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Abstract

An affine connection Γ on a vector bundle η = (E, π, M, V ) of a rank r
is called Riemann metrizable if there exists on M a Riemann metric which
preserves the scalar product of vector fields parallel displaced according to Γ. Γ
determines a connection G in a bundle, where M is fibered by the manifold of
the ellipsoids of Rr = π−1, x ∈ M . We prove that Γ is Riemann metrizable iff
G is integrable.

An analogous result is deduced in the case, where η is replaced by a Finsler
vector bundle, Γ means a Finsler connection, and the metric is a Finsler metric.
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1 Introduction

We consider a vector bundle η = (E, π, M, V ) over the n-dimensional base manifold
M with an r-dimensional real vector space V as typical fiber, where E is the total
space and π : E → M is the projection operator. An affine connection Hη in η is given
by a special splitting TzE = VzE ⊕HzE, z ∈ E and it is determined locally by the
connection coefficients Γβ

α
i(x); α, β, . . . = 1, . . . , r; i, j, . . . = 1, . . . , n, where x ∈ M

has the local coordinates xi. Hη or Γ is called Riemann metrizable if there exists a Eu-
clidean scalar product 〈 , 〉 in each fiber π−1(x), i.e. a symmetrical bilinear form g(x),
in local coordinates 〈ξ, ζ〉 = gαβ(x)ξα(x)ζβ(x), such that the length of the parallel
translated ‖ΓPCξ0‖g of a vector ξ0 ∈ π−1(x0) along any curve C(t) ⊂ M , C(t0) = x0

is constant, i.e. if the connection Γ is compatible with the Riemannian metric g. g(x0)
is equivalent with an ellipsoid E(§′) : }αβ(§′)ξαξβ = ∞ in π−1(x0) called indicatrix.
ΓPC establishes a linear mapping π−1(x(t0)) → π−1(x(t)). Γ is metrizable if there
exists a field E(§) such that from ξ0 ∈ E′ follows ΓPC(t)ξ0 ∈ E(§(t)), ∀C(t) ⊂ M.
Indicatrices play the role of the unit sphere.

The most simple case is r = n. If Γj
i
h(x) is symmetrical and metrizable by a g(x),

then Γ is the Levi-Civita connection
g

Γ of the Riemannian manifold Vn = (M, g).
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Denoting the set of the Levi-Civita connections for the different g by {g

Γ} and suppos-

ing the symmetry Γj
i
h(x) = Γh

i
j(x) the question is whether Γ ∈ {g

Γ}. — Riemann
metrizability of affine connections has been investigated by many authors from dif-
ferent points of view. I mention here only [1], [4], [5], [6], [9], [12].

A Finsler space Fn = (M,L) on the manifold M is given by the smooth fun-
damental function L : TM → R+; (x, y) 7→ L(§, †), y ∈ TxM which is supposed
to be first order positively homogeneous: L(§, λ†) = |λ|L(§, †), λ ∈ R. Its indicatrix
is given by I(x0) = {y | L(§′, †) = ∞} ⊂ T§′M (the convexity of I is mostly also
supposed). Giving of Fn is equivalent to giving of {I(x)}. Then an affine metrical
connection should satisfy that from y0 ∈ I(x0) follows ΓPCy0 ∈ I(x1), x1 ∈ C(t1)
(this could be denoted by ΓPCI(x0) = I(x1)), while ΓPC is an affine mapping. How-
ever, this is impossible in general, e.g. if I(x0) is an ellipsoid and I(x1) is not so. This
necessitates the introduction of the so called Finsler vector fields which are sections
of a vector bundle ζ = (E, π, TM, V n), in components ξi(x, y) with the property
ξi(x, λy) = ξi(x, y), λ ∈ R, λy 6= 0. The set {(x0, λy0) | λ ∈ R, λy0 6= 0} is geomet-
rically a point x0 and the direction of y0 in Tx0M ; this is called a line-element. So
Finsler vectors are defined in line-elements. The length (the norm) of such a vector

is defined by gij(x, y)ξi(x, y)ξj(x, y) := ‖ξ(x, y)‖2, where gij :=
1
2

∂2L∈
∂yi∂yj

and hence

gij(x, λy) = gij(x, y). In an Fn = (M,L), gij is derived from L. A more general struc-
ture is Fn = (M, g), called generalized Finsler space, where we start directly with the
metric tensor gij(x, y).

An affine connection Γ in the Finsler vector bundle ζ can be given locally by the
connection coefficients Fj

i
k(x, y), Vj

i
h(x, y) in the form Γξ = ξ − dΓξ, where

dΓξi(x, y) = Fj
i
k(x, y)ξj(x, y)dxk + Vj

i
k(x, y)ξj(x, y)dyk.(1)

Γ is metrizable if there exists a scalar product gij(x, y) in each π−1(x, y) such that
‖ΓPCξ0‖ = constant for any curve C(t) ⊂ M .

2 Connection in µ

We want to find a new, geometric condition for the Riemann metrizability of a vector
bundle η = (E, π, M, V r) endowed with the affine connection Hη given by Γβ

α
i(x).

First we derive from Hη an affine connection Hµ in µ = (Eµ, πµ,M, V r2
), and then

from Hµ a connection Hν in the bundle ν = (Eν , πν ,
M,E), where E is the manifold of the ellipsoids in π−1(x) ∼= V r centered at the origin
O of V r.

Let us consider a canonical coordinate system (xi, vα) in π−1(U) ⊂ E, where U ⊂
M is a coordinate neighbourhood of x ∈ M and vα are components of v ∈ π−1 ∼= V r.
Similarly we have local coordinates (xi, ya) in π−1

µ (U) ⊂ Eµ, where ya, a = 1, . . . , r2

are components of y ∈ π−1
µ (x) ∼= V r2

. Let
α
v∈ π−1(x) ∼= V r, α, β = 1, . . . , r be r

vectors with components (
α
v)β . Since any integer a (1 ≤ a ≤ r2) can uniquely be

represented in the form a = (α − 1)r + β, and conversely, any pair α, β uniquely
determines such an a and thus

(2) ya = (
α
v)β , a = (α− 1)r + β
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determines a 1:1 mapping between π−1
µ (x) and the vector r-tuples (

1
v, . . . ,

r
v) which

can be considered as elements of
r⊕ π−1(x) ∼= r⊕ V r.

Having an affine connection Hη in η with local connection coefficients Γβ
α

i(x), we
obtain for the parallel translated of v from x to x + dx

ΓPx,x+dxv(x) = v(x)− dΓv(x), dΓvβ(x) = Γσ
β

i(x)vσdxi.

Then we define an affine connection Hµ in µ with local coefficients Gb
a

i(x) by

(3) dGy := (dΓ
1
v, . . . , dΓ

r
v),

y = (
1
v, . . . ,

r
v)

dΓ(
α
v)β = Γσ

β
i(x)(

α
v)σdxi.

Gb
a

i can be expressed explicitely by Γβ
α

i as follows:

(4)
dGya = Gb

a
i(x)ybdxi

= dGy(α−1)r+β = G(κ−1)r+λ
(α−1)r+β

i(x) y(κ−1)r+λdxi,

since a = (α− 1)r + β, b = (κ− 1)r + λ. By (3) and (2) we get

(5)
dGy(α−1)r+β = dΓ(

α
v)β = Γσ

β
i(x)(

α
v)σdxi =

= Γσ
β

i(x)y(α−1)r+σdxi.

From (4) and (5) we obtain

G(κ−1)r+λ
(α−1)r+β

i(x) y(κ−1)r+λ = Γσ
β

i(x)δα
κ δσ

λy(κ−1)r+λ =

= Γλ
β

i(x)δα
κy(κ−1)r+λ

and hence
G(κ−1)r+λ

(α−1)r+β
i(x) = δα

κΓλ
β

i(x).

3 Connection in ν

An ellipsoid E in π−1(x) ∼= V r centered at the origin O of V r has the equation
aαβvαvβ = 1, aαβ = aβα, Det|aαβ | > 0. The set {E} = E can be given a natural
manifold structure, namely each E can be identified with the coefficients aαβ which
correspond to a point of Rr2

. Hence E can be identified with a variety of the Euclidean
space Rr2

. Thus ν = (Eν , πν , B,E) is a fiber bundle.
Now we want to derive from the Hµ determined by the affine connection Hη a

connection Hν in ν : Hη ⇒ Hµ ⇒ Hν . — Let y = (
1
v, . . . ,

r
v) ∈ π−1

µ (x) ⊂ Eµ be

such that
1
v, . . . ,

r
v are linearly independent vectors in π−1(x). From now on, in this

section y denotes elements of Eµ with this independence property. The set of these

(x, y)-s will be denoted by E∗
µ

and the corresponding bundle by
∗
µ= (E∗

µ
, π∗

µ
,M, V r2

∗ ).

We remark that V r2

∗ is no vector space, and π∗
µ

is a restriction of πµ to E∗
µ ⊂ Eµ.

Hµ is equivalent with the splitting TuEµ = VuEµ ⊕ HuEµ, u ∈ Eµ. The restriction
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of an affine connection Hµ to E∗
µ
⊂ Eµ is also a connection in E∗

µ
, i.e. Hµ ⊂ E∗

µ
if

u ∈ E∗
µ
⊂ Eµ. This is so, because Hη takes by parallel translation linearly independent

vectors of π−1(x) into linearly independent vectors again. Also, H∗
µ

can be extended
by continuity to a Hµ, and if H∗

µ
is a restriction of an affine connection Hµ, then its

extension yields this Hµ.
The vectors

α
v of a y can be considered as a system of conjugate axes of an ellipsoid

E ∈ π−∞ν (§) centered at the origin O, and we order this E to y. Doing this with every
(x, y) we obtain a strong bundle mapping

ρ : E∗
µ
→ Eν , π−1

∗
µ

(x) → π−1
ν (x), y 7→ E .

The inverse ρ−1(E) = {†′, †∞, . . . , †, . . .} is an infinite set consisting of y0 = (
1
v0, . . . ,

r
v0

), y1 = (
1
v1, . . . ,

r
v1), . . . , y = (

1
v, . . . ,

r
v), . . . such that every system

1
v0, . . . ,

r
v0;

1
v1, . . . ,

r
v1

; . . . ;
1
v, . . . ,

r
v; . . . forms conjugate axes of an ellipsoid E . Elements of ρ−1(E) can be

generated from a single element, e.g. from y0 as follows: Let V r
0 be a Euclidean vector

space with an orthonormed base
α
e and a : π−1(x) → V r

0 an affine mapping taking
α
v0 into

α
e. Then the set {α

v= a−1 ◦ f ◦ a
α
v0, α = 1, . . . , r | f ∈ O(r)} produces all

vector systems y = (
1
v, . . . ,

r
v) of ρ−1(E), where O(r) denotes the group of rotations of

V r
0 . This induces a classification of π−1

∗
µ

(x) into equivalence classes, and ρ is a 1 : 1

mapping between the equivalence classes and the ellipsoids.
Hµ takes π−1

µ (x) into π−1
µ (x+dx) and so it takes y ∈ π−1

∗
µ

(x) into ŷ ∈ π−1
∗
µ

(x+dx).

However, according to (3), Hµ is defined via Hη, and in such a way that the images
ŷ0, ŷ1, . . . ŷ, . . . by Hµ of the elements of an equivalence class {y0, y1, . . . , y, . . .} (i.e. of
conjugate axes systems of an ellipsoid E) form again an equivalence class in π−1

∗
µ

(x+dx)

(i.e. ŷ0, ŷ1, . . . , ŷ, . . . are conjugate axes systems of an ellipsoid again). This is shown
on the diagram

(6)

ρ(x){y0, y1, . . . , y, . . .} = E(§) ∈ π−∞ν (§)
↓ Hµ ↓ Hν

ρ(x+ dx){ŷ0, ŷ1, . . . , ŷ, . . .} = Ê(x + dx) ∈ π−1
ν (x+ dx).

It means that Hµ : π−1
∗
µ

(x) → π−1
∗
µ

(x + dx) preserves equivalence classes. Thus

ρ ◦Hµ ◦ ρ−1 : π−1
ν (x) → π−1

ν (x + dx)

yields a connection Hν in ν (This fact is discussed in more detail in [10], [11]).
If Hν is integrable at least for one E′ ∈ π−∞ν (§′) and E(§), E(§′) = E′ is the integral

manifold, then E(§) can be considered as indicatrix I(x) and gαβ(x) in the equation
gαβ(x)vαvβ = 1 of E(§) as metric tensor. Any v0 leading to a point of Eo : v′ ∈ E′ can
be an axe of a conjugate axes system of E′. Then, according to our construction, the
parallel translated v of v0 according to Hη along a curve C ⊂ M from x0 to x is an
element of E(§):

HηPC;x0,xv0 = v ∈ Hν PC;x0,xE′ = E(§),
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and hence
‖v0‖g(x0) = ‖v‖g(x).

We remark that v depends on the path C joining x0 and x, but E(§) does not. —
This means: if Hν is integrable, then Hη is metrizable.

The converse is obvious. If Hη is metrical with respect to g(x), then E(§) := I(§)
is an integral manifold of Hν .

Thus we obtain the
Theorem. The affine connection Hη of a vector bundle η is Riemann metrizable iff
the constructed connection Hν in a bundle ν fibered with ellipsoids is integrable.

4 Coefficients of Hν

We want to determine the connection coefficients of Hν . Hν orders to the ellipsoid
E(§)
(7) aαβ(x)vαvβ = 1 ∈ π−1

ν (x)

the ellipsoid Ê(x + dx)

(8) aαβ(x + dx)vα(x + dx)vβ(x + dx) = 1 ∈ π−1
ν (x + dx).

According to the definition (construction) of Hν this last equation is satisfied by
the parallel translated with respect to Hη of vα(x), i.e. by vα(x + dx) = vα(x) −
Γσ

α
i(x)vσ(x)dxi + o(dxi). (Since we work with linear connections, o(dxi), i.e. higher

order terms in dxi, can be omitted.) Then the parallel translated of aαβ(x) according
to Hν are the aαβ(x + dx) appearing in (8). Denoting the connection coefficients of
Hν by Mαβi(x, aκλ) we obtain from (8)

(aαβ + Mαβi(x, aκλ)dxi)(vα − Γσ
α

iv
σdxi)(vβ − Γσ

β
iv

σdxi) = 1

or
aαβvαvβ +

[
Mαβi − aκλ(Γβ

λ
iδ

κ
α + Γα

κ
iδ

λ
β)

]
vαvβdxi + o(dxi) = 1.

By (7) the right hand side drops out with aαβvαvβ . The remaining expression must
vanish for every v ∈ E(§) and for every dxi. Thus, omitting o(dxi), we get

Mαβi(x, aκλ) = (Γβ
λ

iδ
κ
α + Γα

κ
iδ

λ
β)aκλ.

This means that Mαβi(x, aκλ) is linear in aκλ, i.e. Hν is an affine connection and its
connection coefficients are

(9) Mαβ
κλ

i(x) = Γα
κ

i(x)δλ
β + Γβ

λ
i(x)δκ

α.

We remark that these coefficients are symmetric in the sense that Mαβ
κλ

i = Mβα
λκ

i.
Thus the symmetry of aαβ(x) implies the symmetry of aαβ(x + dx) = aαβ(x) +
Mαβ

κλ
i(x)aκλdxi too, which are the coefficients of Ê(x + dx).

The condition of the absolute parallelism of aαβ(x) with respect to Hν is

∂aαβ

∂xi
= −Mαβ

κλ
i(x)aκλ(x).
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This is integrable iff
Tαβ

κλ
ij(x)aκλ(x) = 0

Tαβ
κλ

ij ≡
(

∂Mαβ
κλ

i

∂xj
−Mαβ

µν
iMµν

κλ
j

)

[i,j]

has a solution for aκλ with positive determinant. We find that

Tαβ
κλ

ij = Rα
κ

ijδ
λ
β + Rβ

λ
ijδ

κ
α,

where R is the curvature tensor of Γβ
α

i(x).

5 Finsler vector bundles

Considering a Finsler vector bundle ζ = (E, π, TM, V n) and a connection Γ with
connection coefficients Fj

i
h(x, y), Vj

i
h(x, y) we have (1). In this case the base manifold

TM has dimension 2n. Its coordinates can be denoted by uA, A = 1, . . . , 2n; ui = xi,
un+i = yi. E(§, †) has the equation aij(x, y)ξiξj = 1, and the equation of Ê(x + dx) is

aij(x + dx, y + dy)ξi(x + dx, y + dy)ξj(x + dx, y + dy) = 1.

Here

aij(x + dx, y + dy) = aij(x) + Mij
rs

h(x, y)ars(x, y)dxh + Mij
rs

n+k(x, y)arsdyh.

Contrasting with (9), here the last index of M runs from 1 to 2n the other indices
from 1 to n. Considerations and calculations similar to those done above yield

Mij
rs

h = Fj
s
hδr

i + Fi
r
hδs

j

Mij
rs

n+k = Vj
s
kδr

i + Vi
r
kδs

j ,

and furthermore

Tij
rs

kh = F Ri
r
khδs

j + F Rj
s
khδr

i

Tij
rs

n+k n+h = V Ri
r
khδs

j + V Rj
s
khδr

i ,

where F R and V R are formed from Fj
s
i and Vj

s
i resp. like common curvature tensors.

Finally

Tij
rs

n+h k =
∂Mij

rs
n+h

∂xk
− ∂Mij

rs
k

∂yh
+ (Vj

s
kFs

c
h − Fj

s
kVs

c
h)δb

i +

+Vj
c
kFi

b
h − Fj

c
kVi

b
h + Vi

b
kFj

c
h − Fi

b
kVj

c
h + (Vi

r
kFr

b
h − Fi

r
kVr

b
h)δc

j .

One can use other connections, e.g. a pre-Finsler connection FΓ(Fj
i
k, N i

j , Vj
i
h)

and h- and v-covariant derivatives

ξi|k =
∂ξi

∂xk
− ∂ξi

∂yr
Nr

k + Fj
i
kξj

ξi|k =
∂ξi

∂yk
+ Vj

i
kξj .
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In this case (1) becomes

dΓξi = (Fj
i
k − Vj

i
rN

r
k)ξjdxk + Vj

i
kξjdyk,

or
dΓξi =

[
(Fj

i
k − Vj

i
rFs

r
kys)dxk + Vj

i
kdyk

]
ξj

if FΓ is without deflection. These lead to other formulae for Mij
rs

A and Tij
rs

AB . If
Fj

i
k and Vj

i
k are symmetric, FΓ is without deflection and metrizable, then FΓ is the

Cartan connection.
Finally we mention still another affine connection introduced by M. Matsumoto

[7], [8] (see also [2], [3]) which is an ordinary affine connection derived from a Finsler
connection FΓ(Fj

i
k, N i

j , Vj
i
k). Starting with an FΓ and a nonvanishing vector field

Y (x) which depends on the point x only

(10) Γj
i
k(x) := Fj

i
k(x, Y (x)) + Vj

i
r(x, Y (x))

(
∂Y r

∂xk
+ Y s(x)Fs

r
k(x, Y (x))

)

turn out to be connection coefficients of an ordinary affine connection. Using the vector
field Y (x) one can associate to any Finsler vector field ξi(x, y) an ordinary vector field
ξi(x) := ξi(x, Y (x)). Then there exists a nice relation among the covariant derivative
ξi

;k constructed with Γ, and the h- and v-covariant derivatives with respect to FΓ,
namely

ξi
;k =

[
ξi|k + ξi|k

(
∂Y r

∂xk
+ Y sFs

r
k

)]
∣∣

y=Y (x)

.

Given a Γ and a Y (x), there are many FΓ which satisfy (10). Then we can use
our method to search for metrizable ones among these FΓ, e.g. for such, where FΓ
satisfies (10) with the given Γ and Y (x) and gij|k = gij |k = 0 with respect to this FΓ.
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