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Abstract. We discuss the Tzitzeica equation and the spectral properties
associated with its Lax operator L. We prove that the continuous spec-
trum of L is rotated with respect to the contour of the Riemann-Hilbert
problem with angle π/6. We also show that the poles of the dressing
factors and their inverses are discrete eigenvalues of L.
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1 Introduction

The famous Tzitzeica equation:

2
∂2φ

∂ξ∂η
= e2φ − e−4φ,(1.1)

was discovered more than a century ago [15, 16] and was first used to analyze special
surfaces in differential geometry for which the ratio K/d4 is constant, see also [18, 17].
Here K is the Gauss curvature of the surface and d is the distance from the origin to
the tangent plane at the given point. At the end of 1970-is eq. (1.1) was established
to have higher integrals of motion [4]. Next Zhiber and Shabat [22] proved that it
is completely integrable Hamiltonian system. Finally Mikhailov constructed its Lax
pair [10, 11] which possesses highly nontrivial symmetry, known today as the group
of reductions. In fact along with the sine-Gordon eq., Tzitzeica equation (1.1) is one
of the simplest representatives of the well known by now 2-dimensional Toda field
theories [10, 11].

The present paper proposes a study of the Lax representation of (1.1) and of
the spectral properties of the relevant Lax operator. In Section 2 we start with
preliminaries concerning the well known facts about the Lax representation and the
reductions, proposed by Mikhailov, used to pick it up from the generic Lax operators.
In the next Section 3 we construct the fundamental analytic solution of L. We prove
that it has analyticity properties with respect to λ in each of the sectors Ων , ν =
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0, . . . , 5, see eq. (3.4) and Figure 1. In the next Section 4, starting from a dressing
factor inspired by Zakaharov-Shabat-Mikhailov [21, 11], we outline the construction
of the generic N -soliton solutions of Tzitzeica eq. In Section 5 we analyze the spectral
properties of the Lax pair. We construct the kernel of the resolvent in terms od the
FAS of L, see eq. (5.2) below. The theorem 5.1 demonstrates that the continuous
spectrum of L is on the rays bν (5.4) and is rotated with respect to the contour of the
RHP on angle π/6. We prove that the poles of the dressing factors and their inverse
are discrete eigenvalues of L.

2 Preliminaries

We start with the Lax representation of Tzitzeica equation found by Mikhailov [10,
11].

L1Ψ ≡ ∂Ψ
∂ξ

− (U0 + λU1)Ψ(ξ, η, λ) = 0,

L2Ψ ≡ ∂Ψ
∂η

− (V0 + λ−1V1)Ψ(ξ, η, λ) = 0,

(2.1)

where

(2.2)

U0 = −



φ1,ξ 0 0
0 φ2,ξ 0
0 0 φ3,ξ


 , U1 =




0 eφ1−φ2 0
0 0 eφ2−φ3

eφ1−φ3 0 0


 ,

V0 =




φ1,η 0 0
0 φ2,η 0
0 0 φ3,η


 , V1 =




0 0 eφ1−φ3

eφ1−φ2 0 0
0 eφ2−φ3 0


 .

It is easy to check that the compatibility conditions of L1 and L2 gives the equation:

2
∂2φα

∂ξ∂η
= e2(φα−φα+1) − e2(φα−1−φα), α = 1, 2, 3,(2.3)

where α± 1 should be taken mod 3, which generalizes the Tzitzeica equation.
Following Mikhailov, we impose reductions of the Lax pair [10, 11]. We notice

that the Lax pair above satisfies identically a Z3-reduction of the form:

Q−1Ψ(ξ, η, λ)Q = Ψ(ξ, η, qλ), Q =




1 0 0
0 q 0
0 0 q2


 , q = e2πi/3.(2.4)

We also impose two Z2-reductions, as follows.

1. The first Z2-reduction is

Ψ∗(ξ, η, λ∗) = Ψ(ξ, η, λ),
U0 = U∗

0 , U1 = U∗
1 , V0 = V ∗

0 , V1 = V ∗
1 ,

(2.5)

i.e., the fields φk = φ∗k are real functions.
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2. The second Z2-reduction

A−1
0 Ψ†(ξ, η,−λ∗)A0 = Ψ−1(ξ, η, λ), A0 =




0 0 1
0 1 0
1 0 0


 ,(2.6)

A−1
0 U†

kA0 = (−1)k+1Uk, A−1
0 V †

k A0 = (−1)k+1Vk, k = 1, 2.(2.7)

These conditions lead to:

φ1 = −φ3 = φ, φ2 = 0,(2.8)

and

U1 =




0 eφ 0
0 0 eφ

e−2φ 0 0


 V1 =




0 0 e−2φ

eφ 0 0
0 eφ 0


 .(2.9)

After the last reduction Tzitzeica equation acquires its classical form (1.1). There is
another form of (1.1) which we will call Tzitzeica II:

2
∂2φ

∂ξ∂η
= −e2φ + e−4φ,(2.10)

which is obtained from (1.1) by replacing ξ → iξ and η → iη.
In what follows we will construct the fundamental analytic solutions (FAS) of the

Lax pair. For the sake of convenience we will apply to the Lax pair a simple gauge
transformation after which the new Lax operator takes the form:

Lχ ≡ i
∂χ

∂ξ
+ (Q(ξ)− λJ)χ(ξ, λ) = 0,(2.11)

where we have replaced iλ by λ and
(2.12)

χ(ξ, λ) = f0e
−φH1Ψ(ξ, λ), Q(ξ) = −2

∂φ

∂ξ
(J − J T ), J = diag (q, 1, q2),

J =
1√
3




0 1 0
0 0 1
1 0 0


 , f0 =

1√
3




q 1 q2

1 1 1
q2 1 q


 .

3 The FAS of the Lax operators with Zn-reduction.

The idea for the FAS for the generalized Zakharov-Shabat (GZS) system has been
proposed by Shabat [14]. However for the GZS J is with real eigenvalues, while our
Lax operator has complex eigenvalues.

The Jost solutions of eq. (2.11) are defined by:

lim
ξ→−∞

χ+(ξ, λ)eiλJξ = 11, lim
ξ→∞

χ−(ξ, λ)eiλJξ = 11.(3.1)
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They satisfy the integral equations:

Y±(ξ, λ) = 11 +
∫ ξ

±∞
dye−iλJ(ξ−y)Q(y)Y±(y, λ)eiλJ(ξ−y),(3.2)

where Y±(ξ, λ) = χ±(ξ, λ)eiλJξ. Unfortunately, with our choice for J = diag (q, 1, q2)
this integral equations have no solutions. The reason is that the factors eiλJ(ξ−y) in
the kernel in (3.2) can not be made to decrease simultaneously.

Following the ideas of Caudrey, Beals and Coifman, see [3, 2, 8] we start with
the Jost solutions for potentials on compact support, i.e. assume that Q(ξ) = 0 for
ξ < −L0 and ξ > L0. Then the integrals in (3.2) converge and one can prove the
existence of Y±(ξ, λ).

Our next step will be to determine the continuous spectrum of L. As we shall
show below, the continuous spectrum of L consists of those points λ, for which

Im λ(Jk − Jj) = Im λ(q2−k − q2−j) = 0.(3.3)

It is easy to check that for each pair of indices k 6= j eq. (3.3) has a solution of the
form arg λ = const kj . The solutions for all choices of the pairs k, j fill up a pair of
rays lν and lν+3 which are given by:

lν : arg(λ) =
π(2ν + 1)

6
, Ων :

π(2ν + 1)
6

≤ arg λ ≤ π(2ν + 3)
6

,(3.4)

where ν = 0, . . . , 5, see Fig. 1.
Thus the analyticity regions of the FAS are the 6 sectors Ων , ν = 0, . . . , 6 split

up by the set of rays lν , ν = 0, . . . , 5, see Fig. 1. Now we will outline how one can
construct a FAS in each of these sectors.

Obviously, if Im λα(J) = 0 on the rays lν ∪ lν+3, then Im λα(J) > 0 for λ ∈
Ων ∪ Ων+1 ∪ Ων+2 and Im λα(J) < 0 for λ ∈ Ων−1 ∪ Ων−2 ∪ Ων−3; of course all
indices here are understood modulo 6. As a result the factors e−iλJ(ξ−y) will decay
exponentially if Im α(J) < 0 and ξ − y > 0 or if Im α(J) > 0 and ξ − y < 0. In eq.
(3.5) below we have listed the signs of Imα(J) for each of the sectors Ων .

To each ray one can relate the root satisfying Im λα(J) = 0, i.e.

(3.5)
l0, ±(e1 − e2) Ω0 α1 < 0, α2 > 0 α3 > 0
l1, ±(e1 − e3) Ω1 α1 > 0, α2 > 0 α3 < 0
l2, ±(e2 − e3) Ω2 α1 < 0, α2 < 0 α3 < 0.

There are two fundamental regions: Ω0 and Ω1. The transition from Ω0 and Ω1 to
the other sectors is realized by the automorphism C0:

(3.6) C0Ων ≡ Ων+2, C0lν ≡ lν+2, ν = 0, 1, 2.

The next step is to construct the set of integral equations for FAS which will be
analytic in Ων . They are different from the integral equations for the Jost solutions
(3.2) because for each choice of the matrix element (k, j) we specify the lower limit
of the integral so that all exponential factors eiλ(Jk−Jj)(ξ−y) decrease for ξ, y → ±∞,

(3.7) Xν
kj(ξ, λ) = δkj + i

∫ x

εkj∞
dye−iλ(Jk−Jj)(ξ−y)

h∑
p=1

Qkp(y)Xν
pj(y, λ),
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Figure 1: The contour of the RHP with Z3-symmetry fills up the rays lν , ν = 1, . . . , 6.
By × and ⊗ (resp. by + and ⊕) we have denoted the locations of the discrete
eigenvalues corresponding to a soliton of first type (resp. of second type).

where the signs εkj for each of the sectors Ων are collected in the table 1, see also
[19, 7, 9]. We also assume that for k = j εkk = −1.

The solution of the integral equations (3.7) will be the FAS of L in the sector Ων .
The asymptotics of Xν(x, λ) and Xν−1(x, λ) along the ray lν can be written in the
form [8, 9]:

(3.8)

lim
x→−∞

eiλJxXν(x, λei0)e−iλJx = S+
ν (λ), λ ∈ lν ,

lim
x→∞

eiλJxXν(x, λei0)e−iλJx = T−ν (λ)D+
ν (λ), λ ∈ lν ,

lim
x→−∞

eiλJxXν−1(x, λe−i0)e−iλJx = S−ν (λ), λ ∈ lν ,

lim
x→∞

eiλJxXν−1(x, λe−i0)e−iλJx = T+
ν (λ)D−

ν (λ), λ ∈ lν ,

where the matrices S±ν and T±ν belong to su(2) subgroups of sl(3). More specifically
from the integral equations (3.7) we find:

(3.9)

S+
0 (λ) = 11 + s+

0;21E21, T−0 (λ) = 11 + τ−0;12E12,

S−0 (λ) = 11 + s+
0;12E12, T+

0 (λ) = 11 + τ+
0;21E21,

D+
0 (λ) = d+

0;1E11 +
1

d+
0;1

E22 + E33, D−
0 (λ) =

1
d−0;1

E11 + d−0;1E22 + E33.
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(k, j) (1,2) (1,3) (2,3) (2,1) (3,2) (3,1)
Ω0 − + + + − −
Ω1 − + − + − +
Ω2 − + − + − +
Ω3 + + + − − −
Ω4 − + − + − +
Ω5 − + − + + −

Table 1: The set of signs εkj for each of the sectors Ων .

and

(3.10)

S+
1 (λ) = 11 + s+

1;31E31, T−1 (λ) = 11 + τ−1;13E13,

S−1 (λ) = 11 + s+
1;13E13, T+

1 (λ) = 11 + τ+
1;31E31,

D+
1 (λ) = d+

1;1E11 + E22 +
1

d+
1;1

E33, D−
1 (λ) =

1
d−1;1

E11 + E22 + d−1;1E33,

where by Ekj we mean a 3× 3 matrix with matrix elements (Ekj)mn = δumδjn.
The corresponding factors for the asymptotics of Xν(x, λei0) for ν > 1 are obtained

from eqs. (3.9), (3.10) by applying the automorphism C0. If we consider potential on
finite support, then we can define not only the Jost solutions Ψ±(x, λ) but also the
scattering matrix T (λ) = χ−(x, λ)χ−1

+ (x, λ). The factors S±ν (λ), T±ν (λ) and D±
ν (λ)

provide an analog of the Gauss decomposition of the scattering matrix with respect
to the ν-ordering, i.e.:

(3.11) Tν(λ) = T−ν (λ)D+
ν (λ)Ŝ+

ν (λ) = T+
ν (λ)D−

ν (λ)Ŝ−ν (λ), λ ∈ lν .

The Zn-symmetry imposes the following constraints on the FAS and on the scat-
tering matrix and its factors:

(3.12)
C0X

ν(x, λω)C−1
0 = Xν−2(x, λ), C0Tν(λω)C−1

0 = Tν−2(λ),

C0S
±
ν (λω)C−1

0 = S±ν−2(λ), C0D
±
ν (λω)C−1

0 = D±
ν−2(λ),

where the index ν − 2 should be taken modulo 6. Consequently we can view as
independent only the data on two of the rays, e.g. on l0 and l1; all the rest will be
recovered using the reduction conditions.

If in addition we impose the Z2-symmetry, then we will have also:
(3.13)

a) K−1
0 (Xν(x,−λ∗))†K0 = X̂N+1−ν(x, λ), K−1

0 (S±ν (−λ∗))K0 = Ŝ∓N+1−ν(λ),

b) K−1
0 (Xν(x, λ∗))∗K0 = X̂ν(x, λ), K−1

0 (S±ν (λ∗))K0 = Ŝ∓N+1−ν(λ),

where by ‘hat’ we denote the inverse matrix. Analogous relations hold true for T±ν (λ)
and D±

ν (λ). One can prove also that D+
ν (λ) (resp. D−

ν (λ)) allows analytic extension
for λ ∈ Ων (resp. for λ ∈ Ων−1. Another important fact is that D+

ν (λ) = D−
ν+1(λ) for

all λ ∈ Ων .
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The next important step is the possibility to reduce the solution of the ISP for
the GZSs to a (local) RHP. More precisely, we have:

(3.14)
Xν(x, η, λ) = Xν−1(x, η, λ)Gν(x, η, λ), λ ∈ lν ,

Gν(x, η, λ) = eiλJξ−λ−1V2tG0,ν(λ)e−iλJξ+λ−1V2t, G0,ν(λ) = Ŝ−ν S+
ν (λ)

∣∣∣
t=0

.

The collection of all these relations for ν = 0, 1, . . . , 5 together with

(3.15) lim
λ→∞

Xν(x, η, λ) = 11,

can be viewed as a local RHP posed on the collection of rays Σ ≡ {lν}2N
ν=1 with

canonical normalization. Rather straightforwardly we can prove that if Xν(x, λ) is a
solution of the RHP then χν(x, λ) = Xν(x, λ)e−iλJξ is a FAS of L with potential

(3.16) Q(ξ, t) = lim
λ→∞

λ
(
J −Xν(ξ, η, λ)JX̂ν(ξ, η, λ)

)
.

4 The dressing method and the N-soliton solutions

There are several methods for effective calculations of soliton solutions for Tzitzeica
eq., see [12, 20, 13]. It is also well known that Tzitzeica eq. has two types of one-
soliton solutions, see below. The dressing method that we will use below [21, 11, 10]
allows us also to find how the spectral properties of L change due to the dressing.

Let us consider dressing factor of the following form:

u(ξ, η, λ) = 11 +
2∑

s=0

(
N1∑

l=1

Q−sAlQ
s

λ− λlqs
+

N∑

r=N1+1

Q−sArQ
s

λ− λrqs
+

N∑

r=N1+1

Q−sA∗rQ
s

λ− (λ∗r)qs

)
,

(4.1)

with 3N1 + 6N2 poles and λp is real if p ∈ 1, N1 and complex if p ∈ N1 + 1, N1 + N2.
Then we write down the residues Ak(ξ, η) as degenerate matrices of the form:

Ak(ξ, η) = |nk(ξ, η)〉〈mT
k (ξ, η)|, (Ak)ij(ξ, η) = nki(ξ, η)mkj(ξ, η).(4.2)

Thus u(ξ, η, λ) has 9 poles located at λ1q
k with λ1 real and λ2q

k, λ∗2q
k, with k = 0, 1, 2

and λ2 complex. From the second Z2-reduction, A−1
0 u†(ξ, η,−λ∗)A0 = u−1(ξ, η, λ),

after taking the limit λ → λk, we obtain algebraic equation for |nk〉 in terms of 〈mT
k |:

|ν〉 = M−1|µ〉.(4.3)

Below for simplicity we write down the matrix M for N1 = N2 = 1:

|ν〉 =



|n1〉
|n2〉
|n∗2〉


 , |µ〉 =




A0|m1〉
A0|m2〉
A0|m∗

2〉


 , M =




A B B∗

B∗ D E
B E∗ D∗


 ,(4.4)
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(4.5)

A =
1

2λ3
1

diag (Q(1), Q(2), Q(3)), B =
1

λ3
1 + λ3

2

diag (P (1), P (2), P (3)),

D =
1

2λ3
2

diag (P (1), P (2), P (3)), E =
1

λ3
2 + λ∗,32

diag (K(1),K(2), K(3)),

Q(j) = 〈mT
1 |Λ(j)

11 (λl, λ1)|m1〉, K(j) = 〈m∗,T
2 |Λ(j)

12 (λ1, λ
∗
2)|m1〉,

P (j) = 〈mT
2 |Λ(j)

21 (λ2, λ1)|ml〉,
with

(4.6) Λ(j)
lp = −λlλpE1+j,3−j + λ2

l E2+j,2−j + λ2
pE3+j,1−j , j = 1, 2, 3.

For example, in order to obtain the 2-soliton solution of the Tzitzeica equation we
take the limit λ → 0 in the equations satisfied by the dressing factor u(ξ, η, λ) and
integrate. The result is:

(4.7) φNs(ξ, η) = −1
2

ln
∣∣∣∣1−

n1,1m1,1

λ1
− n2,1m2,1

λ2
− n∗2,1m

∗
2,1

λ∗2

∣∣∣∣ .

The above formulae can be easily generalized for any N1 and N2.
For the sake of brevity we skip the details, which allow one to obtain the explicit

form of the N -soliton solutions. We just mention that along with the explicit expres-
sions for the vectors |nk〉 in terms of 〈mj | that follow from (4.3)–(4.6) and take into
account that |mj〉 are solutions of the ‘naked’ Lax operator with vanishing potential
φ = 0.

5 The resolvent of the Lax operator

The FAS can be used to construct the kernel of the resolvent of the Lax operator L.
In this section by χν(ξ, λ) we will denote:

χν(ξ, λ) = u(ξ, λ)χν
0(ξ, λ),(5.1)

where χν
0(ξ, λ) is a regular FAS and u(ξ, λ) is a dressing factor of general form (4.1).

Remark 5.1. The dressing factor u(ξ, λ) has 3N1 +6N2 simple poles located at λlq
p,

λrq
p and λ∗rq

p where l = 1, . . . , N1, r = 1, . . . , N2 and p = 0, 1, 2. Its inverse u−1(ξ, λ)
has also 3N1+6N2 poles located −λlq

p, −λrq
p and −λ∗rq

p. In what follows for brevity
we will denote them by λj , −λj for j = 1, . . . , 3N1 + 6N2.

Let us introduce

(5.2) Rν(ξ, ξ′, λ) =
1
i
χν(ξ, λ)Θν(ξ − ξ′)χ̂ν(ξ′, λ),

Θν(ξ − ξ′) = diag
(
η(1)

ν θ(η(1)
ν (ξ − ξ′)), η(2)

ν θ(η(2)
ν (ξ − ξ′)), η(3)

ν θ(η(3)
ν (ξ − ξ′))

)
,(5.3)

where θ(ξ − ξ′) is the step-function and η
(k)
ν = ±1, see the table 2.

Theorem 5.1. Let Q(ξ) be a Schwartz-type function and let λ±j be the simple zeroes
of the dressing factor u(ξ, λ) (4.1). Then
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Υ0 Υ1 Υ2 Υ3 Υ4 Υ5

η
(1)
ν − − − + + +

η
(2)
ν + + − − − +

η
(3)
ν − + + + − −

Table 2: The set of signs η
(k)
ν for each of the sectors Υν (5.4).

1. The functions Rν(ξ, ξ′, λ) are analytic for λ ∈ Υν where

bν : arg λ =
π(ν + 1)

3
, Υν :

π(ν + 1)
3

≤ arg λ ≤ π(ν + 2)
3

,(5.4)

having pole singularities at ±λ±j ;

2. Rν(ξ, ξ′, λ) is a kernel of a bounded integral operator for λ ∈ Υν ;

3. Rν(ξ, ξ′, λ) is uniformly bounded function for λ ∈ bν and provides a kernel of
an unbounded integral operator;

4. Rν(ξ, ξ′, λ) satisfy the equation:

(5.5) L(λ)Rν(ξ, ξ′, λ) = 11δ(ξ − ξ′).

Idea of the proof. 1. First we shall prove that Rν(ξ, ξ′, λ) has no jumps on the
rays lν . From Section 3 we know that Xν(ξ, λ) and therefore also χν(ξ, λ) are
analytic for λ ∈ Ων . So we have to show that the limits of Rν(ξ, ξ′, λ) for λ → lν
from Υν and Υν−1 are equal. Let show that for ν = 0. From the asymptotics
(3.8) and from the RHP (3.14) we have:

χ0(ξ, λ) = χ1(ξ, λ)G1(λ), G1(λ) = Ŝ+
1 (λ)S−1 (λ), λ ∈ l1,(5.6)

where G1(λ) belongs to an SL(2) subgroup of SL(3) and is such that it com-
mutes with Θ1(ξ − ξ′). Thus we conclude that

R1(ξ, ξ′, λe+i0) = R1(ξ, ξ′, λe−i0), λ ∈ l1.(5.7)

Analogously we prove that Rν(ξ, ξ′, λe+i0) has no jumps on the other rays lν .

The jumps on the rays bν appear because of two reasons: first, because of the
functions Θν(ξ − ξ′) and second, it is easy to check that for λ ∈ bν the kernel
Rν(ξ, ξ′, λ) oscillates for ξ, ξ′ tending to ±∞. Thus on these lines the resolvent
is unbounded integral operator.

2. Assume that λ ∈ Υν and consider the asymptotic behavior of Rν(ξ, ξ′, λ) for
ξ, ξ′ →∞. From equations (3.8) we find that

Rν
ij(ξ, ξ

′, λ) =
n∑

p=1

Xν
ip(ξ, λ)e−iλJp(ξ−ξ′)Θν;pp(ξ − ξ′)X̂ν

pj(ξ
′, λ).(5.8)



20 N. C. Babalic, R. Constantinescu, V. S. Gerdjikov

Due to the fact that χν(ξ, λ) has the special triangular asymptotics for ξ →∞
and λ ∈ Υν and for the correct choice of Θν(ξ−ξ′) (5.3) we check that the right
hand side of (5.8) falls off exponentially for ξ → ∞ and arbitrary choice of ξ′.
All other possibilities are treated analogously.

3. For λ ∈ bν the arguments of 2) can not be applied because the exponentials
in the right hand side of (5.8) Im λ = 0 only oscillate. Thus we conclude that
Rν(ξ, ξ′, λ) for λ ∈ bν is only a bounded function and thus the corresponding
operator R(λ) is an unbounded integral operator.

4. The proof of eq. (5.5) follows from the fact that L(λ)χν(ξ, λ) = 0 and

(5.9)
∂Θ(ξ − ξ′)

∂ξ
= 11δ(ξ − ξ′),

which concludes the proof. ¤

Lemma 5.2. The poles of Rν(ξ, ξ′, λ) coincide with the poles of the dressing factors
u(ξ, λ) and its inverse u−1(ξ, λ).

Proof. The proof follows immediately from the definition of Rν(ξ, ξ′, λ) and from
Remark 5.1. ¤

Thus we have established that dressing by the factor u(ξ, λ), we in fact add to
the discrete spectrum of the Lax operator 6N1 + 12N2 discrete eigenvalues; for N1 =
N2 = 1 they are shown on Figure 1.

6 Conclusions

We have constructed the FAS of L which satisfy a RHP on the set of rays lν . We
also constructed the resolvent of the Lax operator and proved that its continuous
spectrum fills up the rays bν rather than lν . From Figure 1 we see that the eigenvalues
corresponding to the solitons of first type lay on the continuous spectrum of L. This
explains why the solitons of first type are singular functions.

Using the explicit form of the resolvent Rν(ξ, ξ′, λ) and the contour integration
method one can derive the completeness relation of the FAS. One can derive also the
soliton solutions of the other NLEE in Tzitzeica hierarchy [5, 6]. These equations
also have Lax representation with the same Lax operator L, but with different M -
operators; usually they are taken to be polynomial in λ. So in deriving their soliton
solutions we will need to change only the η-dependence of the vectors mk.

Similarly one can construct the N -soliton solutions also of the Tzitzeica-II equation
and analyze the spectral properties of the relevant Lax operator. This, along with
the details of calculating the N -soliton solutions will be published elsewhere.
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