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Abstract. Recent years have seen intensive scientific activities of describ-
ing diffusion processes with Brownian covariance given by a Riemannian
metric on a manifold. In our paper the dynamics is specified through a
stochastic variational principle for a generalization of the classical action,
with a given kinetic Riemannian metric.

In short, we introduce the concept of stochastic sub-Riemannian geodesics
and find their equations in the case of Grushin distribution. We also
discuss the number of stochastic geodesics between any two given points
and calculate their energies.
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1 Geodesics on Grushin distribution

The pair of linear differential operators (vector fields) X1 = ∂x1 and X2 = x1∂x2 , on
R2, generate what is known as a Grushin distribution. It is not really a distribution
in the classical sense because the span of X1 and X2 drops rank along the x2-axis,
{x1 = 0}. Nevertheless, the vector fields X1 and X2 are bracket generating in the
sense that taking sufficiently many Lie brackets among them generates all vector fields
on R2.

This paper continues our ideas from [9]. The study of these problems has con-
nections to many fields, including geometric, functional, and stochastic analysis; and
differential geometry together optimal control.

We shall start with a review of a few results regarding sub-Riemann- ian geodesics
on the Grushin distribution. These statements focus on the existence of geodesics
between the origin and any other given point in the plane, and provide an explicit
parameterization of their number. These results are well known in the literature, the
reader being reffered to Calin et al. [3], [8], and Gaveau and Greiner [11], [12]. Some
theorems will be extended to the stochastic environment in the next Sections.
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Figure 1: Geodesics (xm(s), ym(s)) joining the origin with the point (0, 1) for m = 1, . . . , 6.

In order to discuss the geodesics on Grushin distribution, we shall consider a
metric g on R2 with respect to which the vector fields X1 = ∂x1 and X2 = x1∂x2 are
orthonormal. The velocity of a smooth curve tangent to the distribution is given by

dx

dt
(t) = u1(t)X1 + u2(t)X2,

and hence the energy of the curve x(t), with respect to the metric g, is defined by

J(u(·)) =
1
2

∫ T

0

(
u2

1(t) + u2
2(t)

)
dt.

A sub-Riemannian geodesic between two points A and B is a curve which minimizes
the functional J(u(·)) over all smooth curves x(t) satisfying x(0) = A and x(T ) = B.
These geodesics are completely characterized in Calin and Chang [3], p. 275 and
in the paper [8]. The following three Theorems are taken from the aforementioned
references.

Theorem 1.1. Let y1 > 0. There are infinitely many geodesics connecting the points
(0, 0) and (0, y1). The equations of the geodesics are given by

xm(s) =

√
2y1

mπ
sin(mπs), ym(s) = y1

(
s− sin(2mπs)

2mπ

)
, m = 1, 2, 3, · · ·

The length of the mth geodesic is
√

2mπy1. For each m ≥ 1, there are exactly two
geodesics of the same length connecting the preceding points, see Fig. 1.

Theorem 1.2. Given a point Q(x1, y1) with x1 6= 0, there are only finitely many
geodesics joining the point P (0, y0) and the point Q. Let θ1, θ2, · · · , θN be the solutions
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Figure 2: The graph of function µ(θ) = θ
sin2(θ)

− cot θ, for θ ∈ [0,∞) \ {kπ, k ∈ Z}.

of the equation

(1.1)
2(y1 − y0)

x2
1

= µ(θ),

where

µ(θ) =
θ

sin2 θ
− cot θ.

Then the equations of the geodesics are

xm(s) =
sin(θms)
sin(θm)

x1

ym(s) = y0 +
x2

1

2 sin2 θm

(
θms− 1

2
sin(2θms)

)
, m = 1, 2, · · · , N.

The length of these geodesics are given by

`2m = ν(θm)[(y1 − y0) + x2
1],

where

ν(z) =
2z2

z − sin z cos z + sin2 z
.

The graph of the “brush function” µ(θ) is given in Fig. 2. This function was
introduced, analyzed and used for the first time by Beals, Gaveau and Greiner in the
study of geodesics on the Heisenberg group, see [2]. We shall see in the next section
that this function plays an important role for counting the number of stochastic
geodesics between two points in the Grushin plane.

Theorem 1.3. Assume that x0x1 6= 0. The number of geodesics connecting the points
P (x0, y0) and Q(x1, y1) is finite.

In conclusion, in the deterministic case, there is always at least one geodesic
between any two points, and at most infinitely many. The stochastic formulation of
this problem will be discussed in detail in the next section.
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2 Stochastic geodesics on Grushin distribution

In order to introduce stochastic geodesics, we consider the stochastically perturbed
Grushin distribution

(2.1) dxt = (u1(t)X1(xt) + u2(t)X2(xt))dt + σdWt,

with ui(t) stochastic processes, σ = (σ1, σ2)T , a constant vector, and Wt =
(
W1(t),W2(t)

)T ,
a 2-dimensional Brownian motion. This writes also as

dx1(t) = u1(t)dt + σ1 dW1(t)(2.2)
dx2(t) = u2(t)x1(t)dt + σ2 dW2(t).(2.3)

We shall consider in the following that the energy of a stochastic process Xt is
the energy of the curve t → E(Xt) with respect to a given Riemannian metric,
where E means the expectation of the process. In the stochastic Grushin plane
R2 \ {(0, x2); x2 ∈ R}, endowed with the metric

g = (gij) =
(

1 0
0 1

x2
1

)
,

the energy of the process (x1(t), x2(t)) is 1
2

(
u2

1(t) + u2
2(t)

)
. Since this energy does

not depend on the point (x1, x2), the connectivity by stochastic geodesics problem
extends to R2.

The following definition introduces the concept of stochastic geodesic on the
Grushin distribution.

Definition 2.1. A stochastic geodesic from the point A towards point B, in the
stochastic Grushin plane, is a continuous process xt =

(
x1(t), x2(t)

)
satisfying the

stochastic ODEs (2.2-2.3) with initial condition x0 = A, the expectation at the final
configuration E(xT ) = B, and for which the negative energy functional

J(u(·)) = −1
2
E

[ ∫ T

0

(
u2

1(t) + u2
2(t)

)
dt

]

is maximum.

It is worth noting the possible non-symmetry of connectivity by stochastic geodesics.
This means that if there is a stochastic geodesic starting at A and aiming to B, it
is not necessarily true that there is a stochastic geodesic starting at B and aiming
to A. This is unlike in the case of connectivity by deterministic geodesics, which is
obviously symmetric.

In order to find the equations satisfied by stochastic geodesics, we shall employ
the method of stochastic Hamiltonian, applying Theorem 4.1 of Udriste and Damian
[19] (see also [20], [21], [22]). The associated Hamiltonian 1-form in this case is

(2.4) H(t, xt, ut, pt) = −1
2
(
u2

1(t) + u2
2(t)

)
dt +

(
p1u1(t) + p2u2(t)x1(t)

)
dt.



Stochastic sub-Riemannian geodesics on the Grushin distribution 41

We have

Hx1 = p2u2dt, Hx2 = 0
Hp1 = u1dt, Hp2 = u2x1dt

Hu1 = (−u1 + p1)dt, Hu2 = (−u2 + p2x1)dt.

The critical point conditions

Hu1(t, xt, u
∗
t , pt) = 0, Hu2(t, xt, u

∗
t , pt) = 0

yield the optimal controls u∗1 = p1 and u∗2 = p2x1. The momenta pi satisfy the adjoint
linear stochastic differential system

dp1(t) = −Hx1(t, xt, u
∗
t , pt) = −p2u

∗
2dt = −p2(t)2x1(t)dt

dp2(t) = −Hx2(t, xt, u
∗
t , pt) = 0(2.5)

and the initial stochastic equations describing the stochastic process xt are

dx1(t) = Hp1(t, xt, u
∗
t , pt) + σ1dW1(t) = p1(t)dt + σ1dW1(t)

dx2(t) = Hp2(t, xt, u
∗
t , pt) + σ2dW2(t) = p2(t)(x1(t))2dt + σ2dW2(t),

(x1(0), x2(0)) = (xA
1 , xA

2 ), E[(x1(T ), x2(T ))] = (xB
1 , xB

2 ).

We shall find the general solution of the aforementioned stochastic ODEs. Since the
equation (2.5) implies p2(t) = c2, the system takes the more simple form

dx1(t) = p1(t)dt + σ1dW1(t)

dx2(t) = c2x1(t)2dt + σ2dW2(t)

dp1(t) = −c2
2x1(t)dt

p2 = c2.

Notice that the associated ODEs containing only the “drift parts” (see the first and
third equations),

dp1(t) = −c2
2x1(t)dt, dx1(t) = p1(t)dt,

has the general solution

x1(t) = a1 cos(c2t) + a2 sin(c2t)
p1(t) = −c2 [a1 sin(c2t)− a2 cos(c2t)] .

In order to solve the stochastic system, we try something similar to the variation of
parameters method, i.e., we are looking for a solution of the following form

x1(t) = a1(t) cos(c2t) + a2(t) sin(c2t) + σ1W1(t),(2.6)
p1(t) = −c2 [a1(t) sin(c2t)− a2(t) cos(c2t)] .(2.7)

It follows that the coefficients satisfy the stochastic system

cos(c2t)da1(t) + sin(c2t)da2(t) = 0,

sin(c2t)da1(t)− cos(c2t)da2(t) = c2σ1W1(t)dt
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or equivalently,

da1(t) = c2σ1W1(t) sin(c2t)dt

da2(t) = −c2σ1W1(t) cos(c2t)dt.

Integrating and using Ito’s formula, we obtain

a1(t) = a1(0)− σ1 cos(c2t)W1(t) + σ1

∫ t

0

cos(c2s) dW1(s)

a2(t) = a2(0)− σ1 sin(c2t)W1(t) + σ1

∫ t

0

sin(c2s) dW1(s).

Using properties of Wiener integrals, we have

E(a1(t)) = a1(0), E(a2(t)) = a2(0).

Substituting the boundary conditions

x1(0) = xA
1 , E[x1(T )] = xB

1

into (2.6-2.7) leads to x1(0) = a1(0) = xA
1 and

xA
1 cos(c2T ) + a2(0) sin(c2T ) = xB

1 .(2.8)

This provides the relation

(2.9) a2(0) =
xB

1 − xA
1 cos θ

sin θ
,

where θ = c2T .
Substituting the expressions for a1(t) and a2(t) into (2.6-2.7) yields

x1(t) =
(

xA
1 + σ1

∫ t

0

cos(c2s) dW1(s)
)

cos(c2t)

+
(

a2(0) + σ1

∫ t

0

sin(c2s) dW1(s)
)

sin(c2t),

p1(t) = −c2

(
xA

1 + σ1

∫ t

0

cos(c2s) dW1(s)
)

sin(c2t)

+ c2

(
a2(0) + σ1

∫ t

0

sin(c2s) dW1(s)
)

cos(c2t),

with a2(0) and c2 satisfying (2.8).
The second component of the stochastic geodesic, x2(t), depends on its first com-

ponent, x1(t), as follows

x2(t) = xA
2 + c2

∫ t

0

x2
1(s) ds + σ2W2(t).
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The integral in the middle is not solvable in closed form. However, the boundary
condition E[x2(T )] = xB

2 provides the “compatibility condition”

(2.10) xA
2 + c2

∫ T

0

E[x2
1(s)] ds = xB

2 .

The integral in the middle can now be computed. We first note that

E

[(∫ t

0

cos(c2s) dW1(s)
)2

]
=

∫ t

0

cos2(c2s) ds =
t

2
+

sin(2c2t)
4c2

,

E

[(∫ t

0

sin(c2s) dW1(s)
)2

]
=

∫ t

0

sin2(c2s) ds =
t

2
− sin(2c2t)

4c2
,

E
[(∫ t

0

sin(c2s) dW1(s)
)(∫ t

0

cos(c2s) dW1(s)
)]

=
∫ t

0

sin(c2s) cos(c2s) ds =
sin2(c2t)

2c2
.

Then

E[x2
1(s)] =

(
(xA

1 )2 + σ2
1

(s

2
+

sin(2c2s

4c2

))
cos2(c2s)

+
(

a2(0)2 + σ2
1

(s

2
− sin(2c2s

4c2

))
sin2(c2s)

=
1
2
σ2

1s + (xA
1 )2 cos2(c2s) + a2(0)2 sin2(c2s) +

σ2
1

8c2
sin(4c2s).

Integrating yields
∫ T

0

E[x2
1(s)] ds =

1
4
σ2

1T 2 + (xA
1 )2

(T

2
+

sin(2c2T )
4c2

)

+ a2(0)2
(T

2
− sin(2c2T )

4c2

)
+

σ2
1

8c2

sin2(2c2T )
2c2

.

Substituting θ = c2T , using relation (2.9), the previous identity becomes

c2

∫ T

0

E[x2
1(s)] ds =

1
4
σ2

1Tθ +
(xA

1 )2

2

(
θ +

sin(2θ)
2

)

+
1
2
(xB

1 − xA
1 cos θ)2

( θ

sin2 θ
− cot θ

)
+

σ2
1T

16
sin2(2θ)

θ
.

Then the condition (2.10) is equivalent to

xB
2 − xA

2 =
1
4
σ2

1Tθ +
(xA

1 )2

2

(
θ +

sin(2θ)
2

)

+
1
2
(xB

1 − xA
1 cos θ)2µ(θ) +

σ2
1T

16
sin2(2θ)

θ
,(2.11)
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where

(2.12) µ(θ) =
θ

sin2 θ
− cot θ.

Each solution θ of equation (2.11) determine a unique pair (c2, a2(0)), with c2 = θ/T
and and a2(0) given by (2.9). The pair (c2, a2(0)) define the stochastic geodesic(
x1(t), x2(t)

)
starting at A and aiming to B.

3 Geodesics starting at the origin

In the case when the stochastic geodesic starts at the origin, i.e., when xA
1 = xA

2 = 0,
the equation (2.11) takes the following more simple form

xB
2 =

1
4
σ2

1Tθ +
1
2
(xB

1 )2µ(θ) +
σ2

1T

16
sin2(2θ)

θ
.(3.1)

Let xB
1 6= 0 and set

g(θ) = g(θ;xB
1 , xB

2 ) :=
2

(xB
1 )2

[
xB

2 −
1
4
σ2

1Tθ − σ2
1T

16
sin2(2θ)

θ

]
.

Then the number of stochastic geodesics starting at the origin and aiming to B is
given by the number of solutions θ of the equation

g(θ) = µ(θ).(3.2)

It is worthy to know the behavior of both sides in order to predict the number of
solutions. The function on the left side has the following properties

(i) g(0+) =
2xB

2

(xB
1 )2

.

(ii) g(θ) oscillates with the amplitude decreasing to 0 as θ →∞. In fact

g(θ) ∼ 2
(xB

1 )2

[
xB

2 −
1
4
σ2

1Tθ
]
, θ ∼ ±∞,

i.e. the function g(θ) approaches a linear function of negative slope for |θ| large.
The function µ(θ) is characterized by the following result, see Beals et al. [2].

Lemma 3.1. The function µ defined by (2.12) is a monotone-increasing diffeomor-
phism of the interval (−π, π) onto R. On each interval

(
mπ, (m+1)π

)
, m = 1, 2, . . . ,

the function µ has a unique critical point cm. On this interval µ decreases strictly
from +∞ to µ(cm) and then increases strictly from µ(cm) to +∞. Moreover, the
minima values are increasing

µ(cm) + π < µ(cm+1), m = 1, 2, . . . .

If g(0) > 0, then the solutions θ of equation (3.2) are positive, see Fig. 3. Since there
is M > 0 such that

g(θ) < 0, µ(θ) > 0, ∀θ > M,
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Figure 3: The graphs of the functions g(θ), µ(θ) and their intersections.

by continuity reasons it follows that the equation (3.2) has at least one solution. Since
g(θ) tends to a line with negative slope, the number of solutions must be finite. The
case g(0) < 0 is similar, but the solutions are negative.

It can also be inferred from Fig. 3 that when xB
1 →∞, i.e., when the slope of the

line is small, then the number of solutions increases unbounded. They are given by
θk = kπ, or ck

2 = kπ/T .
When xB

2 = 0 and xB
2 6= 0, the only solution of the equation (3.2) is θ = 0. This

implies c2 = 0, and hence x1(t) = σ2Wt and x2(t) = xA
2 = 0.

To conclude, we state the following result.

Theorem 3.2. (i) Given a point B in the Grushin plane, with xB
1 6= 0, there is at

least one stochastic geodesic starting at the origin and aiming to B. The number of
stochastic geodesics with this property is finite and is given by the number of solutions
θ of the equation (3.2).

(ii) Given a point B on the x2−axis, there are infinitely many stochastic geodesics
starting at the origin and aiming to B.

(iii) If B belongs to the x1−axis, then there is a unique stochastic geodesic from
the origin towards B; this is given by a Brownian motion along the x1−axis

xt =
(
σ1W1(t), 0

)
.

Remark 3.1. (a) If set σ1 = 0, then the equation (3.2) becomes

2xB
2

(xB
1 )2

= µ(θ),

which is exactly the equation (1.1).
(b) It is worth noting that the number of stochastic geodesics is independent of σ2.
(c) A MAPLE simulation of the graphs of geodesic components x1(t) and x2(t) (de-
terministic versus stochastic) are given in Fig. 4 (a) and (b).
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(a) (b)

Figure 4: Graphs of geodesic components: deterministic versus stochastic; (a)
(x1(t), X1(t)); (b) (x2(t), X2(t)).

4 The energy along stochastic geodesics

In this section we shall compute the energy along stochastic geodesics starting at the
origin and aiming towards a point B of coordinates (xB

1 , xB
2 ). This is given by

(4.1) I =
1
2
E

[ ∫ T

0

(
u∗1(t)

2 + u∗2(t)
2
)

dt
]
,

and we shall express it in terms of xB
1 and xB

2 . Using the stochastic Ito relations
(dWt)2 = dt, dtdWt = 0, and (dt)2 = 0, we have

dx1(t) = p1(t)dt + σ1dW1(t)

dp1(t) = −c2
2x1(t)dt = 0.

or

(dx1(t))2 = σ2
1dt

(dp1(t))2 = 0.

Since the optimal controls are

u∗1(t) = p1(t), u∗2(t) = p2(t)x1(t) = c2x1(t),

with c2 constant, differentiating using Ito’s formula we have

d
(
u∗1(t)

2 + u∗2(t)
2
)

= d
(
p1(t)2 + c2

2x1(t)2
)

= 2p1(t)dp1(t) + (dp1(t))2 + 2c2
2x1(t)dx1(t) + c2

2(dx1(t))2

= c2
2σ

2
1dt + 2σ1c

2
2x1(t)dW1(t).
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Integrating, we get

u∗1(t)
2 + u∗2(t)

2 = u∗1(0)2 + u∗2(0)2 + (c2σ1)2t + 2σ1c
2
2

∫ t

0

x1(s) dW1(s).

Since the geodesic starts at the origin, xA
1 = 0, we find

u∗1(0) = p1(0) = c2a2(0) =
c2x

B
1

sin(c2T )

u∗2(0) = c2x1(0) = c2x
A
1 = 0.

Consequently, we have u∗1(0)2 + u∗2(0)2 =
(c2x

B
1 )2

sin(c2T )2
, and hence we obtain

u∗1(t)
2 + u∗2(t)

2 =
(c2x

B
1 )2

sin(c2T )2
+ (c2σ1)2t + 2σ1c

2
2

∫ t

0

x1(s) dW1(s).

Integrating between 0 and T yields

1
2

∫ T

0

(
u∗1(t)

2 + u∗2(t)
2
)

dt =
T (c2x

B
1 )2

2 sin(c2T )2
+

(σ1c2T

2

)2

+ σ1c
2
2

∫ T

0

∫ t

0

x1(s) dW1(s) dt.

Since the expectation of an Ito integral is zero, taking the expectation yields

I =
1
2
E

[ ∫ T

0

(
u∗1(t)

2 + u∗2(t)
2
)

dt
]

=
T (c2x

B
1 )2

2 sin(c2T )2
+

(σ1c2T

2

)2

.

This can be written in terms of the new variable θ = c2T as

I =
(θxB

1 )2

2T (sin θ)2
+

(σ1θ

2

)2

,

where θ satisfies equation (3.2). If xB
1 6= 0 there are finitely many solutions θ, and

hence finitely many energies, one for each stochastic geodesic.
In the particular case, when xB

1 = 0, i.e. B belongs to the x2−axis, then θ = θk =
kπ, k = 1, 2, 3, · · · , and the energies are given by

Ik =
(σ1kπ

2

)2

, k = 1, 2, 3, · · · .

It is worth noting that the energies do not depend on σ2.

5 Conclusions

The paper starts with few notions and results of sub-Riemannian geodesics on the
Grushin distribution. It is worth noting that in this case there are no abnormal or
singular geodesics.
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Then the stochastic geodesics are defined as energy minimizing stochastic processes
starting at a given point and having a given end point expectation. The number of
stochastic geodesics between the origin and any other point in the plane is found and
explicit formulas for the energy along stochastic geodesics are found.

Therefore, the paper will have an impact on the future approach of sub-Riemannian
geometry treated from the stochastic point of view. More precisely, in mathematical
literature there are papers based on Brownian metric, and and here one used the
kinetic metric. Our paper opens the eyes for further research: geometric problems
which depends on both metrics, the Brownian one and the kinetic one.

The novelty of this article is based on elements of differential geometry placed over
stochastic processes. There could be considered also problems in which the stochastic
theory is placed on a background of differential geometry. The mixture between
probability theory, differential geometry and control theory is now in progress and
requires new footprint differential geometry ideas.

We believe that the mixture can be continued, but stochastic-deterministic balance
cannot be understood without new points of view.
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