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Abstract. We show that the holonomy invariance of a function on the
tangent bundle of a manifold, together with very mild regularity condi-
tions on the function, is equivalent to the existence of local parallelisms
compatible with the function in a natural way. Thus, in particular, we
obtain a characterization of generalized Berwald manifolds. We also con-
struct a simple example of a generalized Berwald manifold which is not
Berwald.

M.S.C. 2010: 53B05, 53B40.
Key words: holonomy invariance; parallel translation; parallelism; generalized Ber-
wald manifold; one-form manifold.

1 Introduction

A function given on the tangent bundle of a manifold is said to be holonomy invariant
if there is a covariant derivative on the manifold whose parallel translations preserve
the function. The Finsler function of a generalized Berwald manifold is an example
of such a function. So is, in particular, the Finsler function of a Berwald manifold, in
which case the covariant derivative is torsion-free and unique.

Berwald manifolds have been studied intensely; many equivalent definitions and
characterizations are known (see, e.g., [9]), and there is a nice classification of this type
of Finsler manifolds due to the structure theorem of Szabó [7]. Such a classification of
generalized Berwald manifolds is not yet known, nevertheless many interesting papers
have been written on the subject, for example, by Hashiguchi and Ichijyō [3], Ichijyō
[4, 5], Szakál and Szilasi [8], Tamássy [11] and Vincze [12, 13].

The present work was strongly motivated by the papers [4, 5] of Ichijyō, in which
he proved that the connected generalized Berwald manifolds are the same as the so-
called {V, H}-manifolds. Ichijyō was interested in ‘Finsler manifolds modeled on a
Minkowski space’, that is, Finsler manifolds such that the tangent spaces are ‘isomet-
rically linearly isomorphic’ to a single Minkowski space. He introduced the slightly
stronger concept of a {V,H}-manifold, consisting of a vector space V endowed with
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a Minkowski norm (or a Finsler norm, as we prefer to call it) and a manifold with
an H-structure (in the sense of a G-structure), where H is a Lie subgroup of GL(V )
leaving the Minkowski norm invariant. Such a manifold can be endowed with a Finsler
function which is modeled on the Minkowski space V . One can use the H-compatible
local trivializations of the tangent bundle to transfer the Minkowski norm of V to the
tangent spaces. The so obtained Finsler function is well-defined, because the transi-
tion mappings between H-compatible trivializations preserve the Minkowski norm by
assumption. The surprising result of Ichijyō was that {V, H}-manifolds are no more
general than generalized Berwald manifolds.

It is worth noting that the Finsler function constructed on a {V, H}-manifold is
locally a one-form Finsler function. Indeed, each H-compatible local trivialization
can be identified with a local co-frame (αi)n

i=1, then our Finsler function is locally of
the form F = f ◦ (α1, . . . , αn), where f is a Minkowski norm on Rn. For a systematic
study of one-form Finsler functions, see [6].

Hashiguchi suggested (Problem 9 in [2]) that one should define {V, H}-manifolds
under weaker conditions, more precisely, that the conditions on the Finsler function
are too strong. In this paper we generalize Ichijyō’s concept. We consider an arbi-
trary function on the tangent manifold compatible with a covering parallelism (Def-
inition 3.2). We use parallelisms instead of an H-structure for conceptual simplicity
only, so if the function is in particular a Finsler function, our notion is equivalent to
that of {V, H}-manifolds.

Using our new definition, we reformulate and also generalize Ichijyō’s theorem:
instead of the strong regularity conditions imposed on Finsler functions, we require
only continuity and a kind of definiteness. Under such mild assumptions we prove
that the function is holonomy invariant if, and only if, it is compatible with a covering
parallelism on the manifold (Theorem 4.1). As a corollary, by applying this result
to a Finsler function, we obtain a characterization of generalized Berwald manifolds
(Corollary 4.3), analogous to Ichijyō’s result.

The structure of the paper is as follows. In Section 2 we introduce our notation
and conventions, and we also recall some basic facts concerning parallelisms. The
next section is devoted to the preparations required for the proof of our main result
in Section 4. Finally, we present a simple example of a non-Berwaldian generalized
Berwald manifold.

2 Preliminaries

Throughout the paper, by a manifold we mean a smooth manifold of dimension n
(n ≥ 2), whose underlying topological space is Hausdorff, second countable and con-
nected. The tangent bundle of a manifold M is τ : TM → M .

By a curve in a manifold we shall always mean a regular smooth curve whose
domain is an open interval containing 0.

Consider a curve γ : I → M . A vector field along γ is a smooth mapping X from
I to TM such that τ ◦ X = γ. A covariant derivative ∇ on M induces a covariant
derivative ∇γ on the C∞(I)-module of vector fields along γ such that for every t ∈ I
we have ∇γX(t) := ∇γ̇(t)X̄, where γ̇(t) is the velocity of γ at t, and X̄ is a vector
field on M such that (locally) X̄ ◦ γ = X.
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A vector field X along γ is parallel (with respect to ∇) if it satisfies the ordinary
differential equation ∇γX = 0. The parallel translation along γ from γ(0) to γ(t) is
the mapping

P t
γ : Tγ(0)M → Tγ(t)M, v 7→ X(t),

where X is the unique parallel vector field along γ such that X(0) = v. As is well-
known, this mapping is a linear isomorphism between the tangent spaces. Later we
simply write Pγ for P 1

γ if I contains 1.

Let π : P → M ×M be the vector bundle over M ×M whose fibre at a point (p, q)
is the real vector space Hom(TpM, TqM). A parallelism on M is a smooth section P
of this vector bundle satisfying

P (r, q) ◦ P (p, r) = P (p, q) and P (p, p) = 1TpM

for all p, q, r ∈ M (see [1, p. 174]). These conditions imply that the mappings

P (p, q) : TpM → TqM, (p, q) ∈ M ×M

are actually bijective.
Most manifolds do not admit a parallelism. Exactly those manifolds share this

property, which can be equipped with a global frame field. These manifolds are said
to be parallelizable. However, any point in a manifold has an open neighbourhood,
which is, as an open submanifold, parallelizable. Sometimes for a parallelism P on
an open submanifold U of M we use the notation (U , P ). A vector field X on U is
called P -parallel if X(q) = P (p, q)(X(p)) for any two points p, q in U .

By a covering parallelism of a manifold M we mean a family (Uα, Pα)α∈A of
parallelisms, where (Uα)α∈A is an open covering of M .

A parallelism (U , P ) induces a trivialization ϕ of TM over U , given by

ϕ : (q, v) ∈ U × Rn 7→ ϕ(q, v) := P (p, q) ◦ ηp(v) ∈ TM,

where p is a fixed point in U and ηp is an arbitrary linear isomorphism from Rn to
TpM . (Note that ϕ depends on p and ηp.) Then for any two points q and r in U we
have

(2.1) P (q, r) ◦ ϕq = ϕr,

where ϕq stands for the mapping v ∈ Rn 7→ ϕq(v) := ϕ(q, v) ∈ TqM .

3 Compatibility notions and auxiliary results

If M is a manifold and F : TM → R is any function, we use the notation Fp for the
restriction F ¹ TpM (p ∈ M).

In this section we introduce a natural notion of compatibility of such functions with
a covariant derivative and a parallelism. Roughly speaking, ‘compatibility’ means
here that the linear isomorphisms (between the tangent spaces) induced by the given
additional structure on M leave the function F invariant. For example, given a Finsler
manifold (M, F ) and a covariant derivative ∇ on M we can ask whether the induced
parallel translations preserve the Finsler norms of tangent vectors.

Now the precise definitions:
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Definition 3.1. Let ∇ be a covariant derivative on a manifold M and F a function
on TM . We say that F is holonomy invariant with respect to ∇, or F is compatible
with ∇, if the parallel translations induced by ∇ preserve F , that is, for any curve
γ : I → M and parameter t ∈ I we have

Fγ(t) ◦ P t
γ = Fγ(0).

Definition 3.2. A function F on TM is compatible with a parallelism P on M if F
takes the same value on parallel vectors, that is, for any p, q ∈ M the relation

Fq ◦ P (p, q) = Fp

holds. The function F is compatible with a covering parallelism (Uα, Pα)α∈A if the
restriction of F to τ−1(Uα) is compatible with the parallelism (Uα, Pα) for all α ∈ A.

In Section 4 we will show that for a very general class of functions on TM the
compatibility with a covariant derivative and with a covering parallelism are equiv-
alent properties. In the remainder of this section we develop some technical results
required for the proof.

Our first observation is that the compatibility of a function on TM and a paral-
lelism P can be expressed also in terms of a trivialization induced by P :

Lemma 3.1. If a function F : TM → R is compatible with a parallelism (U , P ) and
ϕ is a local trivialization of TM over U induced by P , then there exists a function f
on Rn such that f = Fp ◦ ϕp for all p ∈ U .

Proof. Consider the diagram

Rn ϕp−−−−→ TpM
Fp−−−−→ R

1Rn

y
yP (p,q)

y1R

Rn ϕq−−−−→ TqM
Fq−−−−→ R

for some p, q ∈ U . The left part of the diagram commutes by (2.1), while the right part
commutes by the compatibility of F and P . Hence the entire diagram is commutative
and we have Fp ◦ϕp = Fq ◦ϕq. Thus the function Fp ◦ϕp is independent of the chosen
point p of U , so we can set f := Fp ◦ ϕp. ¤

The next lemma is a mild generalization of a result of Ichijyō [4].

Lemma 3.2. Let V be a finite dimensional real vector space, and let f : V → R be a
continuous function which vanishes at 0, and only there. Then the ‘isometry group’

iso(f) := {A ∈ End(V ) | f ◦A = f}
of f is a Lie subgroup of GL(V ).

Proof. Notice first that the elements of iso(f) are invertible. Indeed, for any A in
iso(f) and any vector v in V \ {0} we have f ◦ A(v) = f(v) 6= 0, thus A(v) = 0 is
impossible by our condition on f . So it follows that iso(f) is a subset of GL(V ) and
also that iso(f) is a subgroup of GL(V ).
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It remains to show that the subgroup iso(f) is closed, then Cartan’s closed sub-
group theorem implies that iso(f) is indeed a Lie group. To do this, consider a
sequence (Ak) in iso(f) and assume that it converges to A ∈ End(V ). Then, taking
into account the continuity of f , we obtain

f(A(v)) = f

(
lim

k→∞
Ak(v)

)
= lim

k→∞
f(Ak(v)) = lim

k→∞
f(v) = f(v)

for any v ∈ V . This proves that A ∈ iso(f), whence iso(f) is closed in GL(V ). ¤

Our third lemma can be found in [14] as an exercise; for the reader’s convenience
we present it with a proof.

Lemma 3.3. Let G be a Lie subgroup of GL(Rn), g its Lie algebra, and let A : I → g
be a curve. If Φ: I → GL(Rn) is a solution of the initial value problem

(3.1) Φ′(t) = A(t) · Φ(t), Φ(0) = In,

then it takes values only in G. (Here the dot stands for matrix multiplication, and In
is the n by n identity matrix.)

Proof. We show that (3.1) implies that the curve t ∈ I 7→ (t,Φ(t)) ∈ R × GL(Rn) is
an integral curve of a vector field on R×G, thus Φ must run in G.

Since GL(Rn) is an open subset of Mn(R), we may identify its tangent manifold
with GL(Rn)×Mn(R). If %g denotes the right translation by g in GL(Rn) and RA(t) is
the right invariant vector field on GL(Rn) with RA(t)(In) = (In, A(t)), then we obtain

Φ̇(t) = (Φ(t), Φ′(t))
(3.1)
= (Φ(t), A(t) · Φ(t)) = (%Φ(t) In, %Φ(t)A(t))

= %Φ(t)∗(In, A(t)) = RA(t)(Φ(t)).

Thus t 7→ (t, Φ(t)) is an integral curve of the vector field

(3.2) (t, g) 7→ (
1t, RA(t)(g)

)

on R × GL(Rn). However, RA(t) is tangent to the submanifold G of GL(Rn), and,
obviously, (3.2) is tangent to R × G, so the restriction of (3.2) to R × G is a vector
field. ¤

Remark 3.3. The converse of the lemma is immediate: if Φ is a curve in G, then
Φ′(t) = A(t) · Φ(t) for some curve A in g.

4 The main result

Theorem 4.1. Let F : TM → R be a continuous function which is definite in the
sense that F (v) = 0 if, and only if, v = 0. Then F is holonomy invariant with respect
to some covariant derivative on the manifold M if, and only if, it is compatible with
a covering parallelism.
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Before the proof, we need a lemma which establishes a relation between compatible
parallelisms and covariant derivatives.

Let ∇ be a covariant derivative on an open subset U of M and (U , P ) a parallelism.
For each p ∈ U and v ∈ TpM , we define an endomorphism (∇P )v on TpM by
(∇P )v(w) := ∇vX, where X is the unique P -parallel vector field with X(p) = w.

The Christoffel symbols of ∇ with respect to a P -parallel frame field (Ei)n
i=1 are

the smooth functions Γi
jk on U given by ∇Ej Ek = Γi

jkEi. Then

(4.1) (∇P )v(w) = wkvjΓi
jk(p)Ei(p), where v = vjEj(p), w = wkEk(p),

(summation convention in force).

Lemma 4.2. Let P be a parallelism on a manifold U , and let F : TU → R be a
definite continuous function compatible with P . Then a covariant derivative ∇ is
compatible with F if, and only if, the endomorphism (∇P )v is in the Lie algebra
i(Fτ(v)) of iso(Fτ(v)) for any v ∈ TU .

Proof. We note first that iso(Fτ(v)) is a Lie group by Lemma 3.2, thus we can speak
of its Lie algebra i(Fτ(v)). Furthermore, since iso(Fτ(v)) is a closed submanifold of
the vector space End(Tτ(v)U), the Lie algebra i(Fτ(v)) can be regarded as a linear
subspace of End(Tτ(v)U), so the statement (∇P )v ∈ i(Fτ(v)) also makes sense.

Let γ : I → U be a curve, ϕ a trivialization of TU induced by P (see the end of
Section 2), and define the function f := Fγ(0) ◦ ϕγ(0) on Rn. Our first aim is to show
that F is invariant under P t

γ for any parameter t (cf. Definition 3.1) if, and only if,
the curve Φ: I → GL(Rn) given by

(4.2) Φ(t) := ϕ−1
γ(t) ◦ P t

γ ◦ ϕγ(0)

runs in iso(f). Indeed, since we also have f = Fγ(t) ◦ ϕγ(t) by Lemma 3.1, equation
(4.2) implies f ◦ Φ(t) = Fγ(t) ◦ P t

γ ◦ ϕγ(0) for each t ∈ I. If we compare this to the
definition of f , we see that the relations f ◦ Φ(t) = f and Fγ(t) ◦ P t

γ = Fγ(0) are
equivalent.

Next we show that Φ takes values only in iso(f) if, and only if, (∇P )γ̇(t) is in
i(Fγ(t)) for any t ∈ I. This will conclude the proof, since any vector in TU is the
velocity of a curve in U .

Consider a vector w ∈ Tγ(0)U . We have P t
γ(w) = X(t), where X is the unique

vector field along γ such that ∇γX = 0 and X(0) = w. Let (Ei)n
i=1 be the P -parallel

frame field on U given by Ei(p) := ϕ(p, ei). Then we can write X = Xi(Ei ◦ γ) and
γ̇ = (γ̇)i(Ei ◦ γ) for some smooth functions Xi, (γ̇)i on I, and for all t ∈ I we have

0 = ∇γX(t) = ∇γ(Xi(Ei ◦ γ))(t)

= (Xi)′(t)(Ei ◦ γ)(t) + Xi(t)(∇P )γ̇(t)Ei(γ(t))
(4.1)
=

(
(Xi)′(t) + (γ̇)j(t)Xk(t)Γi

jk(γ(t))
)
(Ei ◦ γ)(t).

Let Φ(t) = (Φi
j(t)). By (4.2) and by P t

γ(w) = X(t) we obtain wlΦi
l(t) = Xi(t), which,

together with the calculation above, lead to

0 = wl(Φi
l)
′ + wlΦk

l (γ̇)j(Γi
jk ◦ γ), i ∈ {1, . . . , n}.
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Since the vector w is arbitrary, we see that Φ satisfies an ODE of the form (3.1) with
A(t) =

(− (γ̇)j(t)Γi
jk(γ(t))

)
. Lemma 3.3 and Remark 3.3 imply that Φ runs in iso(f)

if, and only if, the matrices
(− (γ̇)j(t)Γi

jk(γ(t))
)

are in the Lie algebra i(f) of iso(f)
for each t ∈ I.

It remains to show that ((γ̇)j(t)Γi
jk(γ(t))) ∈ i(f) and (∇P )γ̇(t) ∈ i(Fγ(t)) are

equivalent for all t ∈ I. We consider i(f) and i(Fγ(t)) as linear subspaces of Mn(R)
and End(Tγ(t)U), respectively. We have the linear isomorphism

c : B ∈ Mn(R) 7→ ϕγ(t) ◦B ◦ ϕ−1
γ(t) ∈ End(Tγ(t)U).

In fact, c is just the mapping (Bi
k) 7→ Bi

kEk(γ(t)) ⊗ Ei(γ(t)) (where (Ei)n
i=1 is the

dual frame of (Ei)n
i=1), therefore

(4.3) c((γ̇)j(t)Γi
jk(γ(t))) = (γ̇)j(t)Γi

jk(γ(t))Ek(γ(t))⊗ Ei(γ(t))
(4.1)
= (∇P )γ̇(t).

One can easily check that c ¹ iso(f) is a group isomorphism from iso(f) to iso(Fγ(t)),
because Fγ(t) ◦ ϕγ(t) = f . Thus its derivative at the unit element is a linear isomor-
phism from i(f) onto i(Fγ(t)). However, c is linear, so its derivative is itself. We
conclude that c is a bijection from i(f) onto i(Fγ(t)), hence (4.3) implies our claim. ¤

Proof of Theorem 4.1. Consider a definite, continuous function F : TM → R. Recall
that our base manifold M is connected.

(1) First, let us assume that the function F is compatible with a covariant deriva-
tive ∇ on M . Fix a point p ∈ M and a chart (U , u) around p such that u(U) is convex
in Rn. Now we construct a parallelism on U . For an arbitrary point q ∈ U consider
the parametrized line segment cq connecting u(p) and u(q). Then γq := u−1 ◦ cq is
a curve in U connecting p with q. Now let P (p, q) := Pγq , where Pγq is the parallel
translation along γq with respect to ∇. For any q1, q2 ∈ U define P (q1, q2) as

P (q1, q2) := P (p, q2) ◦ P (p, q1)−1.

It can be checked easily that P is a parallelism over U ; the smoothness follows from the
smooth dependence on parameters of ODE solutions. It is also clear by the holonomy
invariance of F that for any q, r ∈ U we have

Fr ◦ P (q, r) = Fr ◦ Pγr ◦ P−1
γq

= Fp ◦ P−1
γq

= Fq,

which means that F is indeed compatible with P .
To obtain a covering parallelism of M , we can apply the same method for suffi-

ciently many p ∈ M .
(2) In this part we assume that F is compatible with a covering parallelism

(Uα, Pα)α∈A of M , and we construct a covariant derivative ∇ compatible with F .
We define a covariant derivative ∇α on each Uα by setting all of its Christoffel

symbols zero (with respect to a Pα-parallel frame field). Then for each v ∈ τ−1(Uα)
the endomorphism (∇αPα)v is zero. These covariant derivatives are compatible with
(the proper restrictions of) F by Lemma 4.2.

If Uα and Uβ intersect, and v ∈ τ−1(Uα ∩ Uβ), then the endomorphisms (∇αPβ)v

and (∇βPα)v are no longer zero in general, but they are still in the Lie algebra i(Fτ(v))
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of iso(Fτ(v)), since F is holonomy invariant with respect to ∇α and ∇β (over Uα and
Uβ , respectively). Thus, if we choose a partition of unity (fα)α∈A subordinate to the
covering (Uα)α∈A, the covariant derivative ∇ := fα∇α on M still has the property
that the endomorphisms (∇Pα)v are in i(Fτ(v)). Hence, by Lemma 4.2 again, ∇
is compatible with F over each Uα. However, if F is invariant under the parallel
translation along pieces of a curve, it is invariant along the entire curve, thus F is
holonomy invariant with respect to ∇, and the proof is complete. ¤

As a special case of Theorem 4.1, we obtain a characterization of generalized
Berwald manifolds. For our purposes the following definition of such manifolds is the
most convenient (cf., [8], Definition 4.1 and Proposition 4.3).

Definition 4.1. A Finsler manifold (M, F ) is said to be a generalized Berwald man-
ifold if there exists a covariant derivative ∇ on the base manifold M , such that the
parallel translations induced by ∇ preserve the Finsler function F .

This is just Definition 3.1 choosing F to be, in particular, a Finsler function, thus a
Finsler manifold (M, F ) is a generalized Berwald manifold if F is holonomy invariant
with respect to some covariant derivative on M . Using our main result we can express
this condition in terms of parallelisms.

Corollary 4.3. A Finsler manifold is a generalized Berwald manifold if, and only if,
the Finsler function is compatible with a covering parallelism.

Remark 4.2. All our results remain true in a more general setting. Let π : E → M be
an arbitrary (real) vector bundle, and let F : E → R be a continuous function which is
definite in the above sense. Also in this case it is possible to define the compatibility
of F with a covariant derivative on the vector bundle and with a covering parallelism
(the latter can be defined on the analogy of the tangent bundle case), and it turns
out again that these compatibility concepts are equivalent.

5 An example of a proper generalized Berwald
manifold

In this section we present a simple example of a generalized Berwald manifold, which
is not of Berwald type. The idea is to define a Finsler function on a manifold which
is compatible with a unique covariant derivative, and to show that this particular
covariant derivative has non-vanishing torsion.

Our example will be a two-dimensional Randers manifold. We are going to define
the covariant derivative with the help of a global parallelism, and heavily use that
there is a natural correspondence between the set of global parallelisms and 2-frames
on the manifold.

(1) Construction of the Randers manifold and a compatible parallelism. Let us
consider the two-dimensional manifold R2 and its standard global chart (R2, (x, y)).
Define a 2-frame on R2 by E1 := x ∂

∂x + ∂
∂y , E2 := − ∂

∂x , and let E1 := dy,

E2 := −dx+x dy be its dual frame. Consider the Finsler norm f :=
√

4x2 + 12y2−x
on R2. Then

F := f ◦ (E1, E2) =
√

4(dy)2 + 12(−dx + x dy)2 − dy
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is a Finsler function for R2 of Randers type.
The frame field (E1, E2) induces a parallelism

P (p, q)(v) := E1(v)E1(q) + E2(v)E2(q)

(p, q ∈ R2, v ∈ TpR2), which is compatible with the Finsler function F . Indeed, if
w := P (p, q)(v), then E1(w) = E1(v) and E2(w) = E2(v), hence F (w) = F (v).

(2) Construction of a compatible covariant derivative. Let ∇ be the covariant
derivative on R2 characterized by ∇E1 = ∇E2 = 0. Then for any p ∈ R2, v ∈ TpR2

the mapping

Xv : q ∈ R2 7→ Xv(q) := P (p, q)(v) := E1(v)E1(q) + E2(v)E2(q) ∈ TqR2

is a vector field on the plane satisfying ∇Xv = 0. Hence the parallel translation along
a curve γ : I → R2 acts by

P t
γ(v) = Xv(γ(t)) = P (γ(0), γ(t))(v) for v ∈ Tγ(0)R2.

Since F is compatible with the parallelism P , it follows that F is holonomy invariant
with respect to ∇. Therefore (R2, F ) is a generalized Berwald manifold.

(3) There is no other covariant derivative compatible with F . Notice first that
the isometry group of Fp has only two elements for any p ∈ R2. More precisely, in
the basis (E1(p), E2(p)), the elements of iso(Fp) are represented by the matrices

(
1 0
0 1

)
and

(
1 0
0 −1

)
.

Indeed, if we assume that a linear mapping A : R2 → R2 is an isometry of the Finsler
norm f :=

√
4x2 + 12y2 − x, then the four conditions that A preserves the norms of

the vectors (1, 0), (−1, 0), (0, 1) and (0,−1) imply that A is either the identity or the
reflection about the axis y = 0.

Now suppose that F is holonomy invariant with respect to another covariant
derivative ∇̄, and let γ : I → R2 be a curve. Then for the parallel translation P̄ t

γ we
have (P̄ t

γ)−1 ◦ P t
γ ∈ iso(Fγ(0)). The parallel translations are smooth, hence the linear

automorphism (P̄ t
γ)−1 ◦ P t

γ depends continuously on t. Since (P̄ 0
γ )−1 ◦ P 0

γ = 1Tγ(0)R2 ,
it follows that P t

γ = P̄ t
γ for all t ∈ I. Then ∇ = ∇̄, because a covariant derivative is

determined by its induced parallel translations (see, e.g., [10, Proposition 6.1.59]).
(4) The covariant derivative ∇ has non-vanishing torsion. Indeed,

T∇(E1, E2) = ∇E1E2 −∇E2E1 − [E1, E2] = − ∂

∂x
.

Thus (R2, F ) is not a Berwald manifold.
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