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Abstract. We study the antipodal set of a point in a compact Rieman-
nian symmetric space. It turns out that we can give an explicit descrip-
tion of the antipodal set of a point in any connected simply connected
compact Riemannian symmetric space. In particular, we prove that if
M is a connected simply connected Riemannian symmetric space such
that the antipodal set of each point consists of a single point, then it
must be the direct product of the manifolds of the following: SU(2n),
Spin(5), Spin(7), Sp(n), E7, SU(2n)/SO(2n), SU(4n)/Sp(2n), Gn,n(C),
Sp(n)/U(n), Gn,n(H), Gp,q, (p < q, p ≤ 3), SO(4n)/U(2n), (e7, su(8))
and (e7, e6 ⊕ R), endowed with a standard symmetric metric.
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1 Introduction

Let (M, Q) be a connected compact Riemannian manifold with distance function
d. Given p ∈ M , a point x ∈ M is called an antipodal point of p if d(p, x) =
maxy∈M d(p, y). The set of all antipodal point of p is called the antipodal set of
p. It is an important problem in Riemannian geometry to determine the antipodal
point set of a given point in a compact Riemannian manifold, and the case of rank
one symmetric spaces has been settled in [7], see §10 of Chapter VII. In particular,
it would be interesting to determine in which Riemannian manifold each point has
exactly one single antipodal point.

In this paper we will give an answer to the above problem in the case of connected
simply connected compact symmetric Riemannian manifold. The main result can be
stated as the following

Theorem 1.1. Let (M, Q) be a connected simply connected compact Riemannian
symmetric space. Suppose each point of M has exactly one single antipodal point.
Then (M, Q) must be the direct product of the manifolds of the following: SU(2n),
Spin(5), Spin(7), Sp(n), E7, SU(2n)/SO(2n), SU(4n)/Sp(2n), Gn,n(C), Sp(n)/U(n),
Gn,n(H), Gp,q, (p < q, p ≤ 3), SO(4n)/U(2n), (e7, su(8)) and (e7, e6 ⊕ R), endowed
with a standard symmetric metric.
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The proof of this theorem depends on an explicit description of the antipodal
set of a given point for connected simply connected irreducible compact Riemannian
symmetric spaces. In the study of the antipodal sets we use many known results on
the cut lotus and conjugate lotus, see [3] [9], [10], [11] [12] [13] [14]; see also [1] for
the classification of irreducible symmetric spaces. One can also consult [2] for some
results on the antipodal points of Riemannian symmetric spaces.

It would be an interesting problem to consider the same problem for symmetric
Finsler spaces. However, the computation would be much more complicated. We
will take this problem up in a forthcoming paper; see [6, 5] for some information on
symmetric Finsler spaces.

2 Preliminaries

In this section we recall some preliminaries and known results to establish our strategy
to compute the antipodal sets.

Definition 2.1. Let M be a compact connected Riemannian manifold and o ∈ M .
A point p0 ∈ M is called an antipodal point of o if

d(o, p0) = max
p∈M

d(o, p),

where d is the distance function of M . The set consisting of all the antipodal points
of o is called the antipodal set of o and is denoted by Ao.

The following lemma is obvious

Lemma 2.1. Let p0 be an antipodal point of o and γ a minimal geodesic connecting
o and p0. Then p0 must be a cut point of o along γ.

This lemma gives a method to find out the antipodal set of the point o, especially
when M is a connected simply connected compact Riemannian symmetric space. Let
us explain in some detail.

Let (M,Q) be a connected globally symmetric Riemannian manifold and G be its
identity component of the full group of isometries of (M, Q). Let K be the isotropy
subgroup of G at a fixed point in M . Let g, k be respectively the Lie algebras of G
and K. Then there is an involutive automorphism σ of G such that (Kσ)0 ⊂ K ⊂ Kσ,
where Kσ denote the set of the fixed point of σ on G and (Kσ)0 the identity compo-
nent of Kσ. Denote also by the differential of σ as σ. Then (g, σ) is an orthogonal
symmetric Lie algebra. Conversely, each effective orthogonal symmetric Lie algebra
can determine in a unique way a connected simply connected Riemannian symmetric
space (see [7]). If (M, Q) is a connected simply connected compact Riemannian sym-
metric space, then the corresponding orthogonal Lie algebra is of the compact type
(see also [7]). Therefore, to study the problem we need only deal with orthogonal
symmetric Lie algebras of the compact type.

Let u be a compact semisimple Lie algebra and θ an involutive automorphism of u.
Then θ extends uniquely to a complex involutive automorphism of uC (also denoted
by θ), the complexification of u. We then have a decomposition:

u = k0 + p∗ ;
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where k0 = {X ∈ u : θ(X) = X}, and p∗ = {X ∈ u : θ(X) = −X}. Let M = U/K be
a compact symmetric space associated with (u, θ). Let 〈, 〉 be an inner product on p∗
invariant under the action of Ad(K). Then we obtain a U -invariant metric g on M ,
and there is a natural correspondence between (ToM, g) and (p∗, 〈, 〉), where o = eK
is the origin. Let exp be the exponential map of u, and Exp be the exponential map
of p∗. Then we have Exp(X) = exp(X)K, for X ∈ p∗.

Let hp∗ be a maximal abelian subalgebra of p∗ and denote the corresponding
restricted root system by Σ (see [7]). Let C be the Weyl chamber with respect an
ordering of Σ, i.e., C = {x ∈ √−1hp∗ : γ(x) > 0 for every γ ∈ Σ+}. Denote by Π the
set of simple roots. Let H be the set of highest restricted roots of Σ. In [13] and [14],
the author introduced the definition of Cartan polyhedron, which is defined by

{x ∈ √−1hp∗ : γ(x) ≥ 0, β(x) ≤ 1, γ ∈ Π, β ∈ H}.

For simplicity, we denote it as 4.
Let (u, θ) be an irreducible orthogonal symmetric Lie algebra. Then Σ is also

irreducible and 4 is a simplex. Let ψ be the unique highest restricted root, Π =
{γ1, ..., γn}, n = rank (Σ) = dim hp∗ , and d1, ..., dn ∈ Z+ such that ψ =

∑n
i=1 diγi.

Then the set of the vertices of 4, denoted by P , consists of:

0, e1, ..., en; γi(ej) =
1
dj

δij

Let AP be the subset of P defined by

AP = {X ∈ P |Exp(π
√−1X) is the antipodal point of o}.

From the Theorem 4.1 in [14], we have the following corollary:

Corollary 2.2. Let (u, θ) be an irreducible orthogonal Lie algebra of compact type
and M = U/K be the simply connected Riemannian symmetric space associated with
(u, θ). Then the antipodal set Ao is Exp Ad(K)(π

√−1AP ).

The above corollary gives the strategy to determine the antipodal set of a con-
nected simply connected compact Riermannian symmetric space. However, it is very
difficult to obtain a complete description for an explicit symmetric space. In the
following, we will give a partial describing of the antipodal sets for each irreducible
compact symmetric space. We will also study some general properties of the antipo-
dal sets. For example, it is an interesting problem to find out on which connected
simply connected Riemannian manifold, each point has exactly one antipodal point.
The symmetric case will be completely settled in this paper.

3 The set of vertices

In [13] and [14], the author has computed the set P and the diameter of the compact
irreducible Riemannian symmetric space. It is easily seen that the diameter is the
common length of all the elements in π

√−1AP . From this we can obtain directly the
set AP . The results is presented in Table 1. Here we adopt the Dynkin diagrams of
the restricted root system in Section 5 of [14].
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Table 1: The vertices

Σ the highest restricted root ψ the elements in AP

an−1 en
2
, 2 | n.

(n ≥ 2)
∑n−1

i=1 γi en−1
2

and en+1
2

,
2 - n.

e1, n ≤ 3.
bn γ1 + 2

∑n
i=2 γi e1 and e4,

(n ≥ 2) n = 4.
en, n ≥ 5.

cn, (n ≥ 3) 2
∑n−1

i=1 γi + γn en.
e1, e3 and e4,

dn γ1 + 2
∑n

i=2 γi n = 4.
(n ≥ 4) +γn−1 + γn en−1 and en,

n ≥ 5.
e6 γ1 + 2γ2 + 3γ3 + 2γ4 + γ5 + 2γ6 e1 and e5.
e7 γ1 + 2γ2 + 3γ3 + 4γ4 + 3γ5 + 2γ6 + 2γ7 e1.
e8 2γ1 + 3γ2 + 4γ3 + 5γ4 + 6γ5 + 4γ6 + 2γ7 + 3γ8 e7.
f4 2γ1 + 3γ2 + 4γ3 + 2γ4 e4.
g2 2γ1 + 3γ2 e2.

(bc)n 2
∑n

i=1 γi en.

4 The antipodal sets for compact connected
irreducible Riemannian symmetric spaces

From the previous sections, we can obtain the antipodal set Ao. However, for every
compact connected irreducible Riemannian symmetric space U/K, the antipodal set
constitutes of some K-orbits (actually, each K-orbit of dim ≥ 1 is also a Rieman-
nian symmetric space). For the compact simply-connected irreducible Riemannian
symmetric space, we need only know whether each K-orbit is a single point or not.

Now we introduce two conventions: given p ∈ U/K, if the K-orbit of p consists of
a single point, we say that the orbit of p is of type P. If the dimension of the orbit is
≥ 1, we say that the orbit is of type O. From the definition of 4, we know that the
number of the K-orbits of the antipodal set of p is the same as the number of elements
in AP . Then we define the type of the antipodal set of p to be PmOn, m, n ∈ N, which
means that there are m single points and n K−orbits of dim≥ 1 in the antipodal set.

Before stating the results, we give two lemmas.

Lemma 4.1. Let M = U/K be a compact connected simply-connected irreducible
symmetric space, and ZM (K) be the set {p ∈ M : τ(k)p = p, ∀k ∈ K}. Then for each
X ∈ π

√−1AP , the following conditions are equivalence:
(a) the K-action on exp(X)K is trivial;
(b) exp(X)K ∈ ZM (K);
(c) X = π

√−1ej and ej satisties (ej , γi) = δij, 1 ≤ i ≤ n, as for the highest
restricted root ψ =

∑n
i=1 diγi, there must be dj = 1.

Proof. The lemma follows directly from Proposition 3.1 in [14]. ¤
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Lemma 4.2. Let U be a compact connected Lie group. If the type of the antipodal set
of unit e is of type P1, then the single point must be the non-trivial center element of
U .

Proof. If we denote the single point as exp H (when we view U as a symmetric space),
then exp H = Exp(dπ(H

2 ,−H
2 )) = (exp H

2 , exp −H
2 )U∗. Thus we have

Exp(dπ(Adg H
2 , Adg−H

2 ))) = Exp(dπ(H
2 , −H

2 )) ⇔ (g, g)(exp H
2 , exp −H

2 )U∗

= (exp H
2 , exp −H

2 )U∗ ⇔ g expH = exp Hg, ∀g ∈ U.

This completes the proof of the lemma. ¤

Corollary 4.3. The type of the antipodal sets for G2, F4, and E8 is O1.

From Table 1, Lemma 4.1 and Lemma 4.2, we can obtain the structure of the
antipodal set for each compact connected simply connected irreducible symmetric
space as follows:

4.1 Compact simple Lie Groups

M the highest restricted root ψ the antipodal sets Ao

SU(n),
∑n−1

i=1 γi P1, 2 | n.
(n ≥ 2) P2, 2 - n.

P1, n ≤ 3.
Spin(2n + 1), γ1 + 2

∑n
i=2 γi P1O1, n = 4.

(n ≥ 2) O1, n ≥ 5.

Sp(n), (n ≥ 3) 2
∑n−1

i=1 γi + γn P1.

P3,
Spin(2n), γ1 + 2

∑n
i=2 γi n = 4.

(n ≥ 4) +γn−1 + γn P2,
n ≥ 5.

G2 2γ1 + 3γ2 O1.
F4 2γ1 + 3γ2 + 4γ3 + 2γ4 O1.
E6 γ1 + 2γ2 + 3γ3 + 2γ4 + γ5 + 2γ6 P2.
E7 γ1 + 2γ2 + 3γ3 + 4γ4 + 3γ5 + 2γ6 + 2γ7 P1.
E8 2γ1 + 3γ2 + 4γ3 + 5γ4 + 6γ5 + 4γ6 + 2γ7 + 3γ8 O1.

Remark 4.1. From the relationships Spin(4) ∼= Sp(1)×Sp(1) and Sp(1) ∼= SU(2)
( see page 141 of [4]), one easily sees that the type of the antipodal set of the unit in
Spin(4) is P1.

4.2 Simply-connected irreducible Riemannian symmetric spaces
of type I

For the simply-connected irreducible Riemannian symmetric spaces of type I, we
have:
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the type M Σ the antipodal sets Ao

AI SU(n)/SO(n), an−1 P1, 2 | n.
(n ≥ 2) P2, 2 - n.

AII SU(2n)/Sp(n), an−1 P1, 2 | n.
(n ≥ 2) P2, 2 - n.

AIII Gp,q(H) (bc)p O1, 2 ≤ p < q or p = 1.
cp P1, 2 ≤ p = q.

CI Sp(n)/U(n) cn P1

CII Gp,q(H) (bc)p O1, 2 ≤ p < q or p = 1.
cp P1. 2 ≤ p = q.
bp P1, p = 2, 3.

Gp,q, a1 P1, p = 1.
(p < q) b4 P1O1, p = 4.

bp O1, p ≥ 5.
BDI

d4 P3,
Gp,p, p = 4.

(p ≥ 4) P2,
dp p ≥ 5.

DIII SO(2n)/U(n) cn
2

P1, 2 | n.
(bc)n−1

2
O1, 2 - n.

EI (e6, sp4) e6 P2.
EII (e6, su6 ⊕ su2) f4 O1.
EIII (e6, so10 ⊕ R) (bc)2 O1.
EIV (e6, f4) a2 P2.
EV (e7, su8) e7 P1.
EV I (e7, so12 ⊕ su2) f4 O1.
EV II (e7, e6 ⊕ R) c3 P1.
EV III (e8, so16) e8 O1.
EIX (e8, e7 ⊕ su2) f4 O1.
F I (f4, sp3 ⊕ su2) f4 O1.
F II (f4, so9) (bc)1 O1.
G (g2, so4) g2 O1.

5 Proof of Theorem 1.1

It is well known that any connected simply-connected compact Riemannian symmetric
space M can be decomposed as:

M = M1 × . . .×Mr,

where the factors Mi are irreducible compact connected simply connected Riemannian
symmetric spaces (see for example [7]). Combining this fact with the the above
description of antipodal sets we get the proof of Theorem 1.1.
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