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Abstract. A generalized almost tangent structure on the big tangent
bundle T bigM associated to an almost tangent structure on M is con-
sidered and several features of it are studied with a special view towards
integrability. Deformation under a β- or a B-field transformation and the
compatibility with a class of generalized Riemannian metrics are discussed.
Also, a notion of tangentomorphism is introduced as a diffeomorphism f
preserving the (generalized) almost tangent geometry and some remarka-
ble subspaces are proved to be invariant with respect to the lift of f .
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1 Introduction

Almost tangent structures were introduced by R. S. Clark and M. Bruckheimer [4]
and H. A. Eliopoulos [10] around 1960 and have been investigated by several authors,
see [3], [5]-[8], [19], [25]. As is well-known, the tangent bundle of a manifold car-
ries a canonical integrable almost tangent structure, hence the name. This almost
tangent structure plays an important role in the Lagrangian description of analytical
mechanics, [7]-[8], [11], [18].

Our aim is to consider this type of structure in generalized geometry, a theory
introduced by N. Hitchin [13] in order to unify complex and symplectic geometry;
Hitchin’s suggestion was continued by M. Gualtieri whose PhD thesis [12] is an out-
standing work on this subject. More precisely, we consider various versions of almost
tangent structures on the big tangent bundles T bigM and as main example we asso-
ciate a generalized almost tangent structure JJ to a given almost tangent one J on
the base manifold M . Let us note that under various names, the notion of generalized
almost tangent structure was already considered by I. Vaisman in [22]-[24].

The content of paper is as follows. After a short survey in almost tangent geometry
and the construction of JJ we study its invariance under β- and B-field transforma-
tions, respectively, and discuss the compatibility with generalized Riemannian metrics
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of T bigM induced by usual Riemannian metrics. Under the name of tangentomor-
phisms we consider the diffeomorphisms f between two almost tangent manifolds
preserving their almost tangent structures and consider the same problem on the big
tangent bundles. Some remarkable subspaces are associated with a fixed tangento-
morphism and their invariance with respect to JJ is proved. Since integrability is an
important issue in a geometry induced by a tensor field of (1, 1)-type, we study simul-
taneously integrability of two generalized almost tangent structures Jj by means of
simultaneous integrability of J1, J2 of M . The last Section is devoted to the interplay
between JJ and the covariant derivative induced by the Levi-Civita connection of the
base manifold M .

2 Almost tangent geometry revisited

Let M be a smooth, m-dimensional real manifold for which we denote: C∞ (M)-the
real algebra of smooth real functions on M , Γ(TM)-the Lie algebra of vector fields
on M , T r

s (M)-the C∞ (M)-module of tensor fields of (r, s)-type on M . An element
of T 1

1 (M) is usually called vector 1-form or affinor.
Recall the concept of almost tangent geometry:

Definition 2.1. J ∈ T 1
1 (M) is called almost tangent structure on M if it has a

constant rank and:

(2.1) imJ = kerJ.

The pair (M,J) is an almost tangent manifold.

The name is motivated by the fact that (2.1) implies the nilpotence J2 = 0 exactly
as the natural tangent structure of tangent bundles. Denoting rankJ = n it results
m = 2n. If in addition, we suppose that J is integrable i.e.:

(2.2) NJ (X, Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X, Y ] = 0,

then J is called tangent structure and (M, J) is called tangent manifold.
From [20, p. 3246] we get some features of tangent manifolds:

(i) the distribution imJ (= kerJ) defines a foliation denoted by V (M) and called the
vertical distribution.

Example 2.2. M = R2, Je (x, y) = (0, x) is a tangent structure with kerJe the Y -
axis, hence the name. The subscript e comes from ”Euclidean”, see also Example
7.4.

(ii) there exists an atlas on M with local coordinates (x, y) =
(
xi, yi

)
1≤i≤n

such that
J = ∂

∂yi ⊗ dxi i.e.:

(2.3) J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

We call canonical coordinates the above (x, y) and the change of canonical coordinates
(x, y) → (x̃, ỹ) is given by:

(2.4)
{

x̃i = x̃i (x)
ỹi = ∂x̃i

∂xa ya + Bi (x) .
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It results an alternative description in terms of G-structures. Namely, a tangent
structure is a G-structure with:

(2.5) G = {C =
(

A On

B A

)
∈ GL(2n,R); A ∈ GL(n,R), B ∈ gl(n,R)}

and G is the invariance group of matrix J =
(

On On

In On

)
, i.e., C ∈ G if and only if

C · J = J · C.
The natural almost tangent structure J of M = TN is an example of tangent

structure having exactly the expression (2.3) if (xi) are the coordinates on N and
(yi) are the coordinates in the fibers of TN → N . Also, Je of Example 2.2 has the
above expression (2.3) with n = 1, whence it is integrable. A third class of examples
is obtained by duality: if J is an (integrable) endomorphism with J2 = 0 then its
dual J∗ : Γ(T ∗M) → Γ(T ∗M), given by J∗α := α ◦J for α ∈ Γ(T ∗M), is (integrable)
endomorphism with (J∗)2 = 0. Let us call this type of endomorphisms a weak almost
tangent structure.

3 Generalized almost tangent structures

Fix now a smooth manifold M of dimension m not necessary even. The framework
of this work is provided by the manifold T bigM := TM ⊕ T ∗M . This manifold is the
total space of a vector bundle π : T bigM → M ; so T bigM is called the big tangent
bundle of M [21] and the C∞-module of its sections Γ(T bigM) has the elements
X = (X, α) = X + α, where X ∈ Γ(TM) and α ∈ Γ(T ∗M). T bigM is endowed with
the Courant structure (<,>, [, ]), [6]:
1. the (neutral) inner product (of signature (m,m)):

(3.1) gbig ((X, α), (Y, β)) =
1
2

(β(X) + α(Y )) ;

2. the (skew-symmetric) Courant bracket:

(3.2) [(X, α), (Y, β)]C =
(

[X, Y ],LXβ − LY α− 1
2
d(β(X)− α(Y ))

)
.

The same manifold TM ⊕ T ∗M is called sometimes the Pontryagin bundle of M (in
[14]) or generalized tangent bundle of M (in [17]).

Inspired by the first Section we introduce:

Definition 3.1. i) A weak classical generalized almost tangent structure on M is an
endomorphism J of the big tangent bundle T bigM satisfying:

(3.3) J 2 = 0.

If, moreover, J satisfies:

(3.4) kerJ = imJ ,

then J is a classical generalized almost tangent structure.
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ii) ([23, p. 278]) If J satisfies in addition the property of skew-symmetry with respect
to gbig:

(3.5) gbig(JX ,Y) + gbig(X ,JY) = 0,

then we call it (weak) generalized almost tangent structure. Moreover, if J is inte-
grable i.e. its Nijenhuis tensor vanishes:

(3.6) NJ (X ,Y) := [JX ,JY ]C − J [X ,JY ]C − J [JX ,Y]C + J [X ,Y]C = 0,

then J is called (weak) generalized tangent structure.
iii) If J (TM) ⊂ TM and J (T ∗M) ⊂ T ∗M then J is called (weak) splitting genera-
lized (almost) tangent structure.

Remark 3.2. The interest in such types of endomorphisms comes from the theory
of Dirac structures, a concept introduced in [6] in order to give a geometric theory of
constrained (physical) systems; for other details see [1]. More precisely, as is pointed
out in [24], for a weak generalized tangent structure J its image imJ := DJ is a
Dirac structure.

Recall after [12] that an arbitrary endomorphism J can be represented in the
matrix form:

(3.7) J =
(

A ]π

[σ B

)
,

where: 



A : Γ(TM) → Γ(TM), A := pTM ◦ J ◦ iTM

]π : Γ(T ∗M) → Γ(TM), ]π := pTM ◦ J ◦ iT∗M

[σ : Γ(TM) → Γ(T ∗M), [σ := pT∗M ◦ J ◦ iTM

B : Γ(T ∗M) → Γ(T ∗M), B := pT∗M ◦ J ◦ iT∗M

with p∗ the projection and i∗ the inclusion map. The condition (3.5) yields that:
i) ]π is defined by a bivector π by ]π(α) := iαπ, for α ∈ Γ(T ∗M),
ii) [σ is defined by a 2-form σ by [σ(X) := iXσ, for X ∈ Γ(TM),
iii) B = −A∗.
and hence the condition (3.3) means:

(3.8) A2 = −]π ◦ [σ, π(A∗α, β) = π(α, A∗β), σ(AX,Y ) = σ(X, AY ).

The second relation (3.8) reads π is compatible with A while the third part of (3.8) is
expressed as σ is compatible with A. The first relation (3.8) means that: A2X =
−iiXσπ for every vector field X ∈ Γ(TM); therefore β(A2X) = −π(iXσ, β) =
−π(σ(X, ·), β) for any β ∈ Γ(T ∗M).

Example 3.3. An almost tangent structure J yields a classical generalized almost
tangent structure JJ with:

(3.9) JJ :=
(

J 0
0 −J∗

)
,
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since J 2
J = 0 and also JJ satisfies (3.4). Moreover, we have (3.5) and then we call

it the generalized almost tangent structure induced by J . Note that JJ is a splitting
generalized almost tangent structure.

With respect to integrability we have:

Proposition 3.1. The generalized almost tangent structure JJ is integrable if and
only if J is integrable. The associated Dirac structure is DJJ

= V (M)⊕V ∗(M) where
V ∗(M) is the foliation generated by the weak tangent structure J∗.

Proof. We have: NJ (X = X + α,Y = Y + γ) = Z + η where Z = [JX, JY ] −
J [X, JY ]− J [JX, Y ] and:

(3.10) η(V ) = α(NJ(Y, V ))− γ(NJ(X, V )),

for any V ∈ Γ(TM). In other words:

(3.11) NJ (X = X + α,Y = Y + γ) = (NJ (X, Y ), α ◦NJ(·, Y )− γ ◦NJ(X, ·))
and the conclusion follows directly. The second part is a direct application of Remark
3.2. ¤

More generally, if a, b ∈ R∗ then the pencil:

(3.12) JJ,a,b :=
(

aJ 0
0 −bJ∗

)

is a splitting weak generalized almost tangent structure and JJ = JJ,1,1.

4 Compatibility with generalized Riemannian me-
trics induced by usual metrics

Recall after [24] that a generalized Riemannian metric on the big tangent bundle
T bigM can be produced by an endomorphism G on this manifold such that:
1. G2 = IT bigM i.e. G is an almost product structure on T bigM ,
2. gbig(GX ,GY) = gbig(X ,Y) i.e. G is a gbig-orthogonal transformation.

Representing G as:

(4.1) G =
(

ϕ ]g1

[g2 ϕ∗

)
=: Gϕ,g1,g2 ,

where ϕ is an endomorphism of the tangent bundle TM , ϕ∗ its dual map, [gi(X) :=
iXgi, X ∈ Γ(TM) and ]gi := [−1

gi
, i ∈ {1, 2} for g1, g2 Riemannian metrics on M , the

above two conditions are equivalent to:

(4.2) ϕ2 = I − ]g1 ◦ [g2 , gi(X,ϕY ) = −gi(ϕX, Y ),

for any X, Y ∈ Γ(TM) and i ∈ {1, 2}.
Fix now (J, g) a pair (almost tangent structure, Riemannian metric) on M and

for ε = ±1 say that J is ε-compatible with g if g(JX, Y ) = εg(X,JY ), for any X,
Y ∈ Γ(TM). Consider also on T bigM the generalized Riemannian metric Gg = G0,g,g

induced by g. A natural question is if the induced generalized almost tangent structure
JJ is compatible with this generalized Riemannian metric.
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Proposition 4.1. If J is ε-compatible with g then the generalized tangent structure
J induced by J is (−ε)-compatible with the generalized Riemannian metric Gg:

(4.3) Gg ◦ JJ = −εJJ ◦ Gg.

Proof. We have:

(4.4) Gg :=
(

0 ]g

[g 0

)

and then:

Gg ◦ JJ =
(

0 −]g ◦ J∗

[g ◦ J 0

)
, JJ ◦ Gg =

(
0 J ◦ ]g

−J∗ ◦ [g 0

)
.

The hypothesis means [g ◦ J = εJ∗ ◦ [g yielding then ]g ◦ J∗ = εJ ◦ ]g. Comparing
the previous relations it results the required equality. ¤

5 Deformation under B-field and β-field
transformations

Besides the diffeomorphisms, the Courant bracket admits some other symmetries,
namely the B-field transformations. Now we are interested in what happens if we
apply to the generalized almost tangent structure JJ a B-field transformation.

Let B be a 2-form on M viewed as a map B : Γ(TM) → Γ(T ∗M) and consider
the B-transform:

eB :=
(

I 0
B I

)
.

We define JB,J := eBJJe−B which has the expression:

(5.1) JB,J =
(

J 0
BJ + J∗B −J∗

)
.

JB,J coincides with JJ if and only if BJ +J∗B = 0 which means the skew-symmetry:

(5.2) B(JX, Y ) = −B(X, JY ),

for any X, Y ∈ Γ(TM).

Example 5.1. Let (J, g) be an almost tangent metric structure which means that J
is (−1)-compatible with g. We consider the associated 2-form B(X, Y ) := g(JX, Y )
for X, Y ∈ Γ(TM) and then B(JX, Y ) = −B(X,JY ) since both expressions are
equal to 0. In conclusion JB,J is just JJ .

Proposition 5.1. For any 2-form B the endomorphism JB,J is a classical genera-
lized almost tangent structure which is a generalized almost tangent structure if and
only if B satisfies the skew-symmetry condition (5.2).
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Proof. Indeed, J 2
B,J = eBJ 2

J e−B = 0, so imJB,J ⊆ kerJB,J . Let X = X + α ∈
kerJB,J . Then JX = 0 so that X ∈ kerJ = imJ and J∗(α − B(X)) = 0 so that
α − B(X) ∈ kerJ∗ = imJ∗. Take X = JY and α = B(X) + J∗γ. It follows
X + α = JB,J(Y + B(Y )− γ) ∈ imJB,J and we have the second part of conclusion,
kerJB,J ⊆ imJB,J . ¤

Remark 5.2. In the general case, if J is represented as J =
(

J β
B −J∗

)
, then its

B-transform:

(5.3) JB =
(

J − βB β
BJ + J∗B + B −BβB −J∗ + Bβ

)

defines also a weak classical generalized almost tangent structure.

Similarly we shall see what happens if we apply to the endomorphism JJ a β-field
transformation. Let β be a bivector field on M viewed as a map β : Γ(T ∗M) →
Γ(TM) and consider the β-transform:

(5.4) eβ :=
(

I β
0 I

)
.

We can define Jβ,J := eβJJe−β which has the expression:

(5.5) Jβ,J =
(

J −Jβ − βJ∗

0 −J∗

)
,

which means that for X = X + α ∈ Γ(T bigM), we have:

Jβ,J (X ) = (JX − J(β(α))− β(J∗α),−J∗α) .

If the bivector field β satisfies the skew-symmetry β ◦J∗ = −J ◦β then Jβ,J coincides
with JJ .

Proposition 5.2. For any bivector field β the endomorphism Jβ,J is a classical
generalized almost tangent structure.

Proof. Indeed, J 2
β,J = eβJ 2

J e−β = 0 so imJβ,J ⊆ kerJβ,J . Let X + α ∈ kerJβ,J .
Then J∗α = 0 so that α ∈ kerJ∗ = imJ∗ and J(X − β(α)) = 0 so that X − β(α) ∈
kerJ = imJ . Take α = J∗γ and X = β(α)+JY . It follows X+α = Jβ(Y−β(γ)−γ) ∈
imJβ,J and we have the other inclusion, too, kerJβ,J ⊆ imJβ,J . ¤

Remark 5.3. In the general case, if JJ is represented J =
(

J β
B −J∗

)
then its

β-transform:

Jβ,J =
(

J + βB −Jβ − βJ∗ + β − βBβ
B −J∗ −Bβ

)

defines also a weak classical generalized almost tangent structure.
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6 Tangentomorphisms and invariant subspaces

We shall prove that a diffeomorphism between two almost tangent manifolds preser-
ving the almost tangent structures induces an isomorphism between their generalized
tangent bundles which preserves the associated generalized almost tangent structures.

Definition 6.1. Let (M1, J1) and (M2, J2) be two almost tangent manifolds. We say
that the diffeomorphism f : M1 → M2 is a (J1, J2)-tangentomorphism if it satisfies:

(6.1) J2 ◦ f∗ = f∗ ◦ J1.

Lemma 6.1. If f : (M1, J1) → (M2, J2) is a tangentomorphism then J∗1 ◦f∗ = f∗◦J∗2 .

Proof. For X ∈ Γ(TM1) and α ∈ Γ(T ∗M2) we have:

[(J∗1 ◦ f∗)(α)](X) = (f∗α)(J1X) = α(f∗(J1X))

and respectively:

[(f∗ ◦ J∗2 )(α)](X) = (J∗2 α)(f∗X) = α(J2(f∗X)) = α(f∗(J1X)),

which means the conclusion. ¤

Proposition 6.2. Let f : (M1, J1) → (M2, J2) be a tangentomorphism. Then it
induces an endomorphism between the generalized tangent bundles f big : T bigM1 →
T bigM2 given by:

(6.2) f big(X ) := f∗X + (f−1)∗α.

It satisfies:

(6.3) JJ2 ◦ f big = f big ◦ JJ1 .

Proof. Using the previous lemma we obtain for any X = X + α ∈ Γ(T bigM1):

JJ2 ◦ f big(X ) = JJ2(f∗X + (f−1)∗α) = (J2 ◦ f∗(X),−J∗2 ◦ (f−1)∗(α)) =

= (f∗ ◦ J1(X),−(f−1)∗ ◦ J∗1 α) = f big(J1X − J∗1 α)

and the last term is f big ◦ JJ1(X + α) which means the required equality. ¤

Extending this definition, we say that two generalized almost tangent structures J1

and J2 are isomorphic if there exists an endomorphism F : Γ(T bigM1) → Γ(T bigM2)
such that J2 ◦ F = F ◦ J1.

Let (Ji, gi) be almost tangent metric structures on Mi, i ∈ {1, 2} and
f : (M1, J1, g1) → (M2, J2, g2) a tangentomorphism. For i ∈ {1, 2}, consider:

(6.4) Si := {X = X + α ∈ Γ(T bigMi) | iXgi = α},

(6.5)
Šf

1 := {X = X + f∗(α) ∈ Γ(T bigM1) | iXg1 = f∗(α), X ∈ Γ(TM1), α ∈ Γ(T ∗M2)},
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(6.6)
Ŝf

2 := {X = f∗(X) + α ∈ Γ(T bigM2) | if∗(X)g2 = α, X ∈ Γ(TM1), α ∈ Γ(T ∗M2)}.
A straightforward computation gives:

(6.7) JJi
(Si) ⊂ Si, JJ1(Šf

1 ) ⊂ Šf
1 , JJ2(Ŝf

2 ) * Ŝf
2 .

Therefore, a more interesting case is the coincidence of above almost tangent struc-
tures:

Proposition 6.3. Let f be a tangentomorphism on the almost tangent metric mani-
fold (M,J, g). Then the following subspaces of Γ(T bigM) are invariant by JJ :

(6.8) Šf := {X + f∗(α) | iXg = f∗(α), X + α ∈ Γ(T bigM)},

(6.9) Ŝf := {f∗(X) + α | if∗(X)g = α, X + α ∈ Γ(T bigM)},

(6.10) S̄f := {f∗(X) + f∗(α) | if∗(X)g = f∗(α), X + α ∈ Γ(T bigM)}.
Proof. Fix Y ∈ Γ(TM).
i) For X + f∗(α) ∈ Šf we have JJ(X + f∗(α)) := JX − J∗(f∗(α)). Then:

(iJXg)(Y ) = g(JX, Y ) = −g(X, JY ) = −(iXg)(JY ) = −(f∗(α))(JY ) = (−J∗(f∗(α)))(Y ).

ii) For f∗(X) + α ∈ Ŝf we have J (f∗(X) + α) = J(f∗(X)) − J∗α = f∗(JX) − J∗α.
Then:

if∗(JX)g(Y ) = g(f∗(JX), Y ) = g(J(f∗(X)), Y ) = −g(f∗X,JY ) = −if∗Xg(JY ) =

= −J∗(if∗Xg)(Y ) = −J∗α(Y ).

iii) For f∗(X) + f∗(α) ∈ S̄f we have J (f∗(X) + f∗(α)) := J(f∗(X)) − J∗(f∗(α)) =
f∗(JX)− f∗(J∗α). Then:

if∗(JX)g(Y ) = g(f∗(JX), Y ) = g(J(f∗X), Y ) = −g(f∗X, JY ) = −if∗Xg(JY ) =

= −f∗α(JY ) = −J∗f∗α(Y )

and the last term is −f∗(J∗α)(Y ), which gives the conclusion. ¤

7 Simultaneously integrability of two generalized
almost tangent structures

Two skew-commuting almost tangent structures J1 and J2 on a 4k-dimensional ma-
nifold M satisfying:

(7.1) dim(kerJ1 ∩ kerJ2) = k

are simultaneously integrable if [15]-[16]:

(7.2) NJ1,J1 = 0, NJ1,J2 = 0, NJ2,J2 = 0,
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where the Nijenhuis tensor field of the pair (J1, J2) is generally defined as:

(7.3)
2NJ1,J2(X, Y ) = [J1X, J2Y ]− J1[J2X, Y ]− J2[X, J1Y ] + [J2X, J1Y ]

−J2[J1X, Y ]− J1[X, J2Y ] + (J1J2 + J2J1)[X, Y ].

From these conditions follows that both J1 and J2 are integrable but conversely not.
Let us remark that the generalized almost tangent structures JJ1 , JJ2 are skew-

commuting if and only if the almost tangent structures J1 and J2 are skew-commuting.
Inspired by the result above we introduce:

Definition 7.1. Two generalized almost tangent structures J1 and J2 on the 4k-
dimensional manifold M satisfying dim(kerJ1 ∩ kerJ2) = 2k are said to be simulta-
neously integrable if:

(7.4) NJ1,J1 = 0, NJ1,J2 = 0, NJ2,J2 = 0,

where the Nijenhuis tensor field of the pair (J1,J2) is:

(7.5)
2NJ1,J2(X ,Y) = [J1X ,J2Y]C − J1[J2X ,Y]C − J2[X ,J1Y]C + [J2X ,J1Y]C

−J2[J1X ,Y]C − J1[X ,J2Y]C + (J1J2 + J2J1)[X ,Y]C .

Remark that these conditions yields that both J1 and J2 are integrable but not
conversely.

Proposition 7.1. Let two skew-commuting almost tangent structures J1 and J2 be
given on the 4k-dimensional manifold M satisfying dim(kerJ1 ∩ kerJ2) = k. Then
the generalized almost tangent structures JJ1 and JJ2 are simultaneously integrable if
and only if J1 and J2 are simultaneously integrable.

Proof. Since we have

(7.6) dim(kerJJ1∩kerJJ2) = 2 dim(ker J1∩ker J2)+2 dim(M)−[dim(ker J1)+dim(ker J2)]

and from the condition kerJi = imJi, i ∈ {1, 2}, we deduce that dim(kerJi) =
dim(M) = 4k. The relation between the intersection of the kernels becomes:

(7.7) dim(kerJJ1 ∩ kerJJ2) = 2 dim(kerJ1 ∩ kerJ2) = 2k.

Similar to the formula (3.11) we have that NJJ1 ,JJ2
(X = X +α,Y = Y +γ) = Z +η,

where Z = NJ1,J2(X, Y ) and:

(7.8) η(V ) = α(NJ1,J2(Y, V ))− γ(NJ1,J2(X, V )),

for any V ∈ Γ(TM). In conclusion, NJJi
,JJj

= 0, i ∈ {1, 2}, if and only if NJi,Jj = 0,
i ∈ {1, 2}. ¤

Example 7.2. For any a, b ∈ R∗ define now the family (Ja,b) with Ja,b := a·J1+b·J2.
A straightforward calculus gives that Ja,b defines an almost tangent structure if and
only if J1J2 + J2J1 = 0. Similar, consider the family (Ja,b) defined by Ja,b :=
a · J1 + b · J2. In fact:

(7.9) Ja,b :=
(

a · J1 + b · J2 0
0 −(a · J1 + b · J2)∗

)
=

(
Ja,b 0
0 −J∗a,b

)
.

It results that Ja,b is a weak generalized almost tangent structure if and only if
J1J2 + J2J1 = 0.
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In order to have a class of examples we introduce:

Definition 7.3. Let g be a non-degenerate 2-form on M . Two almost tangent struc-
tures (J1, J2) form a dual pair with respect to g if kerJ1 ⊥g kerJ2.

Since kerJi = imJi, i ∈ {1, 2}, the condition of the previous definition is equivalent
to g(J1X, J2Y ) = 0 for any X, Y ∈ Γ(TM). In the same way can be defined a dual
pair of (weak) generalized almost tangent structures J1, J2 with respect to a non-
degenerate 2-form g of T bigM .

Consider now (J1,J2) a dual pair of (weak) generalized almost tangent structures
with respect to the neutral metric gbig. Then gbig(J1X ,J2Y) = 0. A step further is
to suppose that (Ji, gbig), i ∈ {1, 2}, are generalized almost tangent metric structures
i.e.:

gbig(JiX ,Y) = −gbig(X ,JiY).

Then the image of the endomorphisms J1J2, J2J1 is a subspace in the set of gbig-null
sections of T bigM .

Proposition 7.2. If the almost tangent structures J1 and J2 satisfy J1J2 = J2J1 = 0
then the generalized almost tangent structures JJ1 and JJ2 induced by them form a
dual pair with respect to gbig.

Proof. For X = X + α,Y = Y + γ ∈ Γ(T bigM) the relation:

gbig(JJ1(X ),JJ2(Y)) = −1
2
[α(J1J2Y ) + γ(J2J1X)] = 0

gives the conclusion. ¤

Example 7.4. Returning to Example 2.2 it results that Je and Jdual
e given by

Jdual
e (x, y) = (y, 0) form a dual pair with respect to the Euclidean metric of R2.

We have:

(7.10) JeJ
dual
e + Jdual

e Je = I.

A pair (J1, J2) of weak almost tangent structures satisfying J1J2 + J2J1 = I is called
almost bitangent structure in [9, p. 7].

8 Covariant derivatives on the generalized tangent
bundle

Let ∇ be the Levi-Civita connection associated to a given Riemannian metric g on
M and ∇′ its extension to 1-forms [2, p. 28]:

(8.1) (∇′Xα)(Y ) := X(α(Y ))− α(∇XY ),

with X, Y ∈ Γ(TM) and α ∈ Γ(T ∗M). Then we define the extension of ∇ to T bigM :

(8.2) ∇big
X Y = ∇big

X+αY + γ := ∇XY +∇′]gαγ.
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In general, ∇big is not a linear connection on T bigM , but it satisfies the following
properties:

i) is R-bilinear,

ii) ∇big
fXY = f∇big

X Y for any f ∈ C∞(M),

iii) ∇big
X fY = f∇big

X Y + X(f)Y.

If ∇ is J-invariant: ∇XJY = J(∇XY ) for any X, Y ∈ Γ(TM), then ∇′ is J∗-
invariant: ∇′XJ∗α = J∗(∇′Xα) for any α ∈ Γ(T ∗M). With respect to the big tangent
bundle we have:

Proposition 8.1. If ∇ is J-invariant then ∇big is JJ -invariant.

Proof. From definitions it results:

JJ(∇big
X Y) = JJ(∇XY +∇′]gαγ)

= J(∇XY )− J∗(∇′]gαγ)

= ∇XJY −∇′]gαJ∗γ = ∇big
X JJY,

for any X = X + α,Y = Y + γ ∈ Γ(T bigM). ¤

Remark that ∇big is a natural operator, that is, for any isometry f : (M1, g1) →
(M2, g2) such that the isomorphism f big satisfies f big(S1) ⊆ S2 with respect to Si

from (6.4), the following diagram commutes:

S1 × S1
∇big

1−→ S1

f big × f big ↓ ↓ f big

S2 × S2
∇big

2−→ S2

.
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