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Abstract. The classical Cartan’s structural equations show in a compact
way the relation between a connection and its curvature, and reveals their
geometric interpretation in terms of moving frames. In order to study the
mathematical properties of singularities, we need to study the geometry of
manifolds endowed on the tangent bundle with a symmetric bilinear form
which is allowed to become degenerate. But if the fundamental tensor is
allowed to be degenerate, there are some obstructions in constructing the
geometric objects normally associated to the fundamental tensor. Also,
local orthonormal frames and coframes no longer exist, as well as the met-
ric connection and its curvature operator. This article shows that, if the
fundamental tensor is radical stationary, we can construct in a canonical
way geometric objects, determined only by the fundamental form, simi-
lar to the connection and curvature forms of Cartan. In particular, if the
fundamental tensor is non-degenerate, we obtain the usual connection and
curvature forms of Cartan. We write analogs of Cartan’s first and second
structural equations. As a byproduct we will find a compact version of
the Koszul formula.
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1 Introduction

In semi-Riemannian geometry (including Riemannian), Cartan’s first and second
structural equations establish the relation between a local orthonormal frame, the
connection, and its curvature. We are interested in having such powerful tools in sin-
gular semi-Riemannian geometry [7, 10], which is the geometry of manifolds endowed
on the tangent bundle with a symmetric bilinear form, which is allowed to become
degenerate and change the signature. Singular semi-Riemannian geometry has been
used successfully by the author to study the big bang singularity of the Friedmann-
Lemâıtre-Robertson-Walker spacetimes [9, 14], the black hole singularities of the
Schwarzschild, Reissner-Nordström, and Kerr-Newman spacetimes [12, 8, 13, 16], the
Einstein equation at singularities [15] and quantum gravity [11].
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But if we replace the metric with a symmetric bilinear form which is allowed
to become degenerate, as in singular semi-Riemannian geometry, the fundamental
tensor cannot be inverted, to construct orthonormal coframes. Moreover, in the
absence of the inverse of the fundamental tensor, we need to find a way to construct
objects which do the job of the Levi-Civita connection, and of the Riemann curvature.
One important operation is the metric contraction between covariant indices, which
requires a contravariant fundamental tensor. In Riemannian and semi-Riemannian
geometry, the contravariant fundamental tensor is obtained by inverting the covariant
fundamental tensor [6, 17], but if this one is degenerate, we can no longer invert it.

These difficulties were avoided in [7], where instead of the metric connection was
used the Koszul object, and it was defined a Riemann curvature Rabcd, which coincides
to the usual Riemann curvature tensor if the fundamental tensor is non-degenerate.
In [7] it was shown that, even when the metric is not invertible, a generalized metric
contraction at a point p ∈ M can be defined in an invariant way, on the subspace
T •pM of the cotangent space T ∗p M , which consists in covectors of the form ω(V ) =
g(U, V ), U, V ∈ TpM . The contraction was shown to be well defined and has been
extended to tensors of higher order, so long as these tensors live in the subspace
T •pM . This contraction was used to define the Riemann curvature tensor Rabcd.

In this article, I will show how to write structural equations similar to Cartan’s,
but which are valid for singular semi-Riemannian geometry, as well as for the non-
singular one. Section §2 recalls briefly the main notions of singular semi-Riemannian
manifolds, which will be used in the article. In section §3 I construct the connection
forms, and derive the first structural equation for radical-stationary manifolds. The
curvature forms are defined in section §4, which contains the derivation of the second
structural equation for radical-stationary manifolds.

2 Brief review of singular semi-Riemannian
manifolds

We recall some of the main results about singular semi-Riemannian manifolds, from
[7]. This paper is concerned with differentiable manifolds M , endowed with a symmet-
ric bilinear form g ∈ Γ(T ∗M ¯M T ∗M), named fundamental tensor or metric. The
fundamental tensor is allowed to be degenerate, or to become degenerate on some
regions. In this case, the pair (M, g) is named singular semi-Riemannian manifold.

Remark 2.1. The name “singular semi-Riemannian manifold” may be not very in-
spired, since it suggests that such a manifold is semi-Riemannian, while in fact is more
general, containing the non-degenerate case as a subcase. Despite this inadvertence,
this name is generally used in the literature ([3, 18, 2]), and I adhere to it. In addition,
whenever I introduce geometric objects which are similar to objects from the non-
degenerate semi-Riemannian geometry, and which generalize them, I try as much as
possible to use the standard terminology from semi-Riemannian geometry (see e.g.
[4]).

At any point p ∈ M , there is a frame in TpM in which the fundamental tensor g
has the diagonal form

diag(0, . . . , 0,−1, . . . ,−1, 1, . . . , 1),
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in which 0 appears r times, −1 appears s times, and 1 appears t times. The triple
(r, s, t) is named the signature of of g, and dim M = r+s+t, and rankg = s+t = n−r.
If the signature is allowed to vary from point to point, (M, g) is said to be with variable
signature, otherwise it is said to be with constant signature. If g is non-degenerate,
then (M, g) is named semi-Riemannian manifold, and if in addition it is positive
definite, (M, g) is named Riemannian manifold.

Remark 2.2. The theory developed in [7], and here, does not make any assumptions
about the degeneracy of the fundamental tensor. Because of this, these results also
apply to Riemannian and semi-Riemannian manifolds.

Remark 2.3. The signature of the fundamental tensor of a singular semi-Riemannian
manifold may vary from one region to another. In [1, 2], and in general in the liter-
ature, was preferred to maintain the signature constant. This is justifiable, because
the most singular behavior of fields takes place at the boundary between two regions
of different signature. But the development which took place in [7], especially the
introduction of the semi-regular manifolds, allows us to deal also with the situations
when the signature of the fundamental tensor is allowed to change.

The remaining of this section recalls very briefly the main notions and results on
singular semi-Riemannian manifolds, as developed in [7].

Let’s define the operator [ : TpM → T ∗p M , which associates to each vector Xp ∈
TpM the 1-form [(Xp) = X[

p ∈ T ∗p M , defined as X[
p(Y ) := g(Xp, Yp), for any Yp ∈

TpM . The operator [ is a morphism of vector spaces; it is an isomorphism if and only
if the fundamental tensor is non-degenerate, but the fact that it is a morphism will
be enough for the following. Note that, in general, there is no corresponding inverse
operator ] = [−1.

Let (TpM)• = [(TpM) ⊆ T ∗p M be the space of covectors at p ∈ M which can be
expressed as ωp = Y [

p , for some Yp ∈ TpM . We denote by T •M the subset of the
cotangent bundle defined as

T •M =
⋃

p∈M

(TpM)•.

The space T •M is a vector bundle if and only if the signature of the fundamental
tensor is constant.

We can define the subset of sections of T ∗M which are valued, at each p, in
(TpM)•, by

A•(M) := {ω ∈ Γ(T ∗M)|ωp ∈ (TpM)• for any p ∈ M}.

On Tp
•M we can define a unique non-degenerate inner product g•p by

g•p(ωp, τp) := g(Xp, Yp),

where Xp, Yp ∈ TpM , X[
p = ωp and Y [

p = τp. We alternatively use the notations
g•(ωp, τp) = ωp(•)τp(•), and call ωp(•)τp(•) the covariant metric contraction between
ωp and τp. This metric contraction is defined at all points of the manifold M , and
there is no need to exclude any of them. It is invariant for components living in the
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space (TpM)•. It is not defined for components living in TpM
∗ − (TpM)•, therefore

it will be applied only to components living in the space (TpM)•.
The Koszul object is defined as

(2.1) K : X(M)3 → R,

K(X, Y, Z) :=
1
2
{Xg(Y,Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X,Y ])}.
For a non-degenerate fundamental tensor g, we can define the covariant derivative

∇XY of a vector field Y in the direction of a vector field X, where X, Y ∈ X(M), by
the Koszul formula g(∇XY, Z) = K(X,Y, Z) (cf. e.g. [4], p. 61). For a fundamental
tensor g which can be degenerate, the covariant derivative cannot be extracted from
the Koszul formula. But a lot of what can be done using the covariant derivative,
can also be accomplished by working with the Koszul object, which is defined and
smooth independently on the rank and signature of g.

Like the Koszul object from the non-degenerate case, our Koszul object is not a
tensor, but it can be used to construct a Riemann curvature, which is tensor. Its
components in a chart are Kabc = K(∂a, ∂b, ∂c) = 1

2 (∂agbc + ∂bgca − ∂cgab), which are
Christoffel’s symbols of the first kind, Γcab = [ab, c].

Definition 2.4 (see [2] Definition 3.1.3). A manifold (M, g) is called radical-
stationary if the Koszul object satisfies the condition

(2.2) K(X, Y, ) ∈ A•(M),

for any X, Y ∈ X(M).

Definition 2.5. A radical-stationary manifold (M, g) whose Koszul object satisfies

K(X,Y, •)K(Z, T, •) ∈ F (M)

for any X, Y, Z, T ∈ X(M), is called semi-regular manifold.

Remark 2.6. If the signature of the fundamental tensor of a radical-stationary mani-
fold (M, g) is constant, then (M, g) is semi-regular. The important difference appears
at the points where the signature of g changes. In general, at signature changes
the covariant metric contraction blows up. The condition from the definition 2.5 en-
sures that this doesn’t happen for K(X,Y, •)K(Z, T, •). This is enough to ensure nice
properties, in particular a smooth Riemann curvature (definition 2.8).

Remark 2.7. In [7] it was given a different definition for semi-regular manifolds.
The Definition 2.5 was proved in [7] to be equivalent. Similarly, the definition of the
Riemann curvature given in [7] is different than the one given below, but they are
shown to be equivalent. I preferred here these definitions, because they simplify the
task of finding the structure equations.

Definition 2.8. Let (M, g) be a radical-stationary manifold. The object

(2.3) R : X(M)× X(M)× X(M)× X(M) → R,
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R(X, Y, Z, T ) = XK(Y, Z, T )− YK(X, Z, T )−K([X,Y ], Z, T )
+K(X,Z, •)K(Y, T, •)−K(Y, Z, •)K(X, T, •),

for any vector fields X, Y, Z, T ∈ X(M), is called the Riemann curvature associated
to the Koszul object K.

Remark 2.9. In [7] is shown that the Riemann curvature is a tensor, and has the
same symmetries as the Riemann curvature tensor from the non-degenerate case. In
the non-degenerate case, it coincides to the Riemann curvature tensor R(X, Y, Z, T ).

3 The first structural equation

Cartan’s first structural equation shows how a moving coframe rotates when moving in
one direction, due to the connection. In the following, we will derive the first structural
equation for the case when the fundamental tensor is allowed to be degenerate. Of
course, in this case we will not have a notion of local orthonormal frame, and we will
work instead with vectors and annihilator covectors. The following decomposition of
the Koszul object will be needed to derive the first structural equation.

3.1 The decomposition of the Koszul object

Lemma 3.1. The Koszul object (2.1) decomposes as

(3.1) 2K(X, Y, Z) = (dY [)(X, Z) + (LY g)(X, Z).

Proof. From the formula for the exterior derivative we get

(dY [)(X, Z) = X
(
Y [(Z)

)− Z
(
Y [(X)

)− Y [([X, Z])
= Xg(Y, Z)− Zg(X,Y ) + g(Y, [Z,X]).

The Lie derivative is

(LY g)(Z, X) = Y g(Z,X)− g([Y, Z], X)− g(Z, [Y, X])
= Y g(Z,X)− g(X, [Y, Z]) + g(Z, [X, Y ]).

The relation (3.1) follows then immediately. ¤

Corollary 3.2. The Koszul object (2.1) has the property

(dY [)(X, Z) = K(X, Y, Z)−K(Z, Y,X).

Proof. This is an immediate consequence of the properties of the Koszul object and
the Lemma 3.1. ¤

3.2 The connection forms

Let (M, g) be a non-degenerate manifold. If (Ea)n
a=1 is a local orthonormal frame

on M with respect to g, then its dual (ωb)n
b=1, defined by ωb(Ea) = δb

a, is also
orthonormal. The 1-forms ωa

b, 1 ≤ a, b ≤ n defined as

(3.2) ωa
b(X) := ωb(∇XEa)
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are called the connection forms (cf. e.g. [5]).
It is important to be aware that the indices a, b label the connection 1-forms ωa

b,
and they don’t represent the components of a form.

For a general fundamental tensor g, there is no Levi-Civita connection ∇X with
respect to g, and hence ∇XEa does not exist. Also, a frame (Ea)n

a=1 cannot be
orthonormal with respect to g, but it can be orthogonal. But its dual frame (ωb)n

b=1

cannot even be orthogonal, because the fundamental tensor g•(ω, τ) is not defined
for the entire T ∗M , but only for T •M . Here I show an alternative way to define
connection 1-forms for this case.

Definition 3.1. Let X,Y ∈ X(M) be two vector fields. Then, the 1-form defined as

(3.3) ωXY (Z) := K(Z, X, Y )

is called the connection form associated to the Koszul object K and the vector fields
X, Y . In particular, we define ωab by

(3.4) ωab(Z) := ωEaEb
(Z).

Remark 3.2. The fact that ωXY is 1-form follows from the fact that the Koszul
object is linear, and F (M)-linear in the first argument.

3.3 The first structural equation

Let (M, g) be a radical-stationary manifold.

Lemma 3.3. The following equation, called the first structural equation determined
by the metric g, holds

(3.5) dX[ = ωX• ∧ •[,

where ωX• ∧ •[ is the metric contraction of ωXY ∧ Z[ in Y,Z.

Proof. From the Lemma 3.1 and from the formula (2.1) of the Koszul object, we find

(3.6) (dX[)(Y, Z) = K(Y, X,Z)−K(Z,X, Y ).

By replacing the Koszul object with the connection 1-form, we get

(3.7) (dX[)(Y, Z) = ωXZ(Y )− ωXY (Z).

By using the properties of the metric contraction and the property of (M, g) of being
radical-stationary, we can expand the Koszul object as

K(X, Y, Z) = K(X,Y, •)g(•, Z) = K(X,Y, •)
(
•[(Z)

)
.

We can do the same for the connection 1-form, i.e. ,

ωY Z(X) = ωY •(X)g(•, Z) = ωY •(X)
(
•[(Z)

)
=

(
ωY • ⊗ •[

)
(X, Z).

The equation (3.7) becomes

(dX[)(Y, Z) =
(
ωX• ⊗ •[

)
(Y, Z)− (

ωX• ⊗ •[
)
(Z, Y )

=
(
ωX• ∧ •[

)
(Y,Z).

¤
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The following corollary shows how we get the first structural equation as we know
it.

Corollary 3.4. If the fundamental tensor g is non-degenerate, (Ea)n
a=1 is an or-

thonormal frame, and (ωa)n
a=1 is its dual, then

(3.8) dωa = −ωs
a ∧ ωs.

Proof. From K(X, Y, Z) +K(X, Z, Y ) = Xg(Y, Z), it follows

ωEaEb
(X) + ωEbEa(X) = Xg(Ea, Eb) = X(δab) = 0,

and therefore
ωEaEb

= −ωEbEa
.

From equation (3.5) we obtain

dE[
a = ωEaEs

∧ ωs.

Since ωEaEs = −ωEsEa and ωa = E[
a, the equation (3.8) follows. ¤

Remark 3.3. The version of the first structural equation obtained here has the
advantage that it can be defined for general vector fields, which are not necessarily
from an orthonormal local frame, or a local frame in general. It is well defined even
if the fundamental tensor becomes degenerate (but radical-stationary). Of course, at
the points where the signature changes we should not expect to have continuity, but
on the regions of constant signature the contraction is smooth. If the manifold (M, g)
is semi-regular, the smoothness is ensured even at the points where the fundamental
tensor changes its signature.

4 The second structural equation

4.1 The curvature forms

Definition 4.1. Let (M, g) be a radical-stationary manifold, let X, Y, Z, T ∈ X(M)
be four vector fields, and R(X, Y, Z, T ) the Riemann curvature tensor. Then, the
2-form

(4.1) ΩXY (Z, T ) := R(X,Y, Z, T )

is called the Riemann curvature form associated to the Koszul object K, and the
vector fields X, Y . In particular, if (Ea)n

a=1 is a frame field, we define Ωab by

(4.2) Ωab(Z, T ) := ΩEaEb
(Z, T ).

4.2 The second structural equation

Lemma 4.1. Let (M, g) be a radical-stationary manifold, and let X,Y ∈ X(M) be
two vector fields. Then, the equation

(4.3) ΩXY = dωXY + ωX• ∧ ωY •

holds, and is called the second structural equation determined by the metric g.
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Proof. From the definition of the exterior derivative it follows

(4.4) dωXY (Z, T ) = Z (ωXY (T ))− T (ωXY (Z))− ωXY ([T, Z])
= ZK(T, X, Y )− TK(Z, X, Y )−K([T, Z], X, Y ).

On the other hand,

(4.5)
(ωX• ∧ ωY •) (Z, T ) = ωX•(Z)ωY •(T )− ωX•(T )ωY •(Z)

= K(Z,X, •)K(T, Y, •)−K(T, X, •)K(Z, Y, •).

From the equation (2.3), it follows

(4.6)
R(X, Y, Z, T ) = ZK(T, X, Y )− TK(Z, X, Y )−K([Z, T ], X, Y )

+K(Z, X, •)K(T, Y, •)−K(T, X, •)K(Z, Y, •),

and from the identities (4.4), (4.5) and (4.6) the equation (4.3) follows. ¤
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