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Abstract. In this paper, we study the close spacelike hypersurfaces in de
Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem
for spacelike hypersurfaces without the constancy condition on the mean
curvature or the scalar curvature.
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1 Introduction

Let Nn+1
1 (c) be an (n + 1)−dimensional connected indefinite Riemannian manifold of

index 1 and of constant curvature c. According to c > 0, c = 0 and c < 0, it is called de
Sitter space, Minkowski space and anti-de Sitter space, respectively, and it is denoted
by Sn+1

1 (c), Rn+1
1 and Hn+1

1 (c) (see [20]). A hypersurface M of Nn+1
1 (c) is said to

be spacelike if the induced metric on M from that of the ambient space is positive
definite. Since the importance of spacelike hypersurfaces in general relativity has been
emphasized, spacelike hypersurfaces have been studied by many mathematicians.

E. Calabi [7] first studied the Bernstein problem for a maximal spacelike entire
graph in Rn+1

1 and proved that it has to be hyperplane, when n ≤ 4. Later, S. Y.
Cheng and S. T. Yau [14] proved that the conclusion remains true for all n. Further
results about rigidity of maximal spacelike hypersurfaces in Nn+1

1 (c) can be found in
[9,11,13,16, etc.].

As a natural generalization, the rigidity phenomenon for spacelike hypersurfaces
in Nn+1

1 (c) with constant mean curvature has also been studied. A. J. Goddard
conjectured in [17] that complete spacelike hypersurfaces of constant mean curvature
in de Sitter space should be totally umbilical. This turned out to be true only for
compact hypersurfaces, due to independent work of S. Montiel ([21]) and J. L. Barbosa
and V. Oliker ([6]). On the other hand, K. Akutagawa [2] and J. Ramanathan [22]
proved independently that a complete spacelike hypersurface in a de Sitter space
with constant mean curvature is totally umbilical if the mean curvature H satisfied
H2 ≤ 1 when n = 2 and n2H2 ≤ 4(n − 1) when n ≥ 3. One can find more results
about rigidity of spacelike hypersurfaces with constant mean curvature in [4,18, etc.].
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Also, some rigidity theorems for hypersurfaces with constant scalar curvature have
been proven. Q. M. Cheng and S. Ishikawa [12] have shown that compact spacelike
hyperspaces in Sn+1

1 (c) with constant scalar curvature R < n(n− 1)c must be totally
umbilical. For additional results on rigidity of spacelike hyperspaces with constant
scalar curvature, see [3,15,19,20, etc.].

In this paper, we prove a rigidity theorem of spacelike hyperspaces without the
constancy condition on the mean curvature or the scalar curvature. To be precise, we
have the following theorem.

Theorem 1.1. Let Mn be an n−dimensional closed spacelike hypersurface in de Sitter
space Sn+1

1 (1). Let S and H be the squared norm of the second fundamental form and
the mean curvature of Mn, respectively. Suppose that the fundamental group π1(Mn)
of Mn is infinite and S1(n,H) < S ≤ S2(n,H), where

(1.1) S1(n,H) = n2H2 − n(n− 1),

and

(1.2) S2(n,H) =
n2 − 2
n− 1

H2 + 2.

Then S is constant, S = S2(n,H), and Mn is isometric to a Riemannian product
S(n−1)(c1)×H1(c2), where 1

c1
+ 1

c2
= 1, c1 > 0 and c2 < 0.

2 Preliminaries

Let Mn be an n−dimensional spacelike hypersurface in de Sitter space Sn+1
1 (1). We

choose a local field of semi-Riemannian orthonormal frames e1, · · · , en+1 in Sn+1
1 (1)

such that at each point of Mn, e1, · · · , en span the tangent space of Mn and form an
orthonormal frame there. We use the following convention on the range of indices:

(2.1) 1 ≤ A, B,C, · · · ≤ n + 1; 1 ≤ i, j, k, · · · ≤ n.

Let ω1, · · · , ωn+1 be its dual frame field so that the semi-Riemannian metric of Sn+1
1 (1)

is given by ds̄ =
∑
i

ω2
i − ω2

n+1 =
∑
A

εAω2
A, where εi = 1 and εn+1 = −1. Then the

structure equations of Sn+1
1 (1) are given by

(2.2) dωA = −
∑

B

εBωAB ∧ ωB , ωAB + ωBA = 0,

(2.3) dωAB = −
∑

C

εCωAC ∧ ωBC − 1
2

∑

C,D

εCεDKABCDωC ∧ ωD,

(2.4) KABCD = εAεB(δADδBC − δACδBD).

Restrict these form to Mn, we have ωn+1 = 0, the Riemannian metric of Mn is
written as ds2 =

∑
i

ω2
i . By Cartan’s lemma, we have

(2.5) ωn+1i =
∑

j

hijωj , hij = hji.
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From these formulas, we obtain the structure equations of Mn as follows.

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0,(2.6)

dωij = −
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωk,(2.7)

Rijkl = (δikδjl − δilδjk)− (hikhjl − hilhjk),(2.8)

where Rijkl are the components of the curvature tensor of Mn and h =
∑
i,j

hijωi⊗ωj

is the second fundamental form of Mn. The squared norm S of h and the mean
curvature H of Mn are given by

(2.9) S =
∑

i,j

h2
ij , nH =

∑

i

hii,

respectively. Then the Ricci tensor and the scalar curvature R of Mn are given by

Rij = (n− 1)δij − nHhij +
∑

k

hikhkj ,(2.10)

R = n(n− 1)− n2H2 + S,(2.11)

respectively. The eigenvalues λ1, · · · , λn of (hij) are the principal curvatures of Mn.
Let hijk denote the covariant derivative of hij , defined by

(2.12)
∑

k

hijkωk = dhij −
∑

k

hkjωki −
∑

k

hikωkj .

Then we have the Codazzi equation

(2.13) hijk = hikj .

The Weyl curvature tensor W = (Wijkl) of Mn is given by

Wijkl = Rijkl − 1
n− 2

(Rikδjl −Rilδjk + δjlδik −Rjkδil)

+
R

(n− 1)(n− 2)
(δikδjl − δilδjk).

(2.14)

The Beck curvature tensor B = (Bijk) of Mn is defined by

(2.15) Bijk =
1

n− 2
(Rijk −Rikj)− 1

2(n− 1)(n− 2)
(δijRk − δikRj),

where Rijk are the components of the covariant derivative of the Ricci curvature
tensor of Mn and Rk = ekR. Mn is said to be locally conformally flat if, for each
x ∈ Mn, there exists a conformal diffeomorphism of a neighborhood of x onto an open
set of the n−dimensional Euclidean space. When n ≥ 4, Mn is locally conformally
flat if and only if Wijkl = 0 and Bijkl = 0 on Mn. When n = 3, we always have
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Wijkl = 0 on M3 , then M3 is locally conformally flat if and only if Bijk = 0. Hence,
if Mn is a locally conformally flat Riemannian manifold, then

(2.16) Rijkl =
1

n− 2
(Rikδjl−Rilδjk+δjlδik−Rjkδil)+

R

(n− 1)(n− 2)
(δikδjl−δilδjk),

and

(2.17) Rijk − 1
2(n− 1)

δijRk = Rikj − 1
2(n− 1)

δikRj .

The following lemma is needed in the proof of Theorem 1.1.

Lemma 2.1. (see [5]) If the Ricci curvature of a compact Riemannina manifold is
non-negative and positive at a point, then the manifold carries a metric of positive
Ricci curvature.

3 Proof of the Theorem 1.1

Let us first choose a suitable orthonormal frame field {e1, · · · , en}, which diagonalizes
the second fundamental form of Mn, so that

∑
i,j

hijωi ⊗ ωj =
∑
i

λiωi ⊗ ωi. By (2.7),

we have

(3.1) Rijkl = (1− λiλj)(δikδjl − δilδjk),

(3.2) Rij = 0, i 6= j,

and

(3.3) Rii = (n− 1)− nHλi + λ2
i , i = 1, · · · , n.

Since, for any fixed i ∈ {1, . . . , n},

(3.4) (nH − λi)2 = (
∑

k 6=i

λk)2 ≤ (n− 1)
∑

k 6=i

λ2
k = (n− 1)(S − λ2

i ),

we have

(3.5) n2H2 − (n− 1)S − 2nHλi ≤ −nλ2
i ≤ 0.

Combining with (λi −H)2 ≥ 0, it is easy to see that

(3.6) λ2
i −nHλi ≥ nHλi−H2 ≥ n2H2 − (n− 1)S

2
−H2 =

(n2 − 2)H2 − (n− 1)S
2

.

Then by (3.3), we have

(3.7) Rii ≥ (n− 1) +
(n2 − 2)H2 − (n− 1)S

2
=

n− 1
2

(
n2 − 2
n− 1

H2 + 2− S

)
.
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Since the assumption that S ≤ S(n,H) = n2−2
n−1 H2 + 2, then

(3.8) Rii ≥ 0, ∀i = 1, . . . , n .

This, combined with (3.2), implies that the Ricci curvature of Mn is nonnegative.
Since the fundamental group of Mn is infinite, by Bonnet-Myers theorem [10] and
Lemma 2.1, we conclude that ∀x ∈ Mn, there exists a unit vector X ∈ TxMn,
such that the Ricci curvature of Mn satisfies Ric(X,X) = 0. Note that the Ricci
curvature attains its minimum and maximum in the principal directions. Without
loss of generality, we can assume that Rnn = 0, at any fixed point x ∈ Mn. Therefore,
when i = n, all of the above inequalities should be equalities at x, and S(x) =
S2(n,H)(x). Consequently, we obtain that λ1(x) = · · · = λn−1(x). Since x ∈ Mn is
arbitrary, one can deduces that there are at most two distinct principal curvatures
on Mn. Now let us assume that λ1 = · · · = λn−1 = λ and λn = µ. Since Rii ≥ 0
and one of R11, · · · , Rnn is zero, by (3.3), we deduce that λµ − 1 = 0. Thus there
are exactly two distinct principal curvatures, one of them is simple, and S = S(n,H)
holds on Mn. Next we are going to show that λ and µ are constant functions on Mn.

Note that Mn is a closed manifold with non-negative Ricci curvature, then the
Riemannian universal covering space M̃n of Mn can be decomposed as Mn−s×Rs for
some s ∈ {0, 1, · · · , n}, where Mn−s is a closed simply connected (n−s)−dimensional
Riemannina manifold with non-negative Ricci curvature and Rs is the s−dimensional
Euclidean space with standard flat metric (see [23]). The infinity of fundamental group
π1(Mn) implies that Mn−s ×Rs is non-compact and so we have s ≥ 1. Next we will
conclude that s = 1. Since λ1 = · · · = λn−1 = λ ,λn = µ and λµ − 1 = 0 on Mn,
by (3.1), we know that the sectional curvature K(X ∧ Y ) of the plane spanned by X
and Y , is given by

K(X ∧ Y ) =
∑

i,j,k,l

XiYjXkYlRijkl

=
∑

i,j,k,l

XiYjXkYl(1− λiλj)(δikδjl − δilδjk)

= 1− (
∑

i

λiX
2
i )(

∑

j

λjY
2
j ) + (

∑

i

λiXiYi)2

= 1− (λ(1−X2
n) + µX2

n)(λ(1− Y 2
n ) + µY 2

n ) + (λ(−XnYn) + µXnYn)2

= (1− λ2)(1−X2
n − Y 2

n ),
(3.9)

where X =
n∑

i=1

Xiei, Y =
n∑

i=1

Yiei ∈ TxMn with |X| = |Y | = 1, < X, Y >= 0.

On the other hand, note that

(3.10) S = (n− 1)λ2 + µ2,

and

(3.11) nH = (n− 1)λ + µ,

we have

(3.12) λ2 =
n2H2 − S − 2(n− 1)

(n− 1)(n− 2)
.
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Since the assumption that S > n2H2 − n(n− 1), then

(3.13) λ2 < 1.

Now we need the following proposition.

Proposition 3.1. A vector X ∈ TxMn with |X| = 1 satisfies the following condition

(∗) if Y ∈ TxMn with < X, Y >= 0, |Y | = 1, then K(X ∧ Y ) = 0,

if and only if X = ±en(x).

Proof. If X = ±en(x) and Y satisfies < X, Y >= 0, |Y | = 1, then Y =
n−1∑
i=1

Yiei(x),
n−1∑
i=1

Y 2
i =

1. Thus

(3.14)
K(X ∧ Y ) =

∑
i,j YiYjRninj =

∑
i,j YiYj(1− λiλn)(δnnδij − δniδnj)

=
∑

i 6=n Y 2
i (1− λiλn) =

∑
i 6=n Y 2

i (1− λµ) = 0

On the other hand, if (∗) is satisfied and let X = aen(x) + W , where < W, en(x) >=

0,W 6= 0. Take a vector Z =
n−1∑
i=1

Ziei(x) ∈ TxMn satisfying |Z| = 1, 〈Z, W 〉 = 0.

Then 〈Z, X〉 = 0. By (3.9) and (3.13), we have

(3.15) K(X, Z) = (1− λ2)(1− a2) = (1− λ2)|W |2 > 0,

which leads to a contradiction. Thus X is parallel to en(x), we know that X = ±en(x),
since |X| = 1. Proposition 3.1 is proved. ¤

Let us go on the proof of Theorem 1.1. Since M and Mn−s × Rs are locally
isometric, it follows from Proposition 3.1 that s = 1. Next we claim that the sectional
curvature of Mn−1 is constant and Mn−1 is isometric to an (n−1)−dimsional sphere.

Case 1 : suppose that n ≥ 4. Let π : Mn−1 × R → M be the natural pro-
jection, then π is a local isometry. For any x ∈ Mn−1, let {u1, · · · , un−1} be an
orthonormal base of TxMn−1. Since T(x,0)(Mn−1 ×R) = TxMn−1 × T0R, we know
that {(u1, 0), ..., (un−1, 0), (0, 1)} is an orthonormal base of T(x,0)(Mn−1 ×R), where
0 is the zero-vector of TxMn−1. Observe that for any v ∈ T(x,0)(Mn−1 × R) with
< v, (0, 1) >= 0, |v| = 1, K((0, 1) ∧ v) = 0, where K denotes the sectional curvature
of Mn−1 × R. It follows that K((dπ(x,0)(0, 1)) ∧ X) = 0, where X ∈ Tπ(x,0)M

n

with |X| = 1 and < (dπ(x,0)(0, 1)), X >= 0. Thus by Proposition 3.1 we know
that dπ(x,0)(0, 1) = ±en(y) and dπ(x,0)(uj , 0) ∈ span{e1(y), · · · , en−1(y)}, for any
j = 1, · · · , n − 1, where y = π(x, 0). Since K((ui, 0) ∧ (uj , 0))= K((dπ(x,0)(ui, 0)) ∧
(dπ(x,0)(uj , 0)) = 1 − λ2(y), i 6= j ∈ {1, · · · , n − 1}, then for any x ∈ Mn−1 and
two-dimensional plane P ⊂ TxMn−1, the sectional curvature K(P ) of Mn−1 on P
must satisfy K(P ) = K(P ) = g(x) > 0, where g(x) = 1− λ2(π(x, 0)) is a function on
Mn−1. Note that dim(Mn−1) ≥ 3, by the well-known Schur Lemma ([8]), we know
that the sectional curvature of Mn−1 is constant and positive.

Case 2 : Now suppose that n = 3. Let us first show that (2.16) is satisfied and so
M3 is a locally conformally flat manifold. In fact, since n = 3, by taking the covariant
derivatives of (2.9), we have

(3.16) Rijk = −3Hkhij − 3Hhijk +
∑

l

(hilkhlj + hilhljk).
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Then by (2.10) ,we get

(3.17) Rk = −18HHk − Sk.

Thus

Bijk = (Rijk −Rikj)− 1
4
(δijRk − δikRj)

= −3Hkhij + 3Hjhik −
∑

l

(hiljhlk − hilkhlj)

+
1
4
(δij(18HHk − Sk)− δik(18HHj − Sj)).

(3.18)

Let hij = λiδij , we have

(3.19) Sk = 2
∑

i,j

hijhijk = 2
∑

i

λihiik.

Hence

Bijk = −3Hk(λi − 3
2
H)δij + 3Hj(λi − 3

2
H)δik

−hikj(λk − λj)− 1
4
(δijSk − δikSj)

= 3(Hjδik −Hkδij)(λi − 3
2
H) + hikj(λj − λk)

+
1
2

∑

l

(δikhllj − δijhllk)λl.

(3.20)

Let hkj = λkδkj in (2.11), we get

(3.21) hijk = δijekλi − (λi − λj)ωij(ek),

and so we have

(3.22) hiik = ekλi.

Since hijk = hikj , if i, j, k are all distinct, then by (3.21), we have

(3.23) (λi − λj)ωij(ek) = (λi − λk)ωik(ej).

Since λ1 = λ2 = λ, λ3 = µ, from (3.20), (3.21) and (3.23), when i, j, k are all distinct,
we conclude that
(3.24)
Bijk = (λj − λk)hikj = (λj − λk)(λk − λi)ωik(ej) = (λj − λk)(λj − λi)ωij(ek) = 0.

By (3.20), it is easy to see that Biii = 0. Let A be the Weingarten operator defined by
the second fundamental form, that is, for any x ∈ M and all X, Y ∈ TxM, A : TxM →
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TxM, < AX,Y >= h(X, Y ). Let Dx(λ) = {X ∈ TxM : AX = λxX} and D(λ) be
the assignment of Dx(λ) to each point x ∈ M . Since the multiplicity of the principal
curvature λ is greater than 1, then D(λ) is a completely integrable distribution on M
and that λ is constant on each leaf of D(λ). Thus we have e1λ = e2λ = 0. If i 6= j,
by (3.20) and (3.22), we have

Biij = −3Hj(λi − 3
2
H) + hiij(λi − λj)− 1

2

∑

l

hlljλl

= −(2ejλ + ejµ)(λi − λ− 1
2
µ) + (ejλi)(λi − λj)− 1

2

∑

l

hlljλl.

(3.25)

Then

(3.26) B112 = −(e2µ)(−1
2
µ)− 1

2
(e2µ)µ = 0,

(3.27) B113 = −(2e3λ + e3µ)(−1
2
µ) + (e3λ)(λ− µ)− (e3λ)λ− 1

2
(e3µ)µ = 0.

Similarly, we have

(3.28) B221 = B223 = B331 = B332 = 0, Bijj = Biji = 0, i 6= j.

Therefore M3 is locally conformally flat and so is M̃3. Recall that M̃3 = M2 × R,
where the Gaussian curvature k of M2 is positive. Next we will use the same notations
Rijkl and Rij , etc. to denote the components of the curvature tensor and the Ricci
curvature tensor, etc. of M̃3, respectively. Take an orthonormal local frame field
{v1, v2, v3} of M̃3 such that v1 and v2 are tangent to M2. Since M̃3 = M2 ×R, we
have

R11 = R22 = R1212 + R1313 = R1212 = k,

(3.29) R12 = R13 = R23 = R33 = 0, R = 2k.

Let i = j = 1, k = 2 in (2.16), then

(3.30) R112 −R121 =
1
2
R2.

By the definition of covariant derivative, we get

(3.31) R112 = (dR11)(v2)−
3∑

l=1

Rl1ωl1(v2)−
3∑

l=1

Rl2ωl2(v2) = v2R11 = v2k,

(3.32) R121 = (dR12)(v1)−
3∑

l=1

Rl2ωl1(v1)−
3∑

l=1

R1lωl2(v1) = 0.
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Thus, v2k = 1
2v2k, and so v2k = 0. Similarly, we have v1k = 0. Therefore k is a

constant function.
Hence, for any n ≥ 3, Mn−1 is a sphere, which implies that the scalar curvature

of Mn−1 is constant. But the scalar curvature of Mn−1 is given by r = (n − 1)(n −
2)(1 − λ2). Thus λ is a constant and so is µ = 1

λ . That is, Mn is an isoparametric
spacelike hypersurface in Sn+1

1 (1) with two distinct principal curvatures one of which
is simple.

According to the congruence theorem of N. Abe etc.(see [1]), we know that Mn

is isometric to a Riemannian product S(n−1)(c1)×H1(c2), where 1
c1

+ 1
c2

= 1, c1 > 0
and c2 < 0.
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