Spacelike hypersurfaces in de Sitter space

Yecheng Zhu

Abstract. In this paper, we study the close spacelike hypersurfaces in de
Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem
for spacelike hypersurfaces without the constancy condition on the mean
curvature or the scalar curvature.
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1 Introduction

Let N7"1(c) be an (n 4 1)—dimensional connected indefinite Riemannian manifold of
index 1 and of constant curvature c. According to ¢ > 0,c¢ = 0 and ¢ < 0, it is called de
Sitter space, Minkowski space and anti-de Sitter space, respectively, and it is denoted
by ST (c), R? and HP ™ (¢) (see [20]). A hypersurface M of N1 (¢) is said to
be spacelike if the induced metric on M from that of the ambient space is positive
definite. Since the importance of spacelike hypersurfaces in general relativity has been
emphasized, spacelike hypersurfaces have been studied by many mathematicians.

E. Calabi [7] first studied the Bernstein problem for a maximal spacelike entire
graph in R’f“ and proved that it has to be hyperplane, when n < 4. Later, S. Y.
Cheng and S. T. Yau [14] proved that the conclusion remains true for all n. Further
results about rigidity of maximal spacelike hypersurfaces in N7**(c) can be found in
9,11,13,16, etc.].

As a natural generalization, the rigidity phenomenon for spacelike hypersurfaces
in N"*!(¢) with constant mean curvature has also been studied. A. J. Goddard
conjectured in [17] that complete spacelike hypersurfaces of constant mean curvature
in de Sitter space should be totally umbilical. This turned out to be true only for
compact hypersurfaces, due to independent work of S. Montiel ([21]) and J. L. Barbosa
and V. Oliker ([6]). On the other hand, K. Akutagawa [2] and J. Ramanathan [22]
proved independently that a complete spacelike hypersurface in a de Sitter space
with constant mean curvature is totally umbilical if the mean curvature H satisfied
H? <1 when n = 2 and n?H? < 4(n — 1) when n > 3. One can find more results
about rigidity of spacelike hypersurfaces with constant mean curvature in [4,18, etc.].
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Also, some rigidity theorems for hypersurfaces with constant scalar curvature have
been proven. Q. M. Cheng and S. Ishikawa [12] have shown that compact spacelike
hyperspaces in ST (c) with constant scalar curvature R < n(n — 1)c must be totally
umbilical. For additional results on rigidity of spacelike hyperspaces with constant
scalar curvature, see [3,15,19,20, etc.].

In this paper, we prove a rigidity theorem of spacelike hyperspaces without the
constancy condition on the mean curvature or the scalar curvature. To be precise, we
have the following theorem.

Theorem 1.1. Let M™ be an n—dimensional closed spacelike hypersurface in de Sitter
space S?‘H(l). Let S and H be the squared norm of the second fundamental form and
the mean curvature of M™, respectively. Suppose that the fundamental group 71 (M™)
of M™ is infinite and S1(n,H) < S < Sa(n, H), where

(1.1) Sy(n,H) =n?*H* —n(n — 1),
and
2 _
(1.2) So(n, H) = " 12H2 +2.
n—

Then S is constant, S = Sa(n,H), and M™ is isometric to a Riemannian product
SV (¢;) x H'(¢p), where = + % =1,¢>0and co <O0.

c1

2 Preliminaries

Let M™ be an n—dimensional spacelike hypersurface in de Sitter space S7™!(1). We
choose a local field of semi-Riemannian orthonormal frames ep,- -+, e,41 in S’f“(l)
such that at each point of M™, ey, -+ ,e, span the tangent space of M™ and form an
orthonormal frame there. We use the following convention on the range of indices:

(2.1) 1<AB,C,---<n+1:1<i,j,k- <n.

Let wy, -+ ,wpy1 beits dual frame field so that the semi-Riemannian metric of S?H (1)

is given by ds = Y w? —w?,; = > eaw?, where g; = 1 and £,41 = —1. Then the
j A

2
structure equations of ST (1) are given by

(2.2) dwg = — ZEBWAB ANwp, wap+wpa =0,
B
1
(2.3) dwap = —» ecwac Awpc — 3 > ecepKapcpwe Awp,
c C,D
(2.4) Kapop = caep(0apdpc — 04cdBD)-
Restrict these form to M", we have w,;; = 0, the Riemannian metric of M™ is

written as ds? = )" w?. By Cartan’s lemma, we have
i

(2.5) Wnit1i = Z hijwj,  hij = hji.
J
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From these formulas, we obtain the structure equations of M™ as follows.

(2.6) dw; = — Zwij ANwj, wij +wj; =0,
J
1
(27) dwij = — zk:wik Nwgj — 5 ;Rijklwk N Wi,
(2.8) Rijri = (0ir0jt — 0udjr) — (hinhji — hithjk),

where R;ji; are the components of the curvature tensor of M™ and h = > hijw; ® w;
i,

is the second fundamental form of M™. The squared norm S of h and the mean

curvature H of M™ are given by

(2.9) S = thj, nH = th
i i

respectively. Then the Ricci tensor and the scalar curvature R of M™ are given by

(2.10) R” = (n — 1)(5@‘ — ’I’LHhij + Z hikhkj;
k
(2.11) R=n(n—1)—n?H? + 8,
respectively. The eigenvalues Ay, --- , A, of (h;;) are the principal curvatures of M™.

Let h;;;, denote the covariant derivative of h;;, defined by

(212) Z hijkwk = dhij — Z hkjwki — Z hikwkj.
k k k

Then we have the Codazzi equation

(213) hijk = hikj'

The Weyl curvature tensor W = (W;;x;) of M™ is given by

1
Wiikt = Rijri — m(Rikajl — Rydjk + 010i — Rjxdir)
R
+m(5ik5ﬂ - 5il5jk)-

(2.14)

The Beck curvature tensor B = (B;j)) of M"™ is defined by

1 1

(2.15) Bij, = - (Riji — Rikj) — m(%Rk — 0ixR;),

-2
where R;;, are the components of the covariant derivative of the Ricci curvature
tensor of M™ and Ry = ey R. M™ is said to be locally conformally flat if, for each
x € M™, there exists a conformal diffeomorphism of a neighborhood of = onto an open
set of the n—dimensional Euclidean space. When n > 4, M™ is locally conformally
flat if and only if Wi = 0 and B = 0 on M™. When n = 3, we always have
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Wik = 0 on M3 | then M?3 is locally conformally flat if and only if B;ji, = 0. Hence,
if M™ is a locally conformally flat Riemannian manifold, then

1 R
(2.16) Rijx = m(Rik(sjl_Rildjk+6j15ik_Rjk5il)+m(5ik5jl_6il5jk)a
and
(2.17) Rijk — —— 6, Ry = Rupy — ——6uR,
. ijk 2(71 — 1) ij itk — Llikj 2(7’L — 1) ikdlj .

The following lemma is needed in the proof of Theorem 1.1.

Lemma 2.1. (see [5]) If the Ricci curvature of a compact Riemannina manifold is
non-negative and positive at a point, then the manifold carries a metric of positive
Ricci curvature.

3 Proof of the Theorem 1.1

Let us first choose a suitable orthonormal frame field {ey, - - , e, }, which diagonalizes
the second fundamental form of M™, so that Z hijw; @ wj = Z Aiw; @ w;. By (2.7),
we have v Z

(3.1) Rijir = (1 — XiX\j) (0051 — 6adjn),

(3.2) Rij =0,i # j,

and

(3.3) Ri=Mm—1)—nH\N+ M i=1---,n

Since, for any fixed ¢ € {1,...,n},

34 H-AP= (MW <)Y N = (1S - ),

ki ki
we have
(3.5) n?H? — (n—1)S — 2nH\; < —nA? < 0.
Combining with (\; — H)? > 0, it is easy to see that

n?H? — (n—1)S
2 2

(3.6) A} —nHX; > nH\, — H* >

Then by (3.3), we have

(n?-=2)H? - (n—1)S n—1 (n?
2 2 (

-2
(37)  Ri>(n—1)+ - n_1H2+2—S>.
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Since the assumption that S < S(n, H) = n’=2p2 4 2, then

n—1

This, combined with (3.2), implies that the Ricci curvature of M™ is nonnegative.
Since the fundamental group of M™ is infinite, by Bonnet-Myers theorem [10] and
Lemma 2.1, we conclude that Yz € M™, there exists a unit vector X € T,M",
such that the Ricci curvature of M™ satisfies Ric(X,X) = 0. Note that the Ricci
curvature attains its minimum and maximum in the principal directions. Without
loss of generality, we can assume that R,,, = 0, at any fixed point x € M". Therefore,
when i = n, all of the above inequalities should be equalities at x, and S(z) =

Sa(n, H)(z). Consequently, we obtain that A\j(x) = --- = \,_1(x). Since x € M" is
arbitrary, one can deduces that there are at most two distinct principal curvatures
on M™. Now let us assume that Ay = --- = X\,,_1 = A and A\, = p. Since R;; > 0

and one of Ry1,---, Ry, is zero, by (3.3), we deduce that Au — 1 = 0. Thus there
are exactly two distinct principal curvatures, one of them is simple, and S = S(n, H)
holds on M™. Next we are going to show that A\ and p are constant functions on M™.

Note that M™ is a closed manifold with non-negative Ricci curvature, then the
Riemannian universal covering space M™ of M" can be decomposed as 9"~5 x R* for
some s € {0,1,--- ,n}, where M * is a closed simply connected (n— s)—dimensional
Riemannina manifold with non-negative Ricci curvature and 9R® is the s—dimensional
Euclidean space with standard flat metric (see [23]). The infinity of fundamental group
m1(M™) implies that 9"~ x R* is non-compact and so we have s > 1. Next we will
conclude that s = 1. Since \y = --- = A1 = A A\, =pand A\pg—1 =0 on M",
by (3.1), we know that the sectional curvature K (X AY’) of the plane spanned by X
and Y, is given by

K(XAY)= Y XiV;X.YiRijk
ikl

= Z XiY; X Yi(1 = AiAj) (0irdji — 0irdjk)
Ty

=1-Q_NX)Q_ MY+ QXY
i j i

=1— (A1 = X2) + uXDA1 =Y +puY?) + (A= XnYn) + X, Yn)?
=(1-N)(1-X;-Y7),

(3.9)

where X = 3. Xie;,Y = 3. Yie; € T,M™ with [X| = Y| =1, < X,Y >=0.
i=1 i=1

On the other hand, note that

(3.10) S =(n—1)\+ 42
and

(3.11) nH =(n—1)A+p,
we have

n?H? — S —2(n—1)

2 _
(3.12) A2 = CESCE)
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Since the assumption that S > n?H? —n(n — 1), then
(3.13) A< 1.

Now we need the following proposition.
Proposition 3.1. A vector X € T,M™ with |X| =1 satisfies the following condition

(*) f Y e T,M"™ with < X, Y >=0, |[Y| =1, then K(X NY) =0,
if and only if X = te,(x).
Proof. TEX = tep(z) and Y satisfies < X,Y = 0,[Y| = 1, then Y = 3 Vies(z), S V2 —
1. Thus - =
KX AY) =32 YiYjRuinj = 32 ; YiYj(1 = Xidn) (0nndij — 6nidn;)

= Ziy&n VZ2(1 = Xidn) = Zi;ﬁn YZ2(1 =) =0

On the other hand, if (x) is satisfied and let X = ae,(z) + W, where < W, e, (z) >=
0,W # 0. Take a vector Z = nil Ziei(x) € Tp,M™ satistying |Z| = 1,(Z,W) = 0.

(3.14)

=1
Then (Z, X) = 0. By (3.9) and (3.13), we have
(3.15) K(X,Z)=(1-X)(1—-ad*) =1-\)W*>0,

which leads to a contradiction. Thus X is parallel to e, (x), we know that X = +e,(z),
since | X| = 1. Proposition 3.1 is proved. O

Let us go on the proof of Theorem 1.1. Since M and 9M"~° x R® are locally
isometric, it follows from Proposition 3.1 that s = 1. Next we claim that the sectional
curvature of 9"~ is constant and 9"~ is isometric to an (n —1)—dimsional sphere.

Case 1 : suppose that n > 4. Let # : 9" ! x /% — M be the natural pro-
jection, then 7 is a local isometry. For any x € 9"~ ! let {uy,---,u,_1} be an
orthonormal base of T,9M"~!. Since T(z,0) (M1 x R) = T, M x ToMR, we know
that {(u1,0), ..., (un—1,0),(0,1)} is an orthonormal base of T(, o)(M"~! x R), where
0 is the zero-vector of T, 9"~ !. Observe that for any v € Tiz,0) (M1 x R) with
<v,(0,1) >=0, |[v] =1, K((0,1) Av) = 0, where & denotes the sectional curvature
of M~ x M. Tt follows that K((dm,0)(0,1)) A X) = 0, where X € Ty, 0 M"
with |X| = 1 and < (dm(;,0)(0,1)),X >= 0. Thus by Proposition 3.1 we know
that dm(;,0)(0,1) = *en(y) and dmy 0)(u;,0) € span{ei(y),--- ,en—1(y)}, for any
j=1,---,n—1, where y = 7m(z,0). Since &((u;,0) A (u;,0))= K((dr(5,0)(us0)) A
(dT(z,0)(u;,0)) = 1 — A(y), i # j € {1,---,n — 1}, then for any z € IM"~1 and
two-dimensional plane P C T, 9"~ ! the sectional curvature K(P) of M~ on P
must satisfy K(P) = &(P) = g(x) > 0, where g(x) = 1 — A%(7(z,0)) is a function on
oMt Note that dim(9M"~1) > 3, by the well-known Schur Lemma ([8]), we know
that the sectional curvature of 9" ~! is constant and positive.

Case 2 : Now suppose that n = 3. Let us first show that (2.16) is satisfied and so
M3 is a locally conformally flat manifold. In fact, since n = 3, by taking the covariant
derivatives of (2.9), we have

(3.16) Riji = —3Hyhij — 3Hhije + Y (hiwhi; + hahujr)-
l
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Then by (2.10) ,we get
(3.17) Ry = —18HH), — Sp.
Thus
1
Biji = (Rijk — Rikj) — Z(éink —0iR;)

= —3Hyhi; + 3Hhy, — Z(hiljhlk — harhiy)
7

1
+ (0 (18HHy — S) — S(18HH, — ;).
(3.18)

Let hl‘j = )\iéij> we have
(3.19) Sk = QZhijhijk = 22)\z‘hiik~
.7 %

Hence
Bijr = —3Hi (N — gH)éij +3H;(\; — ;H)élk
—hiki (A — Aj) — i(éijSk — 0:155)
= 3(H,;0it, — Hpdij)(Ni — ;H) + hirg (A — M)
+% Z((Sikhllj — bihur) A
(3.20) l
Let hg; = Ardy; in (2.11), we get
(3.21) hije = Gijexi — (Ai = Aj)wij(ex),
and so we have
(3.22) hiik = ex;.
Since h;ji = hikj, if 4, j, k are all distinct, then by (3.21), we have
(3.23) (Ai — Njwij(er) = (N — Ap)wir(ej).

Since A\; = Ay = A\, A3 = p, from (3.20), (3.21) and (3.23), when ¢, j, k are all distinct,
we conclude that
(3.24)

Biji = (Aj — A)hikg = (Aj — Ae) (A — Mdwi(es) = (Aj — M) (A — Mi)wiz(e) = 0.

By (3.20), it is easy to see that B;; = 0. Let 2 be the Weingarten operator defined by
the second fundamental form, that is, for any z € M and all X, Y e T, M, A : T, M —



Spacelike hypersurfaces in de Sitter space 97

T.M, < AX,Y >= h(X,Y). Let D,(\) ={X € T, M : AX = A\, X} and D(A) be
the assignment of () to each point € M. Since the multiplicity of the principal
curvature \ is greater than 1, then ©(\) is a completely integrable distribution on M
and that A is constant on each leaf of ®(\). Thus we have e;A = egA = 0. If i # j,
by (3.20) and (3.22), we have

3
Biij = —3H;(\ — 3 H) + hii; (A Z hug A
1 1
_(2€j)\ + eju)()\i — A= 5/14) + (ej)\z)()\l — )\J) - 5 Z h”j)\l.
l
(3.25)
Then
1 1
(3.26) Biiz = —(ezu)(—§ﬂ) - §(€2M)H =0,

1 1
(3.27) Bi1z = —(2e3A + 63#)(*5[1) + (esA)(A — p) — (esA)A — i(egu)u =0.
Similarly, we have
(3.28) Baay = Bagz = B33y = Bszz = 0, Byj; = Byj; = 0,1 # .

Therefore M3 is locally conformally flat and so is M?. Recall that M3 = 92 x R,
where the Gaussian curvature € of 92 is positive. Next we will use the same notations
Rijr and R;j, etc. to denote the components of the curvature tensor and the Ricci

curvature tensor, etc. of M3 , respectively. Take an orthonormal local frame field
{v1, va,v3} of M3 such that v; and vy are tangent to 912. Since M3 = Mm?2 x R, we
have

R11 = Raz = Ri212 + Ri313 = Ri212 = ¢,

(3.29) Rio = R13 = Ro3 = R33 = 0, R = 2¢.

Let i =j =1,k =2 in (2.16), then
1
(3.30) Ri12 — Rio1 = §R2-

By the definition of covariant derivative, we get

(3.31) Ri12 = (dR11)( ZRnwn v2) ZRl2wl2 v2) = vaR11 = vk,
=1

(3.32) Ri21 = (dRy2)( Zmell (v1) ZRllle (v1)
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Thus, vot = %vgﬁ, and so vot = 0. Similarly, we have v1¢ = 0. Therefore ¢ is a
constant function.

Hence, for any n > 3, 9" ! is a sphere, which implies that the scalar curvature
of M"~1 is constant. But the scalar curvature of 9" ~1 is given by r = (n — 1)(n —
2)(1 — A\?). Thus ) is a constant and so is p = % That is, M™ is an isoparametric
spacelike hypersurface in S;’“(l) with two distinct principal curvatures one of which
is simple.

According to the congruence theorem of N. Abe etc.(see [1]), we know that M™
is isometric to a Riemannian product S~ (¢;) x H'(¢z), where =+ L =1,¢1 >0
and ¢y < 0.
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