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Abstract. In this paper, we use a non-Killing conformal vector field on
an n-dimensional compact Riemannian manifold (M, g) to find a charac-
terization of a n-sphere Sn(c). We also use a non-Killing conformal vector
field on an n-dimensional complete connected Riemannian manifold to
find a characterization of the Euclidean space Rn.
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1 Introduction

A smooth vector field ξ on a Riemannian manifold (M, g) is said to a conformal vector
field if there exists a smooth function f on M that satisfies £ξg = 2fg, where £ξg is
the Lie derivative of g with respect ξ, that is the flow of the vector field ξ consists of
conformal transformations of the Riemannian manifold (M, g), the function f is called
the potential function of the conformal vector field ξ. We say ξ a nontrivial conformal
vector field if ξ is a non-Killing conformal vector field. If the conformal vector field ξ is
a closed vector field, then ξ is said to be a closed conformal vector field. Riemannian
manifolds admitting closed conformal vector fields or conformal gradient vector fields
have been investigated in (cf. [3], [4], [7], [9]-[10]) and it has been observed that there
is a close relationship between the potential functions of conformal vector fields and
Obata’s differential equation. In [2], conformal vector fields those are also eigenvectors
of the Laplacian operator have been studied on a compact Riemannian manifold of
constant scalar curvature and under a suitable restriction on the Ricci curvature
of this manifold it is shown that the Riemannian manifold must be isometric to a
sphere. Note that the scalar curvature of the Riemannian manifold being constant
(or the manifold is an Einstein manifold) gives a convenient combination with the
presence of a conformal vector field to study the geometry of the manifold, specially
in getting the characterizations of spheres using conformal vector field. However, if
the scalar curvature of the Riemannian manifold is not a constant, then finding such
characterizations is a difficult task and we do not find results in the existing literature
studying the geometry of Riemannian manifolds of non-constant scalar curvature
admitting a conformal vector field.
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Let (M, g) be an n-dimensional compact Riemannian manifold that admits a non-
trivial conformal vector field ξ with potential function f . We denote by λ1 the first
nonzero eigenvalue of the Laplacian operator ∆ acting on smooth functions of M and
by Ric and S the Ricci tensor field and the scalar curvature of M respectively. In this
short note, we attempt to study the geometry of a compact Riemannian manifold of
non-constant scalar curvature that admits a nontrivial conformal vector field, with
a mild condition that the scalar curvature is constant along the integral curves of
the conformal vector field. Such a condition together with an upper bound on the
scalar curvature and a lower bound on the Ricci curvature in certain direction gives
a characterization of a n-sphere, as seen the following theorem, which we intend to
prove in this paper.

Theorem 1.1. Let ξ be a nontrivial conformal vector field with potential function f
on an n-dimensional compact and connected Riemannian manifold (M, g). Let λ1 be
the first nonzero eigenvalue of the Laplacian operator ∆ on M . If the scalar curvature
S satisfies

ξ(S) = 0, S ≤ (n− 1)λ1,

and the Ricci curvature in the direction of the gradient vector field ∇f of the potential
function f is bounded below by n−1S, then M is isometric to a n-sphere Sn(c), for a
constant c.

Note that there are several nontrivial conformal vector fields on a n-sphere Sn(c)
and all the conditions of the above theorem are satisfied for Sn(c) and thus the
above theorem gives a necessary and sufficient condition for an n-dimensional compact
and connected Riemannian manifold to be isometric to a Sn(c), that is it gives a
characterization of a n-sphere.

Next, consider the Euclidean space Rn, the position vector field ξ on Rn is a gra-
dient conformal non-Killing vector field, that is ξ = ∇ρ, where ρ = 1

2 ‖ξ‖2. Moreover,
the vector field ξ satisfies ∆ξ = 0, where ∆ is the rough Laplacian operator acting
on the smooth vector fields on Rn, that is the vector field ξ is a harmonic gradient
conformal vector field. The natural question arises as to whether such a vector field
characterizes the Euclidean space. We show that the answer to this question is in
affirmative without assuming that the nontrivial conformal vector field being a gradi-
ent conformal vector field and with the flatness of Rn being replaced by the condition
that the vector field ξ annihilates the Ricci operator Q, which is the symmetric (1, 1)-
tensor field associated to the Ricci tensor Ric of the Riemannian manifold (M, g)
by Ric(X,Y ) = g(QX,Y ) for smooth vector fields X and Y . Indeed, we prove the
following :

Theorem 1.2. An n-dimensional complete and connected Riemannian manifold (M, g),
(n ≥ 3), admits a nontrivial harmonic conformal field ξ that annihilates the Ricci op-
erator and satisfies dη(X, ξ) = 0 for smooth vector fields X on M , where η is the
1-form dual to ξ, if and only if M is isometric to the Euclidean space Rn.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with Lie algebra X(M) of
smooth vector fields on M . A vector field ξ ∈ X(M) is said to be a conformal
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vector field if

(2.1) £ξg = 2fg,

for a smooth function f ∈ C∞(M), called the potential function, where £ξ is the Lie
derivative with respect to ξ. Using Koszul’s formula (cf. [1]), we immediately obtain
the following for a vector field ξ on M

(2.2) 2g(∇Xξ, Y ) = (£ξg) (X,Y ) + dη(X, Y ), X, Y ∈ X(M),

where η is the 1-form dual to ξ that is η(X) = g(X, ξ), X ∈ X(M). Define a skew
symmetric tensor field ϕ of type (1, 1) on M by

(2.3) dη(X,Y ) = 2g(ϕX, Y ), X, Y ∈ X(M).

Then using equations (2.1), (2.2) and (2.3), we immediately get the following

(2.4) ∇Xξ = fX + ϕX, X ∈ X(M).

Recall that a conformal vector field ξ is said to be a nontrivial conformal vector
field if ξ is not a Killing vector field. For example, consider the n-sphere Sn(c) of

constant curvature c (that is of radius
√

1
c ) as hypersurface of the Euclidean space

Rn+1 with unit normal vector field N and take a constant vector field Z on Rn+1,
which can be expressed as Z = ξ + ρN , where ξ is the tangential component of Z to
Sn(c) and ρ = 〈Z, N〉 is the smooth function on Sn(c), 〈, 〉 being the Euclidean metric
on Rn+1. Then it is easy to show that £ξg = −2

√
cρg, that is ξ is a conformal vector

field on Sn(c) with potential function f = −√cρ and it is easy to show that it is a
nontrivial conformal vector field.

We shall denote by ∆ the Laplacian operator acting on smooth functions on M and
by λ1 the first nonzero eigenvalue of the Laplacian operator ∆. For a smooth function
h ∈ C∞(M) on the Riemannian manifold (M, g), we denote by ∇h the gradient of h
and by Ah the Hessian operator Ah : X(M) → X(M) defined by Ah(X) = ∇X∇h.
On an n-dimensional compact Riemannian manifold (M, g) that admits a conformal
vector field ξ, using the skew symmetry of the tensor field ϕ the equation (2.4) gives
div ξ = nf and consequently, we have

(2.5)
∫

M

f = 0,

which gives

(2.6)
∫

M

‖∇f‖2 ≥ λ1

∫

M

f2.

Also, we have div(fξ) = ξ(f) + nf2, which gives

(2.7)
∫

M

g(∇f, ξ) = −n

∫

M

f2.
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Note that the smooth 2-form given by g(ϕX, Y ) is closed and therefore, we have

(2.8) g ((∇ϕ)(X, Y ), Z) + g ((∇ϕ)(Y,Z), X) + g ((∇ϕ)(Z, X), Y ) = 0,

where the covariant derivative (∇ϕ)(X, Y ) = ∇XϕY − ϕ(∇XY ), X,Y ∈ X(M).
Moreover, we compute the curvature tensor field R(X, Y )ξ, using the equation (2.4)
to arrive at

R(X, Y )ξ = X(f)Y − Y (f)X + (∇ϕ)(X, Y )− (∇ϕ)(Y, X).

Using the above equation in the equation (2.8) and the skew-symmetry of the tensor
field ϕ, we get

g (R(X, Y )ξ + Y (f)X −X(f)Y,Z) + g ((∇ϕ)(Z,X), Y ) = 0,

that is

(2.9) (∇ϕ)(X, Y ) = R(X, ξ)Y + Y (f)X − g(X, Y )∇f, X, Y ∈ X(M).

The Ricci operator Q is a symmetric (1, 1)-tensor field that is defined by g(QX, Y ) =
Ric(X,Y ), X,Y ∈ X(M), where Ric is the Ricci tensor of the Riemannian manifold.
Choosing a local orthonormal frame {e1, ..., en} on M , and using

Q(X) =
∑

R(X, ei)ei,

in the equation (2.9), we compute

(2.10)
∑

(∇ϕ)(ei, ei) = −Q(ξ)− (n− 1)∇f.

The operator ∆ : X(M) → X(M) on a Riemannian manifold (M, g) defined by

∆X =
∑(∇ei∇eiX −∇∇ei

eiX
)
,

where {ei, ..., en} is a local orthonormal frame on M is called the rough Laplacian
operator acting on smooth vector fields on M , and a smooth vector field ξ on M is
said to be a harmonic vector field if ∆ξ = 0.

3 Proof of the Theorems

Lemma 3.1. Let ξ be a conformal vector field on a compact Riemannian manifold
(M, g) with potential function f . Then,

∫

M

(
(n− 1) ‖∇f‖2 +

n− 2
2

Sf2 +
S

2
g(∇f, ξ)

)
= 0,

where ∇f is the gradient of the function f and S is the scalar curvature.
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Proof. Recall by a well known formula (cf. [1]), we have

(3.1)
n∑

i=1

(∇Q)(ei, ei) =
1
2
∇S,

where {e1, ..., en} is a local orthonormal frame on M and (∇Q)(X,Y ) = ∇XQY −
Q(∇XY ), X, Y ∈ X(M). We use a point wise constant local orthonormal frame
{e1, ..., en} and the equations (2.4), (3.1) to compute the divergence of the vector
field Q(ξ) as

div Q(ξ) =
n∑

i=1

g(∇ei
Q(ξ), ei) =

n∑

i=1

eig(ξ, Q(ei))

=
n∑

i=1

g(fei + ϕei, Qei) +
1
2
ξ(S)

= fS +
1
2
ξ(S) +

n∑

i=1

g(ϕei, Qei).

Choosing a local orthonormal frame that diagonalizes the symmetric operator Q and
using the skew-symmetry of the tensor ϕ, we conclude that

∑n
i=1 g(ϕei, Qei) = 0,

which together with above equation gives

div Q(ξ) = fS +
1
2
ξ(S).

Using the above equation we get

div(fQ(ξ)) = Ric(∇f, ξ) + Sf2 +
1
2
fξ(S).

Also, we have div(fSξ) = fξ(S)+S div(fξ) = fξ(S)+Sξ(f)+nSf2, which together
with the above equation gives

(3.2) div Q(ξ) = Ric(∇f, ξ) + Sf2 +
1
2

(
div(fSξ)− Sξ(f)− nSf2

)
.

Now, we use the equation (2.9), to compute the divergence of the vector field ϕ(∇f)
and get

div(ϕ(∇f)) = 0− g (∇f,−Q(ξ)− (n− 1)∇f)

= Ric(∇f, ξ) + (n− 1) ‖∇f‖2 ,

where we have used
∑

g(Afei, ϕei) = 0, which follows by the fact that the Hessian
operator Af is symmetric and the tensor field ϕ is skew-symmetric. Using the above
equation in the equation (3.2) and integrating the resulting equation, we get the
Lemma. ¤

Now, we proceed to prove the Theorem 1.1. Note that the condition ξ(S) = 0,
gives

Sg(∇f, ξ) = Sξ(f) = div(fSξ)− f div(Sξ)
= div(fSξ)− f(0 + nfS).
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Inserting this value in the Lemma 3.1, we get
∫

M

(
(n− 1) ‖∇f‖2 − Sf2

)
= 0,

which together with the inequality (2.6) gives
∫

M

((n− 1)λ1 − S) f2 ≤ 0.

Now, using the upper bound on the scalar curvature S in the statement, we conclude
that

((n− 1)λ1 − S) f2 = 0

Note that the above equation on the connected M implies either S = (n − 1)λ1 or
else f = 0. However, the second option together with the equation (2.1) implies that
ξ is a Killing vector field, which is contradictory to the fact that ξ is a nontrivial
conformal vector field. Hence, we have S = (n− 1)λ1, that is the scalar curvature S
is a constant. Now, the Lemma 3.1, together with the equation (2.7) gives

(3.3)
∫

M

‖∇f‖2 = λ1

∫

M

f2,

that is the inequality in (2.6) is the equality, which hold if and only if ∆f = −λ1f .
Now, we have the following Bochner’s formula

∫

M

(
Ric(∇f,∇f) + ‖Af‖2 − (∆f)2

)
= 0,

which gives

(3.4)
∫

M

((
Ric(∇f,∇f)− S

n
‖∇f‖2

)
+

(
‖Af‖2 − 1

n
(∆f)2

))
= 0,

where we used the equality ∆f = −λ1f and the equation (3.3). As the trace TrAf =

∆f , we know that ‖Af‖2 ≥ 1
n (∆f)2 and the equality holds if and only if Af =

(
∆f
n

)
I.

Thus, using the lower bound on the Ricci curvature R(∇f,∇f), in the equation (3.4),
we have

Af =
(

∆f

n

)
I = −λ1

n
fI,

that is

(3.5) ∇X∇f = −λ1

n
fX, X ∈ X(M).

Note that if the potential function f is a constant, then the equation (2.5) gives f = 0
and that will imply ξ is a Killing vector field which is not allowed by the hypothesis.
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Hence f is a non-constant function which satisfies the Obata’s equation (3.5) (cf. [5],
[6]), and consequently, M is isometric to a n-sphere Sn(c).

Finally, to prove the Theorem 1.2, first observe that the position vector field ξ on
the Euclidean space Rn is a nontrivial gradient conformal vector field that satisfies

(3.6) ∆ξ = 0 and Qξ = 0.

Since ξ is a gradient of a smooth function, we have dη = 0, where η is smooth 1-form
dual to ξ, we see that the vector field ξ satisfies the requirement of the hypothesis
of the Theorem. Conversely, suppose ξ is a nontrivial conformal vector field on an
n-dimensional complete and connected Riemannian manifold (M, g) that satisfies the
equation (3.6) and that the condition dη(X, ξ) = 0, X ∈ X(M) holds. Then the
equation (2.3) gives

(3.7) ϕξ = 0.

Let {e1, ..., en} be a local orthonormal frame on M . Then the equation (2.10) gives

(3.8)
∑

(∇ϕ) (ei, ei) = −Q(ξ)− (n− 1)∇f = −(n− 1)∇f

Now, we use the equation (2.4) to compute

∇X∇Xξ −∇∇XXξ = X(f)X + (∇ϕ) (X,X),

which gives

(3.9) ∆ξ = ∇f +
∑

(∇ϕ) (ei, ei) = 0.

Combining the equations (3.8) and (3.9), we get ∇f = 0 on the connected M , that
is f is a constant. Define a smooth function h by h = 1

2 ‖ξ‖2, which on using the
equation (2.4) has the gradient

(3.10) ∇h = fξ − ϕξ = fξ.

We claim that the function h is a non-constant function, for otherwise, we have fξ = 0,
which gives either the constant f = 0 or that ξ = 0. In both cases we get that ξ is a
Killing vector field, which contradicts our assumption that ξ is a nontrivial conformal
vector field. Using the equations (2.4) and (3.10) and the fact that f is a constant,
we get

∇X∇h = f(fX + ϕX), X ∈ X(M).

The above equation gives

(3.11) Hh(X,Y ) = f2g(X, Y ) + fg(ϕX, Y ), X, Y ∈ X(M),

where Hh(X, Y ) = g(AhX, Y ) is the Hessian of the smooth function h. Now, using
the symmetry of the Hessian Hh and the skew-symmetry of ϕ in the equation (3.11),
we get fϕ = 0, and as argued above the constant f 6= 0, and consequently, ϕ = 0.
Hence the equation (3.11) takes the form

Hh(X, Y ) = f2g(X,Y ), X, Y ∈ X(M),

for a nonzero constant f , which proves that M is isometric to the Euclidean space
Rn (cf. [8]).
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