# A class of almost tangent structures in generalized geometry

A. M. Blaga and M. Crasmareanu

**Abstract.** A generalized almost tangent structure on the big tangent bundle  $T^{big}M$  associated to an almost tangent structure on M is considered and several features of it are studied with a special view towards integrability. Deformation under a  $\beta$ - or a B-field transformation and the compatibility with a class of generalized Riemannian metrics are discussed. Also, a notion of tangentomorphism is introduced as a diffeomorphism f preserving the (generalized) almost tangent geometry and some remarkable subspaces are proved to be invariant with respect to the lift of f.

M.S.C. 2010: 53C15, 53C10, 53D18.

 $\mathbf{Key}$   $\mathbf{words}:$  generalized almost tangent structure; generalized geometry; integrability.

#### 1 Introduction

Almost tangent structures were introduced by R. S. Clark and M. Bruckheimer [4] and H. A. Eliopoulos [10] around 1960 and have been investigated by several authors, see [3], [5]-[8], [19], [25]. As is well-known, the tangent bundle of a manifold carries a canonical integrable almost tangent structure, hence the name. This almost tangent structure plays an important role in the Lagrangian description of analytical mechanics, [7]-[8], [11], [18].

Our aim is to consider this type of structure in generalized geometry, a theory introduced by N. Hitchin [13] in order to unify complex and symplectic geometry; Hitchin's suggestion was continued by M. Gualtieri whose PhD thesis [12] is an outstanding work on this subject. More precisely, we consider various versions of almost tangent structures on the big tangent bundles  $T^{big}M$  and as main example we associate a generalized almost tangent structure  $\mathcal{J}_J$  to a given almost tangent one J on the base manifold M. Let us note that under various names, the notion of generalized almost tangent structure was already considered by I. Vaisman in [22]-[24].

The content of paper is as follows. After a short survey in almost tangent geometry and the construction of  $\mathcal{J}_J$  we study its invariance under  $\beta$ - and B-field transformations, respectively, and discuss the compatibility with generalized Riemannian metrics

Balkan Journal of Geometry and Its Applications, Vol.19, No.2, 2014, pp. 23-36.

<sup>©</sup> Balkan Society of Geometers, Geometry Balkan Press 2014.

of  $T^{big}M$  induced by usual Riemannian metrics. Under the name of tangentomorphisms we consider the diffeomorphisms f between two almost tangent manifolds preserving their almost tangent structures and consider the same problem on the big tangent bundles. Some remarkable subspaces are associated with a fixed tangentomorphism and their invariance with respect to  $\mathcal{J}_J$  is proved. Since integrability is an important issue in a geometry induced by a tensor field of (1,1)-type, we study simultaneously integrability of two generalized almost tangent structures  $\mathcal{J}_j$  by means of simultaneous integrability of  $J_1, J_2$  of M. The last Section is devoted to the interplay between  $\mathcal{J}_J$  and the covariant derivative induced by the Levi-Civita connection of the base manifold M.

### 2 Almost tangent geometry revisited

Let M be a smooth, m-dimensional real manifold for which we denote:  $C^{\infty}(M)$ -the real algebra of smooth real functions on M,  $\Gamma(TM)$ -the Lie algebra of vector fields on M,  $T_s^r(M)$ -the  $C^{\infty}(M)$ -module of tensor fields of (r,s)-type on M. An element of  $T_1^1(M)$  is usually called *vector* 1-form or affinor.

Recall the concept of almost tangent geometry:

**Definition 2.1.**  $J \in T_1^1(M)$  is called *almost tangent structure* on M if it has a constant rank and:

$$(2.1) im J = \ker J.$$

The pair (M, J) is an almost tangent manifold.

The name is motivated by the fact that (2.1) implies the nilpotence  $J^2 = 0$  exactly as the natural tangent structure of tangent bundles. Denoting rankJ = n it results m = 2n. If in addition, we suppose that J is integrable i.e.:

$$(2.2) N_J(X,Y) := [JX,JY] - J[JX,Y] - J[X,JY] + J^2[X,Y] = 0,$$

then J is called tangent structure and (M, J) is called tangent manifold.

From [20, p. 3246] we get some features of tangent manifolds:

(i) the distribution imJ (= ker J) defines a foliation denoted by V(M) and called the vertical distribution.

**Example 2.2.**  $M = \mathbb{R}^2$ ,  $J_e(x,y) = (0,x)$  is a tangent structure with ker  $J_e$  the Y-axis, hence the name. The subscript e comes from "Euclidean", see also Example 7.4.

(ii) there exists an atlas on M with local coordinates  $(x,y)=\left(x^i,y^i\right)_{1\leq i\leq n}$  such that  $J=\frac{\partial}{\partial y^i}\otimes dx^i$  i.e.:

$$J\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial y^i}, \quad J\left(\frac{\partial}{\partial y^i}\right) = 0.$$

We call *canonical coordinates* the above (x, y) and the change of canonical coordinates  $(x, y) \to (\widetilde{x}, \widetilde{y})$  is given by:

(2.4) 
$$\begin{cases} \widetilde{x}^{i} = \widetilde{x}^{i}(x) \\ \widetilde{y}^{i} = \frac{\partial \widetilde{x}^{i}}{\partial x^{a}} y^{a} + B^{i}(x). \end{cases}$$

It results an alternative description in terms of G-structures. Namely, a tangent structure is a G-structure with:

$$(2.5) G = \{C = \begin{pmatrix} A & O_n \\ B & A \end{pmatrix} \in GL(2n, \mathbb{R}); \quad A \in GL(n, \mathbb{R}), B \in gl(n, \mathbb{R})\}$$

and G is the invariance group of matrix  $J=\binom{O_n\ O_n}{I_n\ O_n}$ , i.e.,  $C\in G$  if and only if  $C\cdot J=J\cdot C$ .

The natural almost tangent structure J of M=TN is an example of tangent structure having exactly the expression (2.3) if  $(x^i)$  are the coordinates on N and  $(y^i)$  are the coordinates in the fibers of  $TN \to N$ . Also,  $J_e$  of Example 2.2 has the above expression (2.3) with n=1, whence it is integrable. A third class of examples is obtained by duality: if J is an (integrable) endomorphism with  $J^2=0$  then its dual  $J^*: \Gamma(T^*M) \to \Gamma(T^*M)$ , given by  $J^*\alpha := \alpha \circ J$  for  $\alpha \in \Gamma(T^*M)$ , is (integrable) endomorphism with  $(J^*)^2=0$ . Let us call this type of endomorphisms a weak almost tangent structure.

### 3 Generalized almost tangent structures

Fix now a smooth manifold M of dimension m not necessary even. The framework of this work is provided by the manifold  $T^{big}M := TM \oplus T^*M$ . This manifold is the total space of a vector bundle  $\pi: T^{big}M \to M$ ; so  $T^{big}M$  is called the big tangent bundle of M [21] and the  $C^{\infty}$ -module of its sections  $\Gamma(T^{big}M)$  has the elements  $\mathcal{X} = (X, \alpha) = X + \alpha$ , where  $X \in \Gamma(TM)$  and  $\alpha \in \Gamma(T^*M)$ .  $T^{big}M$  is endowed with the Courant structure (<,>,[,]), [6]:

1. the (neutral) inner product (of signature (m, m)):

(3.1) 
$$g_{big}\left((X,\alpha),(Y,\beta)\right) = \frac{1}{2}\left(\beta(X) + \alpha(Y)\right);$$

2. the (skew-symmetric) Courant bracket:

$$(3.2) \qquad [(X,\alpha),(Y,\beta)]_C = \left([X,Y],\mathcal{L}_X\beta - \mathcal{L}_Y\alpha - \frac{1}{2}d(\beta(X) - \alpha(Y))\right).$$

The same manifold  $TM \oplus T^*M$  is called sometimes the Pontryagin bundle of M (in [14]) or generalized tangent bundle of M (in [17]).

Inspired by the first Section we introduce:

**Definition 3.1.** i) A weak classical generalized almost tangent structure on M is an endomorphism  $\mathcal{J}$  of the big tangent bundle  $T^{big}M$  satisfying:

$$(3.3) \mathcal{J}^2 = 0.$$

If, moreover,  $\mathcal{J}$  satisfies:

$$(3.4) \ker \mathcal{J} = im \mathcal{J},$$

then  $\mathcal{J}$  is a classical generalized almost tangent structure.

ii) ([23, p. 278]) If  $\mathcal{J}$  satisfies in addition the property of skew-symmetry with respect to  $g_{big}$ :

$$(3.5) g_{big}(\mathcal{J}\mathcal{X}, \mathcal{Y}) + g_{big}(\mathcal{X}, \mathcal{J}\mathcal{Y}) = 0,$$

then we call it (weak) generalized almost tangent structure. Moreover, if  $\mathcal{J}$  is integrable i.e. its Nijenhuis tensor vanishes:

$$(3.6) \qquad \mathcal{N}_{\mathcal{J}}(\mathcal{X}, \mathcal{Y}) := [\mathcal{J}\mathcal{X}, \mathcal{J}\mathcal{Y}]_C - \mathcal{J}[\mathcal{X}, \mathcal{J}\mathcal{Y}]_C - \mathcal{J}[\mathcal{J}\mathcal{X}, \mathcal{Y}]_C + \mathcal{J}[\mathcal{X}, \mathcal{Y}]_C = 0,$$

then  $\mathcal{J}$  is called (weak) generalized tangent structure.

iii) If  $\mathcal{J}(TM) \subset TM$  and  $\mathcal{J}(T^*M) \subset T^*M$  then  $\mathcal{J}$  is called (weak) splitting generalized (almost) tangent structure.

**Remark 3.2.** The interest in such types of endomorphisms comes from the theory of Dirac structures, a concept introduced in [6] in order to give a geometric theory of constrained (physical) systems; for other details see [1]. More precisely, as is pointed out in [24], for a weak generalized tangent structure  $\mathcal{J}$  its image  $im\mathcal{J} := \mathcal{D}_{\mathcal{J}}$  is a Dirac structure.

Recall after [12] that an arbitrary endomorphism  $\mathcal{J}$  can be represented in the matrix form:

(3.7) 
$$\mathcal{J} = \begin{pmatrix} A & \sharp_{\pi} \\ \flat_{\sigma} & B \end{pmatrix},$$

where:

$$\begin{cases} A: \Gamma(TM) \to \Gamma(TM), & A:=p_{TM} \circ \mathcal{J} \circ i_{TM} \\ \sharp_{\pi}: \Gamma(T^*M) \to \Gamma(TM), & \sharp_{\pi}:=p_{TM} \circ \mathcal{J} \circ i_{T^*M} \\ \flat_{\sigma}: \Gamma(TM) \to \Gamma(T^*M), & \flat_{\sigma}:=p_{T^*M} \circ \mathcal{J} \circ i_{TM} \\ B: \Gamma(T^*M) \to \Gamma(T^*M), & B:=p_{T^*M} \circ \mathcal{J} \circ i_{T^*M} \end{cases}$$

with  $p_*$  the projection and  $i_*$  the inclusion map. The condition (3.5) yields that:

- i)  $\sharp_{\pi}$  is defined by a bivector  $\pi$  by  $\sharp_{\pi}(\alpha) := i_{\alpha}\pi$ , for  $\alpha \in \Gamma(T^*M)$ ,
- ii)  $\flat_{\sigma}$  is defined by a 2-form  $\sigma$  by  $\flat_{\sigma}(X) := i_X \sigma$ , for  $X \in \Gamma(TM)$ ,
- iii)  $B = -A^*$ .

and hence the condition (3.3) means:

$$(3.8) A^2 = -\sharp_{\pi} \circ \flat_{\sigma}, \quad \pi(A^*\alpha, \beta) = \pi(\alpha, A^*\beta), \quad \sigma(AX, Y) = \sigma(X, AY).$$

The second relation (3.8) reads  $\pi$  is compatible with A while the third part of (3.8) is expressed as  $\sigma$  is compatible with A. The first relation (3.8) means that:  $A^2X = -i_{i_X\sigma}\pi$  for every vector field  $X \in \Gamma(TM)$ ; therefore  $\beta(A^2X) = -\pi(i_X\sigma,\beta) = -\pi(\sigma(X,\cdot),\beta)$  for any  $\beta \in \Gamma(T^*M)$ .

**Example 3.3.** An almost tangent structure J yields a classical generalized almost tangent structure  $\mathcal{J}_J$  with:

(3.9) 
$$\mathcal{J}_J := \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix},$$

since  $\mathcal{J}_J^2 = 0$  and also  $\mathcal{J}_J$  satisfies (3.4). Moreover, we have (3.5) and then we call it the generalized almost tangent structure induced by J. Note that  $\mathcal{J}_J$  is a splitting generalized almost tangent structure.

With respect to integrability we have:

**Proposition 3.1.** The generalized almost tangent structure  $\mathcal{J}_J$  is integrable if and only if J is integrable. The associated Dirac structure is  $\mathcal{D}_{\mathcal{J}_J} = V(M) \oplus V^*(M)$  where  $V^*(M)$  is the foliation generated by the weak tangent structure  $J^*$ .

*Proof.* We have:  $N_{\mathcal{J}}(\mathcal{X}=X+\alpha,\mathcal{Y}=Y+\gamma)=Z+\eta$  where Z=[JX,JY]-J[X,JY]-J[JX,Y] and:

(3.10) 
$$\eta(V) = \alpha(N_J(Y, V)) - \gamma(N_J(X, V)),$$

for any  $V \in \Gamma(TM)$ . In other words:

$$(3.11) N_{\mathcal{J}}(\mathcal{X} = X + \alpha, \mathcal{Y} = Y + \gamma) = (N_J(X, Y), \alpha \circ N_J(\cdot, Y) - \gamma \circ N_J(X, \cdot))$$

and the conclusion follows directly. The second part is a direct application of Remark 3.2.

More generally, if  $a, b \in \mathbb{R}^*$  then the pencil:

(3.12) 
$$\mathcal{J}_{J,a,b} := \begin{pmatrix} aJ & 0\\ 0 & -bJ^* \end{pmatrix}$$

is a splitting weak generalized almost tangent structure and  $\mathcal{J}_J = \mathcal{J}_{J,1,1}$ .

# 4 Compatibility with generalized Riemannian metrics induced by usual metrics

Recall after [24] that a generalized Riemannian metric on the big tangent bundle  $T^{big}M$  can be produced by an endomorphism  $\mathcal{G}$  on this manifold such that:

- 1.  $\mathcal{G}^2 = I_{T^{big}M}$  i.e.  $\mathcal{G}$  is an almost product structure on  $T^{big}M$ ,
- 2.  $g_{big}(\mathcal{GX}, \mathcal{GY}) = g_{big}(\mathcal{X}, \mathcal{Y})$  i.e.  $\mathcal{G}$  is a  $g_{big}$ -orthogonal transformation. Representing  $\mathcal{G}$  as:

(4.1) 
$$\mathcal{G} = \begin{pmatrix} \varphi & \sharp_{g_1} \\ \flat_{g_2} & \varphi^* \end{pmatrix} =: \mathcal{G}_{\varphi, g_1, g_2},$$

where  $\varphi$  is an endomorphism of the tangent bundle TM,  $\varphi^*$  its dual map,  $\flat_{g_i}(X) := i_X g_i$ ,  $X \in \Gamma(TM)$  and  $\sharp_{g_i} := \flat_{g_i}^{-1}$ ,  $i \in \{1,2\}$  for  $g_1, g_2$  Riemannian metrics on M, the above two conditions are equivalent to:

(4.2) 
$$\varphi^2 = I - \sharp_{g_1} \circ \flat_{g_2}, \quad g_i(X, \varphi Y) = -g_i(\varphi X, Y),$$

for any  $X, Y \in \Gamma(TM)$  and  $i \in \{1, 2\}$ .

Fix now (J,g) a pair (almost tangent structure, Riemannian metric) on M and for  $\varepsilon=\pm 1$  say that J is  $\varepsilon$ -compatible with g if  $g(JX,Y)=\varepsilon g(X,JY)$ , for any  $X,Y\in \Gamma(TM)$ . Consider also on  $T^{big}M$  the generalized Riemannian metric  $\mathcal{G}_g=\mathcal{G}_{0,g,g}$  induced by g. A natural question is if the induced generalized almost tangent structure  $\mathcal{J}_J$  is compatible with this generalized Riemannian metric.

**Proposition 4.1.** If J is  $\varepsilon$ -compatible with g then the generalized tangent structure  $\mathcal{J}$  induced by J is  $(-\varepsilon)$ -compatible with the generalized Riemannian metric  $\mathcal{G}_g$ :

$$\mathcal{G}_g \circ \mathcal{J}_J = -\varepsilon \mathcal{J}_J \circ \mathcal{G}_g.$$

Proof. We have:

$$\mathcal{G}_g := \begin{pmatrix} 0 & \sharp_g \\ \flat_g & 0 \end{pmatrix}$$

and then:

$$\mathcal{G}_g \circ \mathcal{J}_J = \begin{pmatrix} 0 & -\sharp_g \circ J^* \\ \flat_g \circ J & 0 \end{pmatrix}, \quad \mathcal{J}_J \circ \mathcal{G}_g = \begin{pmatrix} 0 & J \circ \sharp_g \\ -J^* \circ \flat_g & 0 \end{pmatrix}.$$

The hypothesis means  $\flat_g \circ J = \varepsilon J^* \circ \flat_g$  yielding then  $\sharp_g \circ J^* = \varepsilon J \circ \sharp_g$ . Comparing the previous relations it results the required equality.

## 5 Deformation under B-field and $\beta$ -field transformations

Besides the diffeomorphisms, the Courant bracket admits some other symmetries, namely the *B*-field transformations. Now we are interested in what happens if we apply to the generalized almost tangent structure  $\mathcal{J}_J$  a *B*-field transformation.

Let B be a 2-form on M viewed as a map  $B:\Gamma(TM)\to\Gamma(T^*M)$  and consider the B-transform:

$$e^B := \begin{pmatrix} I & 0 \\ B & I \end{pmatrix}.$$

We define  $\mathcal{J}_{B,J} := e^B \mathcal{J}_J e^{-B}$  which has the expression:

(5.1) 
$$\mathcal{J}_{B,J} = \begin{pmatrix} J & 0 \\ BJ + J^*B & -J^* \end{pmatrix}.$$

 $\mathcal{J}_{B,J}$  coincides with  $\mathcal{J}_J$  if and only if  $BJ+J^*B=0$  which means the skew-symmetry:

$$(5.2) B(JX,Y) = -B(X,JY),$$

for any  $X, Y \in \Gamma(TM)$ .

**Example 5.1.** Let (J,g) be an almost tangent metric structure which means that J is (-1)-compatible with g. We consider the associated 2-form B(X,Y) := g(JX,Y) for  $X, Y \in \Gamma(TM)$  and then B(JX,Y) = -B(X,JY) since both expressions are equal to 0. In conclusion  $\mathcal{J}_{B,J}$  is just  $\mathcal{J}_J$ .

**Proposition 5.1.** For any 2-form B the endomorphism  $\mathcal{J}_{B,J}$  is a classical generalized almost tangent structure which is a generalized almost tangent structure if and only if B satisfies the skew-symmetry condition (5.2).

Proof. Indeed,  $\mathcal{J}_{B,J}^2 = e^B \mathcal{J}_J^2 e^{-B} = 0$ , so  $im \mathcal{J}_{B,J} \subseteq \ker \mathcal{J}_{B,J}$ . Let  $\mathcal{X} = X + \alpha \in \ker \mathcal{J}_{B,J}$ . Then JX = 0 so that  $X \in \ker J = imJ$  and  $J^*(\alpha - B(X)) = 0$  so that  $\alpha - B(X) \in \ker J^* = imJ^*$ . Take X = JY and  $\alpha = B(X) + J^*\gamma$ . It follows  $X + \alpha = \mathcal{J}_{B,J}(Y + B(Y) - \gamma) \in im\mathcal{J}_{B,J}$  and we have the second part of conclusion,  $\ker \mathcal{J}_{B,J} \subseteq im\mathcal{J}_{B,J}$ .

**Remark 5.2.** In the general case, if  $\mathcal{J}$  is represented as  $\mathcal{J} = \begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix}$ , then its B-transform:

(5.3) 
$$\mathcal{J}_{B} = \begin{pmatrix} J - \beta B & \beta \\ BJ + J^{*}B + B - B\beta B & -J^{*} + B\beta \end{pmatrix}$$

defines also a weak classical generalized almost tangent structure.

Similarly we shall see what happens if we apply to the endomorphism  $\mathcal{J}_J$  a  $\beta$ -field transformation. Let  $\beta$  be a bivector field on M viewed as a map  $\beta: \Gamma(T^*M) \to \Gamma(TM)$  and consider the  $\beta$ -transform:

(5.4) 
$$e^{\beta} := \begin{pmatrix} I & \beta \\ 0 & I \end{pmatrix}.$$

We can define  $\mathcal{J}_{\beta,J} := e^{\beta} \mathcal{J}_J e^{-\beta}$  which has the expression:

(5.5) 
$$\mathcal{J}_{\beta,J} = \begin{pmatrix} J & -J\beta - \beta J^* \\ 0 & -J^* \end{pmatrix},$$

which means that for  $\mathcal{X} = X + \alpha \in \Gamma(T^{big}M)$ , we have:

$$\mathcal{J}_{\beta,J}(\mathcal{X}) = (JX - J(\beta(\alpha)) - \beta(J^*\alpha), -J^*\alpha).$$

If the bivector field  $\beta$  satisfies the skew-symmetry  $\beta \circ J^* = -J \circ \beta$  then  $\mathcal{J}_{\beta,J}$  coincides with  $\mathcal{J}_J$ .

**Proposition 5.2.** For any bivector field  $\beta$  the endomorphism  $\mathcal{J}_{\beta,J}$  is a classical generalized almost tangent structure.

Proof. Indeed,  $\mathcal{J}_{\beta,J}^2 = e^{\beta} \mathcal{J}_J^2 e^{-\beta} = 0$  so  $im \mathcal{J}_{\beta,J} \subseteq \ker \mathcal{J}_{\beta,J}$ . Let  $X + \alpha \in \ker \mathcal{J}_{\beta,J}$ . Then  $J^*\alpha = 0$  so that  $\alpha \in \ker J^* = im J^*$  and  $J(X - \beta(\alpha)) = 0$  so that  $X - \beta(\alpha) \in \ker J = im J$ . Take  $\alpha = J^*\gamma$  and  $X = \beta(\alpha) + JY$ . It follows  $X + \alpha = \mathcal{J}_{\beta}(Y - \beta(\gamma) - \gamma) \in im \mathcal{J}_{\beta,J}$  and we have the other inclusion, too,  $\ker \mathcal{J}_{\beta,J} \subseteq im \mathcal{J}_{\beta,J}$ .

**Remark 5.3.** In the general case, if  $\mathcal{J}_J$  is represented  $\mathcal{J} = \begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix}$  then its  $\beta$ -transform:

$$\mathcal{J}_{\beta,J} = \begin{pmatrix} J + \beta B & -J\beta - \beta J^* + \beta - \beta B\beta \\ B & -J^* - B\beta \end{pmatrix}$$

defines also a weak classical generalized almost tangent structure.

### 6 Tangentomorphisms and invariant subspaces

We shall prove that a diffeomorphism between two almost tangent manifolds preserving the almost tangent structures induces an isomorphism between their generalized tangent bundles which preserves the associated generalized almost tangent structures.

**Definition 6.1.** Let  $(M_1, J_1)$  and  $(M_2, J_2)$  be two almost tangent manifolds. We say that the diffeomorphism  $f: M_1 \to M_2$  is a  $(J_1, J_2)$ -tangentomorphism if it satisfies:

$$(6.1) J_2 \circ f_* = f_* \circ J_1.$$

**Lemma 6.1.** If  $f:(M_1,J_1)\to (M_2,J_2)$  is a tangentomorphism then  $J_1^*\circ f^*=f^*\circ J_2^*$ .

*Proof.* For  $X \in \Gamma(TM_1)$  and  $\alpha \in \Gamma(T^*M_2)$  we have:

$$[(J_1^* \circ f^*)(\alpha)](X) = (f^*\alpha)(J_1X) = \alpha(f_*(J_1X))$$

and respectively:

$$[(f^* \circ J_2^*)(\alpha)](X) = (J_2^*\alpha)(f_*X) = \alpha(J_2(f_*X)) = \alpha(f_*(J_1X)),$$

which means the conclusion.

**Proposition 6.2.** Let  $f:(M_1,J_1)\to (M_2,J_2)$  be a tangentomorphism. Then it induces an endomorphism between the generalized tangent bundles  $f^{big}:T^{big}M_1\to T^{big}M_2$  given by:

(6.2) 
$$f^{big}(\mathcal{X}) := f_* X + (f^{-1})^* \alpha.$$

It satisfies:

(6.3) 
$$\mathcal{J}_{J_2} \circ f^{big} = f^{big} \circ \mathcal{J}_{J_1}.$$

*Proof.* Using the previous lemma we obtain for any  $\mathcal{X} = X + \alpha \in \Gamma(T^{big}M_1)$ :

$$\mathcal{J}_{J_2} \circ f^{big}(\mathcal{X}) = \mathcal{J}_{J_2}(f_*X + (f^{-1})^*\alpha) = (J_2 \circ f_*(X), -J_2^* \circ (f^{-1})^*(\alpha)) =$$
$$= (f_* \circ J_1(X), -(f^{-1})^* \circ J_1^*\alpha) = f^{big}(J_1X - J_1^*\alpha)$$

and the last term is  $f^{big} \circ \mathcal{J}_{J_1}(X + \alpha)$  which means the required equality.

Extending this definition, we say that two generalized almost tangent structures  $\mathcal{J}_1$  and  $\mathcal{J}_2$  are *isomorphic* if there exists an endomorphism  $F: \Gamma(T^{big}M_1) \to \Gamma(T^{big}M_2)$  such that  $\mathcal{J}_2 \circ F = F \circ \mathcal{J}_1$ .

Let  $(J_i, g_i)$  be almost tangent metric structures on  $M_i$ ,  $i \in \{1, 2\}$  and  $f: (M_1, J_1, g_1) \to (M_2, J_2, g_2)$  a tangentomorphism. For  $i \in \{1, 2\}$ , consider:

(6.4) 
$$S_i := \{ \mathcal{X} = X + \alpha \in \Gamma(T^{big}M_i) \mid i_X g_i = \alpha \},$$

(6.5) 
$$\check{\mathcal{S}}_{1}^{f} := \{ \mathcal{X} = X + f^{*}(\alpha) \in \Gamma(T^{big}M_{1}) \mid i_{X}g_{1} = f^{*}(\alpha), X \in \Gamma(TM_{1}), \alpha \in \Gamma(T^{*}M_{2}) \},$$

(6.6) 
$$\hat{\mathcal{S}}_{2}^{f} := \{ \mathcal{X} = f_{*}(X) + \alpha \in \Gamma(T^{big}M_{2}) \mid i_{f_{*}(X)}g_{2} = \alpha, X \in \Gamma(TM_{1}), \alpha \in \Gamma(T^{*}M_{2}) \}.$$

A straightforward computation gives:

(6.7) 
$$\mathcal{J}_{J_i}(\mathcal{S}_i) \subset \mathcal{S}_i, \ \mathcal{J}_{J_1}(\check{\mathcal{S}}_1^f) \subset \check{\mathcal{S}}_1^f, \ \mathcal{J}_{J_2}(\hat{\mathcal{S}}_2^f) \not\subseteq \hat{\mathcal{S}}_2^f.$$

Therefore, a more interesting case is the coincidence of above almost tangent structures:

**Proposition 6.3.** Let f be a tangentomorphism on the almost tangent metric manifold (M, J, g). Then the following subspaces of  $\Gamma(T^{big}M)$  are invariant by  $\mathcal{J}_J$ :

(6.8) 
$$\check{\mathcal{S}}^f := \{ X + f^*(\alpha) \mid i_X g = f^*(\alpha), X + \alpha \in \Gamma(T^{big}M) \},$$

(6.9) 
$$\hat{S}^f := \{ f_*(X) + \alpha \mid i_{f_*(X)}g = \alpha, X + \alpha \in \Gamma(T^{big}M) \},$$

(6.10) 
$$\bar{S}^f := \{ f_*(X) + f^*(\alpha) \mid i_{f_*(X)}g = f^*(\alpha), X + \alpha \in \Gamma(T^{big}M) \}.$$

*Proof.* Fix  $Y \in \Gamma(TM)$ .

i) For  $X + f^*(\alpha) \in \check{\mathcal{S}}^f$  we have  $\mathcal{J}_J(X + f^*(\alpha)) := JX - J^*(f^*(\alpha))$ . Then:

$$(i_{JX}g)(Y) = g(JX, Y) = -g(X, JY) = -(i_Xg)(JY) = -(f^*(\alpha))(JY) = (-J^*(f^*(\alpha)))(Y).$$

ii) For  $f_*(X) + \alpha \in \hat{\mathcal{S}}^f$  we have  $\mathcal{J}(f_*(X) + \alpha) = J(f_*(X)) - J^*\alpha = f_*(JX) - J^*\alpha$ . Then:

$$\begin{split} i_{f_*(JX)}g(Y) &= g(f_*(JX),Y) = g(J(f_*(X)),Y) = -g(f_*X,JY) = -i_{f_*X}g(JY) = \\ &= -J^*(i_{f_*X}g)(Y) = -J^*\alpha(Y). \end{split}$$

iii) For  $f_*(X) + f^*(\alpha) \in \bar{\mathcal{S}}^f$  we have  $\mathcal{J}(f_*(X) + f^*(\alpha)) := J(f_*(X)) - J^*(f^*(\alpha)) = f_*(JX) - f^*(J^*\alpha)$ . Then:

$$\begin{split} i_{f_*(JX)}g(Y) &= g(f_*(JX),Y) = g(J(f_*X),Y) = -g(f_*X,JY) = -i_{f_*X}g(JY) = \\ &= -f^*\alpha(JY) = -J^*f^*\alpha(Y) \end{split}$$

and the last term is  $-f^*(J^*\alpha)(Y)$ , which gives the conclusion.

## 7 Simultaneously integrability of two generalized almost tangent structures

Two skew-commuting almost tangent structures  $J_1$  and  $J_2$  on a 4k-dimensional manifold M satisfying:

$$\dim(\ker J_1 \cap \ker J_2) = k$$

are simultaneously integrable if [15]-[16]:

$$(7.2) N_{J_1,J_1} = 0, N_{J_1,J_2} = 0, N_{J_2,J_2} = 0,$$

where the Nijenhuis tensor field of the pair  $(J_1, J_2)$  is generally defined as:

(7.3) 
$$2N_{J_1,J_2}(X,Y) = [J_1X,J_2Y] - J_1[J_2X,Y] - J_2[X,J_1Y] + [J_2X,J_1Y] - J_2[J_1X,Y] - J_1[X,J_2Y] + (J_1J_2 + J_2J_1)[X,Y].$$

From these conditions follows that both  $J_1$  and  $J_2$  are integrable but conversely not. Let us remark that the generalized almost tangent structures  $\mathcal{J}_{J_1}$ ,  $\mathcal{J}_{J_2}$  are skew-commuting if and only if the almost tangent structures  $J_1$  and  $J_2$  are skew-commuting. Inspired by the result above we introduce:

**Definition 7.1.** Two generalized almost tangent structures  $\mathcal{J}_1$  and  $\mathcal{J}_2$  on the 4k-dimensional manifold M satisfying dim(ker  $\mathcal{J}_1 \cap \ker \mathcal{J}_2$ ) = 2k are said to be simultaneously integrable if:

$$(7.4) N_{\mathcal{J}_1,\mathcal{J}_1} = 0, \quad N_{\mathcal{J}_1,\mathcal{J}_2} = 0, \quad N_{\mathcal{J}_2,\mathcal{J}_2} = 0,$$

where the Nijenhuis tensor field of the pair  $(\mathcal{J}_1, \mathcal{J}_2)$  is:

(7.5) 
$$2N_{\mathcal{J}_{1},\mathcal{J}_{2}}(\mathcal{X},\mathcal{Y}) = [\mathcal{J}_{1}\mathcal{X},\mathcal{J}_{2}\mathcal{Y}]_{C} - \mathcal{J}_{1}[\mathcal{J}_{2}\mathcal{X},\mathcal{Y}]_{C} - \mathcal{J}_{2}[\mathcal{X},\mathcal{J}_{1}\mathcal{Y}]_{C} + [\mathcal{J}_{2}\mathcal{X},\mathcal{J}_{1}\mathcal{Y}]_{C} - \mathcal{J}_{2}[\mathcal{J}_{1}\mathcal{X},\mathcal{Y}]_{C} - \mathcal{J}_{1}[\mathcal{X},\mathcal{J}_{2}\mathcal{Y}]_{C} + (\mathcal{J}_{1}\mathcal{J}_{2} + \mathcal{J}_{2}\mathcal{J}_{1})[\mathcal{X},\mathcal{Y}]_{C}.$$

Remark that these conditions yields that both  $\mathcal{J}_1$  and  $\mathcal{J}_2$  are integrable but not conversely.

**Proposition 7.1.** Let two skew-commuting almost tangent structures  $J_1$  and  $J_2$  be given on the 4k-dimensional manifold M satisfying dim(ker  $J_1 \cap \ker J_2$ ) = k. Then the generalized almost tangent structures  $\mathcal{J}_{J_1}$  and  $\mathcal{J}_{J_2}$  are simultaneously integrable if and only if  $J_1$  and  $J_2$  are simultaneously integrable.

*Proof.* Since we have

(7.6)  $\dim(\ker \mathcal{J}_{J_1} \cap \ker \mathcal{J}_{J_2}) = 2\dim(\ker J_1 \cap \ker J_2) + 2\dim(M) - [\dim(\ker J_1) + \dim(\ker J_2)]$ and from the condition  $\ker J_i = imJ_i$ ,  $i \in \{1,2\}$ , we deduce that  $\dim(\ker J_i) = \dim(M) = 4k$ . The relation between the intersection of the kernels becomes:

(7.7) 
$$\dim(\ker \mathcal{J}_{J_1} \cap \ker \mathcal{J}_{J_2}) = 2\dim(\ker J_1 \cap \ker J_2) = 2k.$$

Similar to the formula (3.11) we have that  $N_{\mathcal{J}_{J_1},\mathcal{J}_{J_2}}(\mathcal{X}=X+\alpha,\mathcal{Y}=Y+\gamma)=Z+\eta$ , where  $Z=N_{J_1,J_2}(X,Y)$  and:

(7.8) 
$$\eta(V) = \alpha(N_{J_1,J_2}(Y,V)) - \gamma(N_{J_1,J_2}(X,V)),$$

for any  $V \in \Gamma(TM)$ . In conclusion,  $N_{\mathcal{J}_{J_i},\mathcal{J}_{J_j}} = 0$ ,  $i \in \{1,2\}$ , if and only if  $N_{J_i,J_j} = 0$ ,  $i \in \{1,2\}$ .

**Example 7.2.** For any  $a, b \in \mathbb{R}^*$  define now the family  $(J_{a,b})$  with  $J_{a,b} := a \cdot J_1 + b \cdot J_2$ . A straightforward calculus gives that  $J_{a,b}$  defines an almost tangent structure if and only if  $J_1J_2 + J_2J_1 = 0$ . Similar, consider the family  $(\mathcal{J}_{a,b})$  defined by  $\mathcal{J}_{a,b} := a \cdot \mathcal{J}_1 + b \cdot \mathcal{J}_2$ . In fact:

(7.9) 
$$\mathcal{J}_{a,b} := \begin{pmatrix} a \cdot J_1 + b \cdot J_2 & 0 \\ 0 & -(a \cdot J_1 + b \cdot J_2)^* \end{pmatrix} = \begin{pmatrix} J_{a,b} & 0 \\ 0 & -J_{a,b}^* \end{pmatrix}.$$

It results that  $\mathcal{J}_{a,b}$  is a weak generalized almost tangent structure if and only if  $J_1J_2+J_2J_1=0$ .

In order to have a class of examples we introduce:

**Definition 7.3.** Let g be a non-degenerate 2-form on M. Two almost tangent structures  $(J_1, J_2)$  form a dual pair with respect to g if ker  $J_1 \perp_g \ker J_2$ .

Since ker  $J_i = imJ_i$ ,  $i \in \{1, 2\}$ , the condition of the previous definition is equivalent to  $g(J_1X, J_2Y) = 0$  for any  $X, Y \in \Gamma(TM)$ . In the same way can be defined a *dual pair* of (weak) generalized almost tangent structures  $\mathcal{J}_1$ ,  $\mathcal{J}_2$  with respect to a non-degenerate 2-form g of  $T^{big}M$ .

Consider now  $(\mathcal{J}_1, \mathcal{J}_2)$  a dual pair of (weak) generalized almost tangent structures with respect to the neutral metric  $g_{big}$ . Then  $g_{big}(\mathcal{J}_1\mathcal{X}, \mathcal{J}_2\mathcal{Y}) = 0$ . A step further is to suppose that  $(\mathcal{J}_i, g_{big})$ ,  $i \in \{1, 2\}$ , are generalized almost tangent metric structures i.e.:

$$g_{big}(\mathcal{J}_i\mathcal{X},\mathcal{Y}) = -g_{big}(\mathcal{X},\mathcal{J}_i\mathcal{Y}).$$

Then the image of the endomorphisms  $\mathcal{J}_1\mathcal{J}_2$ ,  $\mathcal{J}_2\mathcal{J}_1$  is a subspace in the set of  $g_{big}$ -null sections of  $T^{big}M$ .

**Proposition 7.2.** If the almost tangent structures  $J_1$  and  $J_2$  satisfy  $J_1J_2 = J_2J_1 = 0$  then the generalized almost tangent structures  $\mathcal{J}_{J_1}$  and  $\mathcal{J}_{J_2}$  induced by them form a dual pair with respect to  $g_{big}$ .

*Proof.* For  $\mathcal{X} = X + \alpha$ ,  $\mathcal{Y} = Y + \gamma \in \Gamma(T^{big}M)$  the relation:

$$g_{big}(\mathcal{J}_{J_1}(\mathcal{X}), \mathcal{J}_{J_2}(\mathcal{Y})) = -\frac{1}{2}[\alpha(J_1J_2Y) + \gamma(J_2J_1X)] = 0$$

gives the conclusion.

**Example 7.4.** Returning to Example 2.2 it results that  $J_e$  and  $J_e^{dual}$  given by  $J_e^{dual}(x,y)=(y,0)$  form a dual pair with respect to the Euclidean metric of  $\mathbb{R}^2$ . We have:

$$(7.10) J_e J_e^{dual} + J_e^{dual} J_e = I.$$

A pair  $(J_1, J_2)$  of weak almost tangent structures satisfying  $J_1J_2 + J_2J_1 = I$  is called almost bitangent structure in [9, p. 7].

# 8 Covariant derivatives on the generalized tangent bundle

Let  $\nabla$  be the Levi-Civita connection associated to a given Riemannian metric g on M and  $\nabla'$  its extension to 1-forms [2, p. 28]:

(8.1) 
$$(\nabla'_{X}\alpha)(Y) := X(\alpha(Y)) - \alpha(\nabla_{X}Y),$$

with  $X, Y \in \Gamma(TM)$  and  $\alpha \in \Gamma(T^*M)$ . Then we define the extension of  $\nabla$  to  $T^{big}M$ :

(8.2) 
$$\nabla_{\mathcal{X}}^{big} \mathcal{Y} = \nabla_{X+\alpha}^{big} Y + \gamma := \nabla_X Y + \nabla'_{\sharp_g \alpha} \gamma.$$

In general,  $\nabla^{big}$  is not a linear connection on  $T^{big}M$ , but it satisfies the following properties:

- i) is  $\mathbb{R}$ -bilinear,
- ii)  $\nabla^{big}_{f\mathcal{X}}\mathcal{Y} = f\nabla^{big}_{\mathcal{X}}\mathcal{Y}$  for any  $f \in C^{\infty}(M)$ ,
- iii)  $\nabla^{big}_{\mathcal{X}} f \mathcal{Y} = f \nabla^{big}_{\mathcal{X}} \mathcal{Y} + X(f) \mathcal{Y}.$

If  $\nabla$  is *J*-invariant:  $\nabla_X JY = J(\nabla_X Y)$  for any  $X,Y \in \Gamma(TM)$ , then  $\nabla'$  is  $J^*$ -invariant:  $\nabla'_X J^* \alpha = J^*(\nabla'_X \alpha)$  for any  $\alpha \in \Gamma(T^*M)$ . With respect to the big tangent bundle we have:

**Proposition 8.1.** If  $\nabla$  is *J*-invariant then  $\nabla^{big}$  is  $\mathcal{J}_J$ -invariant.

*Proof.* From definitions it results:

$$\mathcal{J}_{J}(\nabla_{\mathcal{X}}^{big}\mathcal{Y}) = \mathcal{J}_{J}(\nabla_{X}Y + \nabla'_{\sharp_{g}\alpha}\gamma) 
= J(\nabla_{X}Y) - J^{*}(\nabla'_{\sharp_{g}\alpha}\gamma) 
= \nabla_{X}JY - \nabla'_{\sharp_{g}\alpha}J^{*}\gamma = \nabla_{\mathcal{X}}^{big}\mathcal{J}_{J}\mathcal{Y},$$

for any  $\mathcal{X} = X + \alpha$ ,  $\mathcal{Y} = Y + \gamma \in \Gamma(T^{big}M)$ .

Remark that  $\nabla^{big}$  is a *natural operator*, that is, for any isometry  $f:(M_1,g_1) \to (M_2,g_2)$  such that the isomorphism  $f^{big}$  satisfies  $f^{big}(\mathcal{S}_1) \subseteq \mathcal{S}_2$  with respect to  $S_i$  from (6.4), the following diagram commutes:

$$\begin{array}{ccc} \mathcal{S}_1 \times \mathcal{S}_1 & \stackrel{\nabla^{big}_1}{\longrightarrow} & \mathcal{S}_1 \\ f^{big} \times f^{big} \downarrow & & \downarrow f^{big} \\ \mathcal{S}_2 \times \mathcal{S}_2 & \stackrel{\nabla^{big}_2}{\longrightarrow} & \mathcal{S}_2 \end{array}.$$

**Acknowledgement.** The first author acknowledges the support by the research grant PN-II-ID-PCE-2011-3-0921.

#### References

- [1] M. Anastasiei, *Banach Lie algebroids and Dirac structures*, Balkan J. Geom. Appl. 18, 1 (2013), 1-11.
- [2] A. M. Blaga, Connections on the generalized tangent bundle of a Riemannian manifold, Balkan J. Geom. Appl. 16, 1 (2011), 27-36.
- [3] F. Brickell, R. S. Clark, *Integrable almost tangent structures*, J. Diff. Geom. 9 (1974), 557-563.
- [4] R. S. Clark, M. Bruckheimer, Sur les structures presque tangents, C. R. A. S. Paris 251 (1960), 627-629.
- [5] R. S. Clark, D. S. Goel, On the geometry of an almost tangent manifold, Tensor 24 (1972), 243-252.
- [6] T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319, 2 (1990), 631-661.
- [7] M. Crampin, Defining Euler-Lagrange fields in terms of almost tangent structures, Phys. Lett. A 95, 9 (1983), 466-468.

- [8] M. Crampin, G. Thompson, Affine bundles and integrable almost tangent structures, Math. Proc. Camb. Phil. Soc. 98 (1985), 61-71.
- [9] V. Cruceanu, On almost biproduct complex manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 52, 1 (2006), 5-24.
- [10] H. A. Eliopoulos, Structures presque tangents sur les variétés différentiables, C.
   R. A. S. Paris 255 (1962), 1563-1565.
- [11] J. Grifone, Structure presque-tangente et connexions, I, II. Ann. Inst. Fourier (Grenoble) 22, 1 and 3 (1972), 287-334, 291-338.
- [12] M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, Univ. Oxford, 2003, arXiv: math.DG/0401221v1.
- [13] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54, 3 (2003), 281-308.
- [14] M. Jotz, T. S. Ratiu, J. Śniatycki, Singular reduction of Dirac structures, Trans. Amer. Math. Soc. 363 (2011), 2967-3013.
- [15] V. Kubát, Simultaneous integrability of two J-related almost tangent structures, Comm. Math. Univ. Carolinae 20, 3 (1979), 461-473.
- [16] V. Kubát, On simultaneous integrability of two commuting almost tangent structures, Comm. Math. Univ. Carolinae, 22, 1 (1981), 149-160.
- [17] A. Nannicini, Almost complex structures on cotangent bundles and generalized geometry, J. Geom. Phys. 60, 11 (2010), 1781-1791.
- [18] M. Rahula, Tangent structures and analytical mechanics, Balkan J. Geom. Appl. 16, 1 (2011), 122-127.
- [19] G. Thompson, U. Schwardmann, Almost tangent and cotangent structures in the large, Trans. Amer. Math. Soc. 327, 1 (1991), 313-328.
- [20] I. Vaisman, Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.
- [21] I. Vaisman, *Isotropic subbundles of*  $TM \oplus T^*M$ , Int. J. Geom. Methods Mod. Phys. 4, 3 (2007), 487-516.
- [22] I. Vaisman, From generalized Kähler to generalized Sasakian structures, J. Geom. Symmetry Phys. 18 (2010), 63-86.
- [23] I. Vaisman, On some quantizable generalized structures, An. Univ. Vest Timiş. Ser. Mat.-Inform. 48, 1-2 (2010), 275-284.
- [24] I. Vaisman, Dirac structures on generalized Riemannian manifolds, Rev. Roum. Math. Pures Appl. 57, 2 (2012), 179-203.
- [25] K. Yano, E. T. Davies, Differential geometry on almost tangent manifolds, Ann. Mat. Pura Appl. (4) 103 (1975), 131-160.

#### Authors' addresses:

Adara M. Blaga

Dept. Mathematics and Informatics, West Univ. of Timişoara,

Bld. V. Pârvan, no. 4, 300223, Timişoara, România.

E-mail: adara@math.uvt.ro

#### Mircea Crasmareanu

Faculty of Mathematics, University "Al. I. Cuza" Iasi, 700506, Iaşi, România.

E-mail: mcrasm@uaic.ro , http://www.math.uaic.ro/~mcrasm