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Abstract. In this paper, we discuss about the complete linear Weingarten
hypersurfaces in locally symmetric manifold and obtain a rigidity theorem.
More precisely, under a suitable restriction on the square norm of the
second fundamental form, we prove that such a hypersurface must be
either totally umbilical or an isoparametric hypersurface with two distinct
principal curvatures, one of which is simple.
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1 Introduction

Recently, many researchers studied the minimal hypersurfaces or hypersurfaces with
constant mean (or scalar) curvature in the locally symmetric manifolds and the δ-
pinched manifolds, and obtained many rigidity results about these hypersurfaces
([4, 8, 9] and the references therein). As a natural generalization of hypersurface
with constant scalar curvature or with constant mean curvature, linear Weingarten
hypersurface has been studied in many places ([1, 2, 5]). Recall that a hypersurface
in a Riemannian manifold is said to be linear Weingarten if its (normalized) scalar
curvature r and its mean curvature H are related by r = aH + b for some con-
stants a, b ∈ R. In this paper, we modify Cheng-Yau’s technique to complete linear
Weingarten hypersurfaces in locally symmetric manifolds and obtain some rigidity
theorems. More precisely, we have

Theorem 1.1. Let Mn be an n-dimensional complete orientable hypersurface im-
mersed in the locally symmetric manifold Nn+1 (n ≥ 3) satisfying 1

2 < δ ≤ KN ≤ 1
and Kn+1in+1i = c0. Assume that Mn has bounded mean curvature and r = aH +
b, a, b ∈ R, a ≤ 0, b > 1. If S ≤ 2

√
n− 1(2δ− c0), then either Mn is a totally umbili-

cal hypersurface or supS = 2
√

n− 1(2δ− c0). Moreover, if sup S = 2
√

n− 1(2δ− c0)
and this supremum is attained at some point of Mn, then Mn is an isoparametric
hypersurface with two distinct principal curvatures, one of which is simple.
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When δ = c0 = 1, Nn+1 is the unit sphere Sn+1(1), so we have the following
corollary.

Corollary 1.2. Let Mn be an n-dimensional complete orientable hypersurface im-
mersed in Sn+1(1). Assume that Mn has bounded mean curvature and r = aH +
b, a, b ∈ R, a ≤ 0, b > 1. If S ≤ 2

√
n− 1, then either Mn is a totally umbilical

hypersurface or sup S = 2
√

n− 1. Moreover, if supS = 2
√

n− 1 and this supremum
is attained at some point of Mn, then Mn is an isoparametric hypersurface with two
distinct principal curvatures, one of which is simple.

2 Preliminaries

Let Nn+1 be a locally symmetric manifold and Mn be an n-dimensional complete
orientable hpersurface in Nn+1. For any p ∈ M , we choose a local orthonormal frame
e1, · · · , en+1 in Nn+1 around p such that e1, · · · , en are tangent to Mn and en+1

is normal to Mn. Let ω1, · · · , ωn+1 be the corresponding dual coframe. Then the
Riemannian metric tensor h of Nn+1 is given by h =

∑
A

ωA ⊗ ωA. Here and in the

sequel, we use the following standard convention for indices:

1 ≤ A, B,C, · · · ≤ n + 1, 1 ≤ i, j, k, · · · ≤ n.

Associated with the frame field {eA}, there exist 1-forms {ωAB} which are usually
called as connection forms on Nn+1 so that they satisfy the structure equations of
Nn+1:

dωA = −
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,(2.1)

dωAB = −
∑

C

ωAC ∧ ωCB +
1
2

∑

C,D

KABCDωC ∧ ωD,(2.2)

where KABCD are the components of the curvature tensor of Nn+1.
Restricting these forms to Mn, we have ωn+1 = 0 and the induced Riemannian

metric tensor g of Mn is given by g =
∑
i

ωi⊗ωi. Since 0 = dωn+1 = −∑
i ωn+1i∧ωi,

from Cartan lemma, we have

ωn+1i =
∑

j

hijωj , hij = hji.(2.3)

The quadratic form B =
∑
i,j

hijωiωjen+1 with values in the normal bundle is called

the second fundamental form of Mn. The mean curvature vector h is defined by

h =
1
n

∑

i

hiien+1.

The length of the mean curvature vector is called the mean curvature of Mn, denote
by H. When h 6= 0, we choose en+1 such that H = |h| = 1

n

∑
i

hii.
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It follows from the structure equations of Nn+1 that the structure equations of
Mn are

dωi = −
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,(2.4)

dωij = −
n∑

k=1

ωik ∧ ωkj +
1
2

n∑

k,l=1

Rijklωk ∧ ωl,(2.5)

where Rijkl are the components of the curvature tensor of Mn. Then the Gauss
equations are

Rijkl = Kijkl + (hikhjl − hilhjk),(2.6)

n(n− 1)r =
∑

i,j

Kijij + n2H2 − S,(2.7)

where r and S =
∑
i,j

h2
ij are the normalized scalar curvature and the square norm of

the second fundamental form of Mn, respectively.
The Codazzi and Ricci equations are

hijk − hikj = −Kn+1ijk,(2.8)

Kn+1ijkl = Kn+1in+1khjl + Kn+1ijn+1hkl −
∑
m

Kmijkhml,(2.9)

where the covariant derivative of hij is defined by
∑

k

hijkωk = dhij −
∑

k

hkjωki −
∑

k

hikωkj .(2.10)

Similarly, the components hijkl of the second derivative ∇2h are given by
∑

l

hijklωl = dhijk −
∑

l

hljkωli −
∑

l

hilkωlj −
∑

l

hijlωlk.(2.11)

The Laplacian 4hij of hij is defined by

4hij =
∑

k

hijkk.

By a simple and direct calculation, we have

4hij =
∑

k

[
(hijkk − hikjk) + (hikjk − hikkj) + (hikkj − hkkij) + hkkij

]

=
∑

k

Kn+1ikjk +
∑

k,m

(hmiRmkjk + hmkRmijk) +
∑

k

Kn+1kkij +
∑

k

hkkij

= (nH)ij + nHKn+1in+1j −
∑

k

hijKn+1kn+1k + nH
∑

k

hikhkj

− Shij +
∑

k

[
hmiKmkjk + hmjKmkik + 2hkmKmijk

]
.(2.12)
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Since (hij) is symmetric, we may choose a local orthonormal frame {ei} such that at
arbitrary fixed point p on Mn

hij = λiδij ,(2.13)

where λ′is are the principal curvatures of Mn. Then it follows, at p, that

1
2
4S =

1
2

∑

i,j

4h2
ij =

∑

i,j,k

h2
ijk +

∑

i,j

hij4hij

=
∑

i,j,k

h2
ijk +

∑

i

λi(nH)ii − S2 + nH
∑

i

λ3
i

+ nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i

+
∑

i,j

(λi − λj)2Kijij .(2.14)

Set φij = hij −Hδij , it is easy to check that φ is traceless and

|φ|2 =
∑

i,j

(φij)2 = S − nH2,(2.15)

where φ denotes the matrix (φij). Moreover, |φ|2 = S − nH2 ≥ 0 with equality holds
if and only if Mn is totally umbilical.

Lemma 2.1 ([6]). Let u1, u2, · · · , un be real numbers such that
∑

i ui = 0 and∑
i u2

i = β. Then

− n− 2√
n(n− 1)

β3 ≤
∑

i

u3
i ≤

n− 2√
n(n− 1)

β3,

and equality holds if and only if at least n− 1 of u′is are equal.

Lemma 2.2. Let Nn+1 be a locally symmetric manifold satisfying 1
2 < δ ≤ KN ≤ 1

and Mn be an n-dimensional complete orientable hypersurface immersed in Nn+1

with r = aH + b, a, b ∈ R and (n− 1)a2 + 4n(b− 1) ≥ 0. Then we have
∑

i,j,k

h2
ijk ≥ n2|∇H|2,(2.16)

and equality holds if and only if |∇H|2 = 0 or 4n2S = (2n2H − n(n− 1)a)2.

Proof. From Gauss equation (2.7), we have

S =
∑

i,j

Kijij + n2H2 − n(n− 1)r

=
∑

i,j

Kijij + n2H2 − n(n− 1)(aH + b).(2.17)
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Since Nn+1 is locally symmetric, taking the covariant derivative on both sides of the
above equation, we have

2
∑

i,j

hijhijk = 2n2HHk − n(n− 1)aHk.

Therefore,

4S
∑

i,j,k

h2
ijk ≥ 4

∑

k

( ∑

i,j

hijhijk

)2

= (2n2H − n(n− 1)a)2|∇H|2.(2.18)

We know from 0 < δ ≤ Kijij ≤ 1 that

(2n2H − n(n− 1)a)2 − 4n2S

=4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)aH

− 4n2
( ∑

i,j

Kijij + n2H2 − n(n− 1)(aH + b)
)

≥4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)aH

− 4n2
(
n(n− 1) + n2H2 − n(n− 1)(aH + b)

)

=n2(n− 1)2a2 + 4n3(n− 1)(b− 1)

=n2(n− 1)
(
(n− 1)a2 + 4n(b− 1)

)
≥ 0.(2.19)

It follows (2.18) and (2.19) that

4S
∑

i,j,k

h2
ijk ≥ (2n2H − n(n− 1)a)2|∇H|2 ≥ 4n2S|∇H|2.

Thus either S = 0 and
∑

i,j,k

h2
ijk = n2|∇H|2 or

∑
i,j,k

h2
ijk ≥ n2|∇H|2.

If
∑

i,j,k

h2
ijk = n2|∇H|2, from (2.17) and (2.18), we have

0 ≤ n2(n− 1)
(
(n− 1)a2 + 4n(b− 1)

)
|∇H|2

≤ (2n2H − n(n− 1)a)2|∇H|2 − 4n2S|∇H|2

≤ 4S
∑

i,j,k

h2
ijk − 4n2S|∇H|2 = 4S

( ∑

i,j,k

h2
ijk − n2|∇H|2

)
= 0.

Then we conclude that |∇H|2 = 0 or 4n2S = (2n2H − n(n− 1)a)2. ¤

Following Cheng-Yau [3], as in [2], we introduce a modified operator ¤ acting on
any C2- function f by

¤(f) =
∑

i,j

((
nH − n− 1

2
a
)
δij − hij

)
fij ,(2.20)

where fij is given by the following
∑

j

fijωj = dfi + fjωij .
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Lemma 2.3. Let Nn+1 be a locally symmetric manifold satisfying 1
2 < δ ≤ KN ≤ 1

and M be an n-dimensional orientable linear Weingarten hypersurface with r = aH+b
immersed in Nn+1. If a ≤ 0 and b > 1, then ¤ is elliptic.

Proof. Since r = aH + b and KN ≤ 1, from Gauss equation (2.7), we have

n(n− 1)(aH + b) ≤ n(n− 1) + n2H2 − S,

i.e.

S ≤ n2H2 − n(n− 1)(b− 1)− n(n− 1)aH.(2.21)

Then it follows from b > 1 that

n2H2 − n(n− 1)aH − S ≥ n(n− 1)(b− 1) > 0.(2.22)

Therefore H 6= 0. Thus we can assume H > 0 on M . So ¤ is elliptic if and only if
nH − n−1

2 a− λi > 0 for i = 1, 2, · · · , n, where λ′is are the principal curvatures of M .
If, for some i, nH − n−1

2 a− λi ≤ 0 holds, then 0 < nH − n−1
2 a ≤ λi and

(nH − n− 1
2

a)2 ≤ λ2
i ≤ S,

n2H2 − n(n− 1)aH +
1
4
(n− 1)2a2 ≤ S.

This together with (2.22) gives

S < n2H2 − n(n− 1)aH ≤ S,

which is a contradiction. So ¤ is an elliptic operator. ¤

Proposition 2.4. Let Nn+1 (n ≥ 3) be a locally symmetric manifold satisfying 1
2 <

δ ≤ KN ≤ 1, Kn+1in+1i = c0 and Mn be an n-dimensional complete orientable
hypersurface immersed in Nn+1 with r = aH+b, a, b ∈ R and (n−1)a2+4n(b−1) ≥ 0.
Then

¤(nH) ≥ − n

2
√

n− 1
[S − 2

√
n− 1(2δ − c0)]|φ|2.(2.23)

Proof. First, (2.20) gives

¤(nH) =
∑

i,j

((nH − 1
2
(n− 1)a)δij − hn+1

ij )(nH)ij

= (nH − 1
2
(n− 1)a)4(nH)−

∑

i,j

hn+1
ij (nH)ij

= (nH − 1
2
(n− 1)a)4(nH − 1

2
(n− 1)a)−

∑

i,j

hn+1
ij (nH)ij

=
1
2
4(nH − 1

2
(n− 1)a)2 − |∇(nH +

1
2
(n− 1)a)|2 −

∑

i,j

hn+1
ij (nH)ij

=
1
2
4(nH − 1

2
(n− 1)a)2 − n2|∇H|2 −

∑

i,j

hn+1
ij (nH)ij .(2.24)
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Since the scalar curvature R̄ of a locally symmetric manifold is constant. Then it
follows from

R̄ = 2
∑

i

Kn+1in+1i +
∑

i,j

Kijij = 2nc0 +
∑

i,j

Kijij ,

that
∑
i,j

Kijij is constant. Therefore, from Gauss equation (2.7) and r = aH + b, we

have

4S = 4
( ∑

i,j

Kijij + n2H2 − n(n− 1)r
)

= 4(n2H2 − n(n− 1)(aH + b))

= 4(n2H2 − n(n− 1)aH)

= 4(nH − 1
2
(n− 1)a)2.(2.25)

Combining (2.14) (2.24) and (2.25), we get

¤(nH) =
1
2
4S − n2|∇H|2 −

∑

i,j

hn+1
ij (nH)ij

=
∑

i,j,k

h2
ijk − n2|∇H|2 − S2 + nH

∑

i

λ3
i +

∑

i,j

(λi − λj)2Kijij

+ nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i.(2.26)

Set µi = λi −H, it is easy to check that
∑

i

µi = 0,
∑

i

µ2
i = |φ|2 = S − nH2,

∑

i

µ3
i =

∑

i

λ3
i − 3HS + 2nH3.

Then, for any ε > 0, we have

−S2 + nH
∑

i

λ3
i = −S2 + nH

∑

i

µ3
i + 3nH2S − 2n2H4

≥ − n(n− 2)√
n(n− 1)

|H||φ|3 + nH2|φ|2 − |φ|4

≥ − n− 2
2
√

n− 1

(
nεH2 +

1
ε
|φ|2

)
|φ|2 + nH2|φ|2 − |φ|4,(2.27)

where the second inequality uses the absorbing inequality 2ab ≤ εa2 + 1
ε b2. When

n ≥ 3, taking ε = n+2
√

n−1
n−2 in (2.27), we get

−S2 + nH
∑

i

λ3
i ≥ − n

2
√

n− 1
(nH2|φ|2 + |φ|4) = − n

2
√

n− 1
S|φ|2.(2.28)

Since N is a δ-pinched manifold, we have
∑

i,j

(λi − λj)2Kijij ≥ δ
∑

i,j

(λi − λj)2 = 2nδ|φ|2,(2.29)
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At the same time, using the curvature condition, we have

nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i = nc0(n2H2 − S) = −nc0|φ|2.(2.30)

From (2.26) (2.28) (2.29) (2.30) and Lemma 2.2, we see that

¤(nH) ≥ −nc0|φ|2 + 2nδ|φ|2 − n

2
√

n− 1
S|φ|2

= − n

2
√

n− 1
[S − 2

√
n− 1(2δ − c0)]|φ|2.(2.31)

¤

We also need the well known generalized Maximum Principle due to H. Omori.

Lemma 2.5 ([7]). Let Mn be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and f : Mn → R be a smooth func-
tion which is bounded from above on Mn. Then there is a sequence of points {pk} in
Mn such that

lim
k→∞

f(pk) = sup f ; lim
k→∞

|∇f(pk)| = 0; lim sup
k→∞

(4f(pk)) ≤ 0.

Proposition 2.6. Let Mn be a n-dimensional complete orientable hypersurface of lo-
cally symmetric manifold Nn+1 (n ≥ 3) satisfying 1

2 < δ ≤ KN ≤ 1 and Kn+1in+1i =
c0. If M has bounded mean curvature and r = aH + b, a, b ∈ R, a ≤ 0, (n − 1)a2 +
4n(b− 1) ≥ 0. Then there is sequence of points {pk} ∈ Mn such that

lim
k→∞

nH(pk) = n sup H; lim
k→∞

|∇nH(pk)| = 0; lim sup
k→∞

(¤(nH)(pk)) ≤ 0.

Proof. Choose a local orthonormal frame field e1, . . . , en at p ∈ Mn such that hij =
λiδij . Thus

¤(nH) =
∑

i

[
(nH − 1

2
(n− 1)a)− λi

]
(nH)ii.

If H ≡ 0 the proposition holds trivially. Now we may assume supH > 0 if H is not
identically zero by choosing the appropriate orientation of Mn. From

λ2
i ≤ S = n2H2 +

∑

i,j

Kijij − n(n− 1)(aH + b)

= (nH)2 − (n− 1)a(nH)− n(n− 1)b +
∑

i,j

Kijij

≤ (
nH − 1

2
(n− 1)a

)2 − 1
4
(n− 1)((n− 1)a2 + 4nb− 4n)

≤ (
nH − 1

2
(n− 1)a

)2
,

we have

|λi| ≤
∣∣nH − 1

2
(n− 1)a

∣∣.(2.32)
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Then

Rijij = Kijij + λiλj ≥ c− (
nH − 1

2
(n− 1)a

)2
.(2.33)

Since H is bounded, it follows from (2.33) that the sectional curvatures are bounded
from below. Then we may obtain a sequence of points {pk} ∈ Mn, by applying
Lemma 2.5 to nH, such that

lim
k→∞

nH(pk) = n sup H; lim
k→∞

|∇nH(pk)| = 0; lim sup
k→∞

((nH)ii(pk)) ≤ 0.(2.34)

Since H is bounded, taking subsequences if necessary, we can arrive to a sequence
{pk} ∈ Mn which satisfies (2.34) and such that H(pk) ≥ 0. This together with (2.32)
gives

0 ≤ nH(pk)− 1
2
(n− 1)a− |λi(pk)| ≤ nH(pk)− 1

2
(n− 1)a + |λi(pk)|

≤ 2nH(pk)− (n− 1)a.(2.35)

Using once more the fact that H is bounded, from (2.35) we infer that nH(pk) −
1
2 (n − 1)a − λi(pk) is non-negative and bounded. By applying ¤(nH) at pk, taking
the limit and using (2.34) and (2.35), we have

lim sup
k→∞

(¤(nH)(pk)) ≤
∑

i

lim sup
k→∞

[
(nH − 1

2
(n− 1)a)− λi

]
(pk)(nH)ii(pk) ≤ 0.

¤

3 Proof of Theorem 1.1

From the assumption of theorem 1.1, we may assume that H > 0 on Mn. Then
Proposition 2.6 gives that there exist a sequence of points {pk} ∈ Mn such that

(3.1) lim sup
k→∞

(¤(nH)(pk)) ≤ 0, lim
k→∞

H(pk) = supH > 0.

On the other hand, from Gauss equation (2.7), we have

(3.2) |φ|2 = S − nH2 = n(n− 1)(H2 − aH − b) +
∑

i,j

Kijij .

In view of lim
k→∞

H(pk) = supH and a ≤ 0, (3.2) implies that lim
k→∞

|φ|2(pk) = sup |φ|2
and lim

k→∞
S(pk) = sup S. Evaluating (2.23) at the points pk of the sequence, taking

the limit and using (3.1), we obtain that

0 ≥ lim sup
k→∞

(¤(nH)(pk)) ≥ − n

2
√

n− 1
[sup S − 2

√
n− 1(2δ − c0)] sup |φ|2 ≥ 0.

Then it follows that either sup |φ|2 = 0 and Mn is totally umbilical or sup S =
2
√

n− 1(2δ − c0).
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From Gauss equation (2.7), (2.23) and sup S ≤ 2
√

n− 1(2δ − c0), we have

¤(S) = ¤(n2H2)− n(n− 1)¤(aH + b)

= [2nH − (n− 1)a]¤(nH) + 2(nH − 1
2
(n− 1)a− λi)(nHi)2

≥ −[2nH − (n− 1)a]
n

2
√

n− 1
[S − 2

√
n− 1(2δ − c0)]|φ|2 ≥ 0.

On the other hand, from lemma 2.3, we know that ¤ is an elliptic operator. If
supS = 2

√
n− 1(2δ − c0) and this supremum is attained at some point of Mn, then,

by maximum principle, S mus be constant and S = 2
√

n− 1(2δ− c0). Then H is also
constant by using Gauss equation. Thus (2.23) become an equality and all inequalities
in the proof of Proposition 2.6 must be equalities. By lemma 2.1 and (2.27), we obtain
that Mn is an isoparametric hypersurface with two distinct principal curvatures, one
of which is simple.
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