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Abstract. The concept of locally dually flat Finsler metrics originate from
information geometry. As we know, (α, β)-metrics defined by a Rieman-
nian metric α and an 1-form β, represent an important class of Finsler
metrics, which contains the Matsumoto metric. In this paper, we study
and characterize locally dually flat first approximation of the Matsumoto
metric with isotropic S-curvature, which is not Riemannian.
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1 Introduction

The notion of dually flat metric was first introduced by S. I. Amari and H. Na-
gaoka, while studying the information geometry on Riemannian spaces [1]. Later, Z.
Shen extended the notion of dually flatness to Finsler metrics [6]. Dually flat Finsler
metrics form a special important class of Finsler metrics in Finsler information geom-
etry, which play a very important role in studying flat Finsler information structures
([3],[4],[8],[9],[10]).

In 2009, the authors of [3] classified the locally dual flat Randers metrics with
almost isotropic flag curvature. Recently, Q. Xia worked on the dual flatness of
Finsler metrics of isotropic flag curvature as well as scalar flag curvature ([9],[10]).
Also, Q. Xia studied and gave a characterization of locally dually flat (α, β)-metrics
on an n-dimensional manifold M (n ≥ 3) [8].

The first example of non-Riemannian dually flat metrics is the Funk metric given
by ([3],[6]):

F =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

1− |x|2
± ⟨x, y⟩

1− |x|2
.

This metric is defined on the unit ball Bn ⊂ Rn and is a Randers metric with constant
flag curvature K = −1

4 . This is the only known example of locally dually flat metric
with non-zero constant flag curvature up to now.
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In this paper, we study and characterize locally dually flat first approximate of
the Matsumoto metric with isotropic S-curvature, which is not Riemannian.

2 Preliminaries

LetM be an n-dimensional smooth manifold. We denote by TM the tangent bundle of
M and by (x, y) = (xi, yi) the local coordinates on the tangent bundle TM. A Finlser
manifold (M,F ) is a smooth manifold equipped with a function F : TM → [0,∞),
which has the following properties:

• Regularity: F is smooth in TM \ {0};

• Positive homogeneity: F (x, λy) = λF (x, y), for all λ > 0;

• Strong convexity: the Hessian matrix of F 2, gij(x, y) =
1
2 (

∂2F 2(x,y)
∂yi∂yj ), is positive

definite on TM \ {0}. We call F and the tensor gij the Finsler metric and the
fundamental tensor of M , respectively.

For a Finser metric F = F (x, y), its geodesic curves are characterized by the system
of differential equations c̈i + 2Gi(ċ) = 0, where the local functions Gi = Gi(x, y) are
called the spray coefficients and given by

Gi =
1

4
gil

{
∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl

}
, ∀y ∈ TxM.

Definition 2.1 A Finsler metric F = F (x, y) on a manifold M is said to be locally
dually flat if at any point there is a standard coordinate system (xi, yi) in TM which
satisfies

(F 2)xkylyk = 2(F 2)xl .

In this case, the system of coordinates (xi) is called an adapted local coordinate system.
It is easy to see that every locally Minkowskian metric is locally dually flat. But the
converse is not generally true [3].

Definition 2.2: A Finsler metric is said to be locally projectively flat if at any
point there is a local coordinate system in which the geodesics are straight lines as
point sets.

It is known that a Finsler metric F (x, y) on an open domain U ⊂ Rn is locally
projectively flat if and only if its geodesic coefficients Gi are of the form

Gi = Pyi,

where P : TU = U × Rn → R is positively homogeneous of degree one, P (x, λy) =
λP (x, y), ∀λ > 0. We call P (x, y) the projective factor of F (x, y).

Lemma 2.1 ([3]). Let F = F (x, y) be a Finsler metric on an open subset U ⊂ Rn.
Then F is locally flat and projectively flat on U if and only if Fxk = CFFyk , where
C is a constant.
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The S-curvature is a scalar function on TM , which was introduced by Z. Shen to
study volume comparison in Riemann-Finsler geometry [2]. The S-curvature measures
the average rate of change of (TxM,Fx = F |TxM ) in the direction y ∈ TxM . It is
known that S = 0 for Berwald metrics.

Definition 2.3. A Finsler metric F on an n-dimensional manifold M is said to have
isotropic S-curvature if S = (n+ 1)c(x)F , for some scalar function c on M .

For a Finsler metric F on an n-dimensional manifold M , the Busemann-Hausdorff
volume form dVF = σF (x)dx

1 . . . dxn is defined by

σ(F ) =
V ol(Bn(1))

V ol{(yi) ∈ Rn|F (yi ∂
∂xi |x)}

.

Here V ol denotes the Euclidean volumes and Bn(1) denotes the unit ball in Rn. Then
the S-curvature is defined by

S(y) =
∂Gi

∂yi
(x, y)− yi

∂

∂xi
[lnσF (x)],

where y = yi ∂
∂xi |x ∈ TxM [7].

For an (α, β)-metric, one can write F = αϕ(s), where s = β/α and ϕ = ϕ(s) is a
C∞ function on the interval (−b0, b0) with certain regularity properties, α =

√
aijyiyj

is a Riemannian metric and β = bi(x)y
i is an 1-form on M .

We further denote
bi|jθ

j = dbi − bjθ
j
i ,

where θi = dxi and θji = Γj
ikdx

k denotes the coefficients of the Levi-Civita connection
form of α. Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i).

Clearly, β is closed if and only if sij = 0. An (α, β)-metric is said to be trivial if
rij = sij = 0. We put{

ri0 = rijy
j , r00 = rijy

iyj , rj = birij ,

si0 = sijy
j , sj = bisij , r0 = rjy

j , s0 = sjy
j .

By direct computation, we can obtain a formula for the mean Cartan torsion of an
(α, β)-metric as follows:

Ii = −Φ(ϕ− sϕ′)

2∆ϕα2
(αbi − syi).

Clearly, an (α, β)-metric F = αϕ(s), s = β/α is Riemannian if and only if Φ = 0.
Hence, we further we assume that Φ ̸= 0.

Theorem 2.2. [8] Let F = αϕ(s), s = β/α be an (α, β)-metric on an n-dimensional
manifold Mn(n ≥ 3), where α =

√
aijyiyj is a Riemannian metric and β = bi(x)y

i ̸=
0 is an 1-form on M . Suppose that F is not Riemannian and ϕ′(s) ̸= 0. Then F is
locally dually flat on M if and only if α, β and ϕ = ϕ(s) satisfy
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1. sl0 = 1
3 (βθl − θbl),

2. r00 = 2
3θβ + [τ + 2

3 (b
2τ − θlb

l)]α2 + 1
3 (3k2 − 2− 3k3b

2)τβ2,

3. Gl
α = 1

3 [2θ + (3k1 − 2)τβ]yl + 1
3 (θ

lτbl)α2 + 1
2k3τβ

2bl,

4. τ [s(k2 − k3s
2)(ϕϕ′ − sϕ′2 − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′)] = 0,

where τ = τ(x) is a scalar function, θ = θi(x)y
i is an 1-form on M , θl = almθm,

k1 = Π(0), k2 =
Π′(0)

Q(0)
, k3 =

1

6Q(0)2
[3Q′′(0)Π′(0)− 6Π(0)2 −Q(0)Π′′′(0)],

and Q = ϕ′

ϕ−sϕ′ , Π = ϕ′2+ϕϕ′′

ϕ(ϕ−sϕ′) .

In [3], Cheng-Shen studied the class of (α, β)-metrics of non-Randers type ϕ ̸=
t1
√
1 + t2s2 + t3s with isotropic S-curvature and obtained the following

Theorem 2.3 ([2]). Let F = αϕ(s), s = β/α be an non-Riemannian (α, β)-metric
on a manifold and b = ∥βx∥α. Suppose that ϕ ̸= t1

√
1 + t2s2 + t3s for any constants

t1 > 0,t2 and t3. Then F is of isotropic S-curvature S = (n+1)cF if and only if one
of the following assertions holds

i) β satisfies

(2.1) rij = ε{b2aij − bibj}, sj = 0,

where ε = ε(x) is a scalar function, and c = c(x) satisfies

(2.2) Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
,

where k is a real constant. In this case, S = (n+ 1)cF with c = kε.

ii) β satisfies

(2.3) rij = 0, sij = 0.

In this case, S = 0, regardless of the choice of a particular ϕ.

3 Characterization of locally dually flat first
approximate Matsumoto metric

Theorem 3.1. Let F = α + β + β2

α be a first approximate Matsumoto metric on a
manifold M of dimension n ≥ 3. Then the necessary and sufficiency conditions for
F to be locally dually flat on M are the following:

1. sl0 = 1
3 (βθl − θbl);

2. r00 = 2
3θβ + [τ + 2

3 (b
2τ − θlb

l)]α2 + 1
3 (7 + 18b2)τβ2;

3. Gl
α = 1

3 [2θ + 7τβ]yl + 1
3 (θ

l − τbl)α2 − 3τβ2bl,

where τ = τ(x) is a scalar function and θ = θky
k is an 1-form on M .
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Proof. For a Finsler metric F = α+ β + β2

α , we obtain k1 = 3, k2 = 3, k3 = −6, and

ϕ = 1 + s+ s2, ϕ′ = 1 + 2s, Π = 3(1+2s+2s2)
(1+s−s3−s4)

Q = 1+2s
1−s2 , Q′ = 2ϕ

(1−s2)2 , Q′′ = 2(1+4s+s2)
(1−s2)3 .

By using the above values in Lemma 2.1, we get

[s(k2 − k3s
2)(ϕϕ′ − sϕ′2 − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′)] = 0, and τ = 0.

Then, finally, by substituting k1,k2 and k3 in Lemma 2.1, we infer the claim �

Now, let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0],
let

(3.1) Φ = −(Q− sQ′) · (n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q′′,

where ∆ = 1 + sQ+ (b2 − s2)Q′. This implies that

∆ =
ϕ(1 + 2b2 − 3s2)

(1− s2)2
.

Then the equation (3.1) can be written as follows:

Φ = −(Q− sQ′)(n+ 1)∆ + (b2 − s2){(Q− sQ′)Q′ − (1 + sQ)Q′′}.

By using Theorem 2.3, now we will consider a locally dually flat (α, β)-metric with
isotropic S-curvature.

Theorem 3.2. Let F = α+ β + β2

α be a locally dually flat non-Randers type (α, β)-
metric on a manifold M of dimension n ≥ 3. Suppose that F is of isotropic S-
curvature S = (n + 1)cF , where c = c(x) is a scalar function on M . Then F is a
locally projectively flat in adapted coordinate system and Gi = 0.

Proof. Let Gi = Gi(x, y) and G
i

α
= G

i

α
(x, y) denote the coefficients of F and α

respectively, in the same coordinate system. By definition, we have

(3.2) Gi = G
i

α + Pyi +Qi,

where

(3.3) P = α−1Θ−2Qαs0 + r00,

(3.4) Qi = αQsi0 +Ψ−2Qαs0 + r00b
i,

Θ =
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ((ϕ− sϕ′) + (b2 − s2)ϕ′′)
, Ψ =

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

First, we suppose that case (i) of Theorem 2.3 holds. It is remarkable that, for a
1st approximation Matsumoto metric, we have

∆ =
(1 + 2b2 − 3s)ϕ

(1− s2)2
.
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It follows that (1−s2)2∆ is a polynomial in s of degree 3. On the other hand we have

(3.5) ϕ∆2 =
ϕ2(1 + 2b2 − 3s2)2

(1− s2)4
.

Hence, if case(ii) of Theorem (2.3) holds, then substituting (3.5) we obtaine that

(3.6) (b2 − s2)(1− s2)4Φ = −2(n+ 1)kϕ2(1 + 2b2 − 3s2)2.

It follows that (b2−s2)(1−s2)4Φ is not a polynomial in s (if k = 0, then by considering
the Cartan torsion equation, we get a contradiction). Then, we put

ϕ∆2 =
∆̄

(1− s2)4
,

where
∆̄ = ϕ2(1 + 2b2 − 3s2)2.

By assumption, F is a non-Randers type metric. Thus ∆̄ is not a polynomial in s,
and then (b2 − s2)(1 − s2)4Φ is not a polynomial in s. Now, let us consider another
form of Φ:

Φ = −(Q− sQ′)(n+ 1)∆ + (b2 − s2){(Q− sQ′)Q′ − (1 + sQ)Q′′},

where

Q− sQ′ =
1− 3s2 − 4s3

(1− s2)2
.

Then

(3.7) Φ =
(n+ 1)ϕ(1− 3s2 + 4s3)(1 + 2b2 − 3s2)− 12ϕ2(b2 − s2)s(1− s2)2

(1− s2)6
.

From equations (3.6) and (3.7), the relation (b2 − s2)(1− s2)4Φ is a polynomial in s
and b of degree 8 and 4 respectively. The coefficient of s8 is not equal to zero. Hence
its impossible that Φ = 0. Therefore, we can conclude that equation (2.2) does not
hold. So, the case (ii) of Theorem 2.3 holds. In this case, we have

r00 = 0, sj = 0.

In Theorem 3.1(2), by taking r00 = 0, we obtain

(3.8) [τ +
2

3
(b2τ − θlb

l)]α2 =
1

3
β[−2θ − (7 + 18b2)]βτ.

Since α2 is an irreducible polynomial of yi , equation (3.8) reduces to the following

(3.9) τ +
2

3
(b2τ − θmbm) = 0,

(3.10)
2

3
θ +

1

3
(7 + 18b2)βτ = 0,
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whence

(3.11) θ = −1

2
(7 + 18b2)βτ.

Then Theorem 3.1(1) yields

s0 = − 1

3(θb2 − βbmθm)
.

This implies
θb2 − βbmθm = 0.

From (3.8), (3.9) and (3.11), we obtain

(3.12) θ = −1

2
(7 + 18b2)βτ.

From equations (3.9) and (3.12), it follows that τ = 0 and substituting τ = 0 in
equation (3.12), we get θ = 0. Thus finally (1),(2) and (3) reduce to the following

sij = 0, Gl
α = 0, r00 = 0.

Since s0 = r00 = 0, then equations (3.3) and (3.4) reduce to

P = 0 and Qi = 0.

Then the relation (3.2) becomes Gi
α = 0, which completes the proof. �

Theorem 3.3. Let F = α + β + β2

α be a non-Riemannian metric on n-dimensional
(n ≥ 3) manifold M . Then F is locally dually flat with isotropic S-curvature. More-
over, S = (n+ 1)cF if and only if the structure is locally Minkowskian.

Proof. From Theorem 3.2 we have that F = α+β+ β2

α is dually flat and projectively
flat in any adapted coordinate system. By Lemma 2.1, we infer

Fxk = CFFyk .

Hence the spray coefficients Gi = Pyi are given by P = 1
2CF . Since Gi = 0,

then P = 0, and hence C = 0. This implies that Fxk = 0, and then F is a locally
Minkowskian metric in the adapted coordinate system. �

4 Conclusions

The authors S. I. Amari and H. Nagaoka ([1]) introduced the notion of dually flat
Riemannian metrics, while studying information geometry on Riemannian manifolds.
Information geometry emerged from investigating the geometrical structure of a family
of probability distributions and was successfully applied to various areas, including
statistical inference, control system theorem and multi-terminal information theorem.

As known, Finsler geometry is just Riemannian geometry without the quadratic
restriction. Therefore, it is natural to extend the construction of locally dually flat
metrics to Finsler geometry. In Finsler geometry, Z.Shen[6] extended the notion of lo-
cally dually flat metric in Finsler information geometry, which plays a very important
role in studying many applications in Finsler information structures.

In this article, we study and characterize the locally dually flat first approximate
Matsumoto metric with isotropic S-curvature which is not Riemannian.
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