∈ Dx}, via the musical isomorphism ·# : E → E∗ given by the
metric g.

Let us observe that two orthogonal g.v.s., corresponding to two different Rieman-
nian metrics, are both isomorphic to the annihilator, thus they are isomorphic.

A morphism f : D → D′ of g.v.s., induced by F : E → E′, restricts to a morphism
fA : A(D) → A(D′), induced by the same F .

Also, if D and D′ are isomorphic, then A(D) and A(D′) are isomorphic via the
same linear morphisms.

If D ⊂ E is a smooth g.v.s. and g is a Riemannian metric on the fibers of E, then
we say that

– D⊥g is a cosmooth orthogonal of D,
– D`g= A(D⊥g (D)) ⊂ E is a smooth orthogonal of D and
– D|=g = D +D`g is a smooth orthogonal completion of D.

Proposition 2.1. For a smooth D, the following properties hold:

1. – the smooth orthogonal of D|=g is null (i.e. (D|=g )`g = 0̄) and consequently

2. – the smooth orthogonal completion of D|=g is D|=g itself (i.e. (D|=g )|=g = D|=g);

3. – the smooth orthogonal completion D|=g = D + D`g has the property that its
maximal dimension of the fibers is m = dim M and is taken on an open dense
subset of M ;

4. – in the case when D has a regular dimension r, then D⊥g = D`g and D|=g = E.

Notice that a simple consequence of 3. of Proposition 2.1 above is that given
the smooth generalized vector subbundles {Di}i=1,n of some vector bundles over M ,

then the intersection Σ =
n⋂

i=1

Σi
max of maximal dimensions

{
Σi

max

}
of orthogonal

completions
{
D|=g

i

}
is an open dense subset of M .

For a generalized vector subbundle D, we denote by r(x) = dimDx, for x ∈ M ,
R = {r(x) : x ∈ M}. If S ⊂ M , then DS = ∪

x∈S
Dx is the restriction of D to S.

Consider

(2.1) R = {r(x) : x ∈ M} = {ri}i=0,k,

where

(2.2) rmin = r0 < r1 < · · · < rk = rmax.

For ri ∈ R, we denote by

(2.3) Σri = {x ∈ M : dimDx = ri},

and also Σ<ri = {x ∈ M : dimDx < ri}, Σ≤ri = {x ∈ M : dimDx ≤ ri} = Σri∪Σ<ri ,
Σ>ri = {x ∈ M : dimDx > ri}, Σ≥ri = {x ∈ M : dimDx ≥ ri} = Σri ∪Σ>ri . We say
that the subset Σrmin is the minimal set and Σrmax is the maximal set. The subsets
Σ<ri and Σ≤ri are closed and their complements, the sets Σ≥ri and Σ>ri are open in
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M . The subset Σri ⊂ Σ≥ri is the minimal subset of D|Σ≥ri
and Σ>ri is void if i = k

and is equal to Σ≥ri+1 if 0 ≤ i < k.
Let us denote by ΣDi the set Σi of D, and RD = {rD(x) : x ∈ M} = {ri}i=0,k,

where k = maxRD. The set ΣDk ⊂ M is open; if it is also a dense set in M , then the
set ΣD

`g

m−k contains the set ΣDk , thus it is also a dense set in M , thus m − rk is the
maximal dimension of the g.v.s. D`g . For example, it is the case when D is tangent
to the leaves of a singular Riemannian foliation.

3 Sections and test functions

We say that a real function ϕ ∈ F(M) is a test function for a closed set M0 ⊂ M
if ϕ(x) = 0 iff x ∈ M0, its values are in [0, 1] and all its differentials vanish in every
x ∈ M0. The proof of the next simple result follows by induction on the order of the
partial derivatives in a coordinate chart.

Lemma 3.1. Let ψ0 : IR → [0, 1] be smooth such that ψ0(t) = 0 iff t = 0 and all the
derivatives of ψ0 vanish in t = 0. Then for every function f : M → IR the function
F = ψ0 ◦ f has the same zeros as f and all the differentials of F vanish in its zeros.

Let π : E → M be a vector bundle that is a vector subbundle of a trivial vector
bundle M × IRm → M . A section s ∈ Γ(E) can be considered as a smooth function
s : M → IRm and it is bounded if its values are bounded according to the canonical
Euclidean norm |·| of IRm. If ϕ is a test function for a closed subset M0 ⊂ M and
v′ is a bounded section (as above) from Γ(E|M\M0), then defining v = ϕv′ on M1

and v = 0 on M0, then v is smooth on M . For this, one can use a simple result that
asserts that bounded· (smooth zero) = smooth zero. More precisely we have:

Lemma 3.2. 1. Let U ⊂ IRn be open, x0 ∈ U and ϕ,ψ : U → IR, such that ϕ
vanishes together with all its partial derivatives in x0 and ψ is bounded on U . Then
the function ϕ0 = ϕ ·ψ vanishes as well together with all its partial derivatives in x0.

2. Let us suppose that a real function ϕ is smooth on U and all its partial deriva-
tives vanish on the set U0 of the zeros of ϕ. Consider also a real and bounded function
ψ on U that is smooth on U\U0. Then the function ϕ · ψ is smooth on U .

Given a closed subset M0 ⊂ M , it is a classical result, due to Whitney that there is
a smooth real function having M0 the set of zeros (the proof combines the embedding
theorem with his extension theorems in [10]). An other proof can be found for example
in [7, Proposition IV.1.1], and we can give a slight different one, but using a similar
way, inspired by [2, Section 4].

We say that two test function ϕ and ϕ′ are equivalent if there is a real function
ψ on M that is null in no point, such that ϕ′ = ψϕ. It is easy to see that the zero
set of ϕ and ϕ′ is the same close subset of M . The existence of test functions is an
important tool used in the sequel.

Proposition 3.3. Let M be a differentiable manifold and M0 ⊂ M be a closed subset.
Then there is a test function for M0.

Notice that the construction performed in the proof above is too theoretical to be
effectively used. More simple constructions, applicable in some particular cases, can
be considered. For example, the following construction.
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Let us consider the open set M1 = M |M0. There is an open cover U1 of M1 that
consists of the open sets U ⊂ M1 such that there is a local chart (V, θ), Ū ⊂ V ⊂ M1,
θ(U) = B(0̄, 1) ⊂ IRn. For such an U , consider a bump function fU ∈ F(M) such that
0 < fU (x) ≤ 1, (∀)x ∈ U and fU (x) = 0, (∀)x ∈ M\U . Since M1 is paracompact, one
can find an at most countable open refinement {Wn}n≥1 of U , that is locally finite.
Considering Wn ⊂ Un and fn = FUn , (∀)x ∈ IN , we define ψ(x) as the sum of all
fn(x), such that x ∈ Wn; the sum is finite, since the open cover {Wn}n=1,... is locally
finite. From its construction, the function ψ is locally differentiable on M\M0 and
null outside the complement of the closure of M\M0. Thus ψ is differentiable iff it
is differentiable on ∂(M\M0) = ∂M0. It is the case, for example, when every point
x0 ∈ ∂M0 belongs to a finite number of sets from {∂Ūn}n≥1. Also using Lemma 3.1,
we obtain a test function for M0.

Let E be a vector bundle over the base M , M0 ⊂ M be a closed subset and π : E →
M be the canonical projection. Let us denote by EM0 = Ex

x∈M0

and πM0 : EM0 → M0

the restriction of π to M0. Notice that, in general, M0 and EM0 need not to be
manifolds. A section s0 of EM0 is usually defined as a map M0 3 x

s0→ s0(x) ∈ Ex;
it is smooth if every point x ∈ M0 has an open neighborhood U0 ⊂ M and there is
smooth section S0 : U0 → EU0 such that S0|M0 = s0, i.e. the restriction of S0 to
U0 ∩M0 is s0 (se [6] for more details).

Proposition 3.4. Let M0 ⊂ M be a closed subset and s0 : M0 → EM0 be a smooth
section. Then there is a smooth section S0 : M → E that extends s0.

Let D ⊂ E be a smooth generalized subbundle. The subset Σmin ⊂ M of minimal
dimension of the fibers of D is closed, since its complement is open. If E → M is a
vector bundle, denote by End(E) → M the vector bundle of linear endomorphisms
on the fibers of E.

Let us consider the generalized vector subbundle EndD(E) ⊂ End(E) of endo-
morphisms that send in every point the fibers of E in the fibers of D. We investigate
in that follows the existence of some smooth sections of this generalized vector sub-
bundle. Notice that if g is a Riemannian metric in the fibers of E, then the orthogonal
projection on the fibers of D is, in general, non-smooth in ordinary sense. For ex-
ample, the orthogonal projection of IR4 = TIR2 on the smooth subbundle D ⊂ TIR2

generated by the vector field C = y
∂

∂x
− x

∂

∂y
is not smooth in origin.

Proposition 3.5. Let us assume that D ⊂ E is smooth. Then:
a)The level sets (2.3) of EndD(E) are the same as that of D, only dimensions

(2.2) are the dimensions of D multiplied by the dimensions of the fibers of E.
b) The generalized vector subbundle EndD(E) ⊂ End(E) is smooth.

We consider now orthogonal projections.

Proposition 3.6. Let g be a scalar product on the fibers of E .

1. The orthogonal projection on the fibres of minimal dimension is a smooth section
P0 : Σmin → (End(E))Σmin .

2. Let s ∈ Γ(E) be a section on E and consider the section s0 : Σmin → EΣmin ,
s0,x = P0,x(sx), (i.e. s0,x is the orthogonal projection on sx on Dx), (∀)x ∈
Σmin. Then s0 is smooth.
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In the next Proposition we extend explicitly orthogonal projections from EΣmin

on DΣmin .

Proposition 3.7. Let g be a scalar product on the fibers of E, D ⊂ E be a smooth
generalized subbundle and . Then the following assertions hold true.

1. There is an endomorphism Π0 on the fibers of E such that

(a) Π0 restricts on Σmin to the orthogonal projection P0 of the fibers of EΣmin

on the fibers of DΣmin ;

(b) in the points of x ∈ M\Σmin where Π0,x is non null, Π0,x is a linear positive
combination of orthogonal projections on subspaces of Dx of dimension
rmin.

2. If {si}i=1,k ⊂ Γ(E) is a global system of a module generators, then the set of
sections {s′i = Π0(si)}i=1,k ⊂ Γ(E) has the property that the set {s′i,x}i=1,k span
Dx, (∀)x ∈ Σmin.

We say that:

{ui}i=0,k is a set of test functions for D if u0 = 1 and ui is a test function for the
closed subset Σ≤ri−1 ⊂ M , (∀)i = 0, k;

two sets of test functions {ui}i=0,k and {vi}i=0,k for D are equivalent (or {ui}i=0,k

˜ {vi}i=0,k for brief) if the test functions ui and vi are equivalent, for every
i = 1, k.

According to Proposition 3.5, a set of test function is good for D iff it is good for
EndD(E).

We say that a section S ∈ Γ(E) is bounded if there is an embedding E
I→ Θm(M) =

M × IRm and a K > 0 such that
m∑

i=1

∣∣∣(I ◦ S)i (x)
∣∣∣
2

≤ K. For example, on the vector

bundle Θm(M), the canonical sections {ēi}i=1,m are bounded. The property of a
section to be bounded does not depend on the embedding of E, but on the image
S(M) ⊂ E that must be relative compact. This follows using the Borel-Lebesgue
criteria: a relative compact subset of IRm is just a bounded subset. This boundedness
property of a set of generators of Γ(E) is not restrictive, since any set of generators
{Sα}α=1,s, Si : M → E can be replaced with a new set of bounded generators

{ϕSα}α=1,s. Indeed, consider an embedding E
I→ Θm(M) = M × IRm and take

(3.1) ϕ = 1/

(
1 +

m∑

i=1

s∑
α=1

∣∣∣(I ◦ Sα)i (x)
∣∣∣
2
)

.

We prove now that any bounded section on E can be orthogonally projected on
the fibers of D, modulo a test function, to a smooth section of a constant level set Σr.

Proposition 3.8. Let g be a scalar product on the fibers of E, D ⊂ E be a smooth
generalized subbundle of E and {ui}i=0,k be a set of test functions for D. Then the
following assertions hold true.
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1. There are {ui}i=0,k ˜ {vi}i=0,k such that for every i = 0, k there is an endo-
morphism Πi on the fibers of E such that

(a) Πi restricts on Σri
to vi|Σri

· Pi, where Pi is the orthogonal projection of
the fibers of EΣri

on the fibers of DΣri
and

(b) in the points of x ∈ M\Σri
where Πi,x is non null, Πi,x is a linear positive

combination of orthogonal projections on subspaces of Dx of dimension ri.

2. If S ∈ Γ(E), then there are {ui}i=0,k ˜ {vi}i=0,k and smooth sections {S̃i =
Πi(S)}i=0,s ∈ Γ(D) that have the property that Ŝi,x = vi(x)prx(Sx), x ∈ Σri

,
where prx : Ex → Dx is the orthogonal projection according to g, (∀) i = 0, k .

In this stage we can use 2. of Proposition 3.8 to obtain a first finite set of generators
for fibers of D.

Proposition 3.9. Let g be a scalar product on the fibers of E, {sα}α=1,s ⊂ Γ(E) be a
global system of generators, D ⊂ E be a smooth generalized subbundle and {ui}i=0,k be
a set of test functions for D. Then there is a set of global generators {Sα,i}α=1,s,i=0,k

of the fibers of D and a set {vi}i=0,s of test functions for D, equivalent with {ui}i=0,k,
such that if x ∈ Σri , then Sα,i,x = vi(x)prx(sα,x), where prx : Ex → Dx is the
orthogonal projection according to g, (∀) α = 1, s, i = 0, k.

In fact, Proposition 3.9 above or Corollary 4.5 in the next section contain each
new proofs of the following result.

Theorem 3.10. [2, Theorem 4.1], [9, Theorem 1] If E is a vector bundle over a
connect manifold M and D is a smooth generalized subbundle of E, then D is globally
finitely generated.

Example. Let us consider D = D(Γ0) on IR given by Γ0 ⊂ X (IR) generated by
X0 = ϕ0

d
dt , where

(3.2) ϕ0(t) =
{

e−
1
t if t > 0

0 if t ≤ 0
,

Then Σ1 = (0,+∞) and Σ0 = (−∞, 0]. A test function for Σ0 is u0 = ϕ0 and
a generator for DΣ1 is the bounded section s0 = d

dt . The section s = ϕ0s0 is a
generator for D. See [8] for more examples.

Notice that the result in Proposition 3.9 gives s · (k +1) generators, where s is the
number of generators of sections of E and k+1 is the number of constant level sets of
D). In Corollary 4.5 of next section we use a natural anchor to construct s generators,
the same number as in [9, Introduction]. The number of generators constructed in
[2, Section 4] is s ·maxdim(D). An upper estimate on s is (1 + dim M) · rank E for
a general E; in the case E = TM , the Whitney embedding theorem gives an upper
estimate for s as 2 dim M (see [2] and [9] for more details).

4 Natural anchors

We say that a smooth endomorphism in the fibers of E (i.e. Φ ∈ End(E)) having its
images the fibers of D is a natural anchor for D. The following Theorem contains the
main result of the paper.
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Theorem 4.1. If M is a connect manifold, E is a vector bundle over M and D is a
smooth generalized subbundle of E, then there is a smooth natural anchor for D.

Lemma 4.2. Let W1, . . . , Wn ⊂ V be vector subspaces and g be a (positive definite)
scalar product on V . Let us denote by Πi : V → Wi the orthogonal projection,
W = W1 + · · · + Wn and let α1, . . . αn be some strict positive real scalars. Then the
linear map

Π : V → W,Π(x̄) = α1Π1(x̄) + · · ·+ αnΠn(x̄)

is a surjection.

Now we can prove the following statement..

Lemma 4.3. Let us assume the settings of Lemma 4.2 and, additionally, one of the
subspaces W1, . . . , Wn ⊂ V is equal to W = W1 + · · · + Wn. Then the following
assertions hold true:

1. The restriction of Π to W induces a linear automorphism of W .

2. If W0 ⊂ V is a vector subspace such that W ⊂ W0, then the restriction of Π to
W0 induces an onto linear map (from W0 on W ).

Let D′ and D′′ be two smooth g.v.s. of two vector bundle E′ and E′′ respectively.
A smooth (generalized) morphism of D′′ and D′ is a map f : D′′ → D′ such that it is
the restriction to D′′ of a vector bundle map F : E′′ → E′.

Corollary 4.4. There is a natural anchor of D that restricts to a linear automorphism
of the fibers of D.

Corollary 4.5. Let {sα}α=1,s ⊂ Γ(E) be a global system of generators and D ⊂ E
be a smooth generalized subbundle. Then there is a set {Φ(Sα)}α=1,s ⊂ Γ(D) ⊂ Γ(E)
of a global set of generators of the fibers of D, where Φ is a natural anchor.

We say that D′′ is a subbundle of D′ if D′′ ⊂ D′, i.e. D′′x ⊂ D′x, (∀)x ∈ M . The
inclusion I : D′′ → D′ is the restriction of the identity I ∈ End(E), thus I is a
smooth morphism. provided that D′ and D′′ are smooth.

Proposition 4.6. Assume that D′′ ⊂ D′ are smooth g.v.s.’s. Then there are two
natural anchors Φ′ and Φ′′ on D′ and D′′ respectively such that P = Φ′′ ◦Φ′ restricts
to a smooth morphism p : D′ → D′′ that is onto on fibers.

As we have already remarked in 3. of Proposition 2.1, it follows that the sets
of maximal dimensions Σ′max and Σ′′max of (D′)|=g and (D′′)|=g respectively are open
dense subsets of M , thus their intersection is also an open dense subset of M .

According to Theorem 4.1, some natural anchors of D and D`g always exist and
their sum gives a natural anchor of the smooth orthogonal completion D|=g . Using
also Proposition 2.1, some properties can be summarized in the following statement.

Proposition 4.7. Let g be a scalar product on the fibers of E, D`g= A(D⊥g (D)) ⊂
E be the smooth orthogonal of a smooth generalized vector subbundle D. If Φ and
Φ`g ∈ End(E) are natural anchors of D and D`g respectively, then

1. Φ ◦ Φ`g = Φ`g ◦ Φ = 0, i.e. Φ and Φ`g are transverse,
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2. Φ|=g = Φ + Φ`g is a natural anchor of the smooth orthogonal completion D|=g ,

3. Φ|=g (D) = D and Φ|=g
(D`g

)
= D`g and

4. Φ|=g induces on the dense open subset Σ|=g
max ⊂ M an automorphism of the fibres

of E and a natural splitting Ex = Dx ⊕D`g
x , (∀)x ∈ Σ|=g

max.

These can be related to some g.v.s.’s in the Pontryagin bundle P (E) = E ⊕ E∗,
where the non-degenerate quadratic form ε : P (E) → F(M), ε(X,ω) = ω(X) can be
considered (see [4] for more details). The quadratic form ε has the signature (k, k),
where k is the dimension of the fibers of E. Considering a smooth g.v.s. D ⊂ E and
a Riemannian metric g in the fibers of E, there are canonical isomorphisms:

– D⊥g ∼= D⊥ ⊂ E∗, D`g ∼= A(D⊥) not.= D` ⊂ E∗ and
– D|=g ∼= D +D` not.= D|= ⊂ P (E).
We stress that the above orthogonals are related to the Riemannian metric g and

they are different from the orthogonal considered in [4], according to the canonical
pseudo-Riemannian metric ε.

We say that a g.v.s. D ⊂ P (E) is of Dirac type if it is smooth and the restriction
of ε to D is null. For example, every smooth g.v.s. of E or E∗ can be considered
as smooth g.v.s. of P (E) of Dirac type; we say that they are pure. We say that D
allows a pure decomposition if D = D1 + D2, where D1 ⊂ E and D2 ⊂ E∗, call here
as the pure decomposition. We say also that a Dirac type D ⊂ P (E) is Dirac almost
regular if it allows a pure decomposition and D = D|=1 or D = D|=2 , where D1 ⊂ E
and D2 ⊂ E∗ are its pure components. According to [4], a Dirac vector subbundle
D ⊂ P (E) is just a vector subbundle of Dirac type and of maximal dimensions of
fibers, i.e. the dimension of the fibers of E. in this case the Dirac pure components
D1 and D2 are vector subbundles of E and E∗ respectively and D is Dirac regular.

If D0 ⊂ E∗ is a smooth g.v.s., then using Theorem 4.1 there is a natural anchor
Φ0 ∈ End(E∗) for D0, i.e. Φ0(E∗) = D0. Considering the dual endomorphism
Φ = Φ∗0 ∈ End(E), then the image of Φ is a smooth g.v.s. D ⊂ E. Let D ⊂ E be
of Dirac almost regular and D = D1 + D2 a pure decomposition. We can consider
some natural anchors Φ1 ∈ End(E) and Φ2 ∈ End(E∗) for D1 and D2 respectively,
i.e. Φ1(E) = D1 and Φ2(E) = D2. Then the natural anchors Φ1,Φ∗2 are transverse,
i.e. Φ1 ◦ Φ∗2 = Φ∗2 ◦ Φ1 = 0, thus their images have a null intersection. Using also
Proposition 4.7, the following assertion holds true.

Proposition 4.8. If D ⊂ P (E) is Dirac almost regular, then there are two natural
transverse anchors Φ1, Φ2 ∈ End(E) such that Φ1 + Φ∗2 ∈ End(P (E)) is an adapted
anchor for D.

Using 3. of Propositions 4.7, Proposition 4.8 and the above observations, the
following assertion holds true.

Proposition 4.9. If D ⊂ P (E) is Dirac almost regular, then there is an open dense
subset of M where the restriction of D is a Dirac vector subbundle.

Some constructions and results presented in the paper for smooth vector subbun-
dles can be translated, by duality, to cosmooth vector subbundles.
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