Metrizability of Affine Connections

Lajos Tamássy

Abstract

An affine connection Γ on a vector bundle $\eta=(E, \pi, M, V)$ of a rank r is called Riemann metrizable if there exists on M a Riemann metric which preserves the scalar product of vector fields parallel displaced according to Γ. Γ determines a connection G in a bundle, where M is fibered by the manifold of the ellipsoids of $R^{r}=\pi^{-1}, x \in M$. We prove that Γ is Riemann metrizable iff G is integrable.

An analogous result is deduced in the case, where η is replaced by a Finsler vector bundle, Γ means a Finsler connection, and the metric is a Finsler metric.

Mathematics Subject Classification: 53B15, 53B40, 53C07, 53C60.
Key words: Riemann metrizability of affine connections, Finsler metrizability of affine connections.

1 Introduction

We consider a vector bundle $\eta=(E, \pi, M, V)$ over the n-dimensional base manifold M with an r-dimensional real vector space V as typical fiber, where E is the total space and $\pi: E \rightarrow M$ is the projection operator. An affine connection H_{η} in η is given by a special splitting $T_{z} E=V_{z} E \oplus H_{z} E, z \in E$ and it is determined locally by the connection coefficients $\Gamma_{\beta}{ }^{\alpha}{ }_{i}(x) ; \alpha, \beta, \ldots=1, \ldots, r ; i, j, \ldots=1, \ldots, n$, where $x \in M$ has the local coordinates x^{i}. H_{η} or Γ is called Riemann metrizable if there exists a Euclidean scalar product \langle,$\rangle in each fiber \pi^{-1}(x)$, i.e. a symmetrical bilinear form $g(x)$, in local coordinates $\langle\xi, \zeta\rangle=g_{\alpha \beta}(x) \xi^{\alpha}(x) \zeta^{\beta}(x)$, such that the length of the parallel translated $\left\|_{\Gamma} P_{C} \xi_{0}\right\|_{g}$ of a vector $\xi_{0} \in \pi^{-1}\left(x_{0}\right)$ along any curve $C(t) \subset M, C\left(t_{0}\right)=x_{0}$ is constant, i.e. if the connection Γ is compatible with the Riemannian metric $g . g\left(x_{0}\right)$ is equivalent with an ellipsoid $\left.\mathcal{E}\left(\S_{l}\right):\right\}_{\alpha \beta}\left(\S_{\prime}\right) \xi^{\alpha} \xi^{\beta}=\infty$ in $\pi^{-1}\left(x_{0}\right)$ called indicatrix. ${ }_{\Gamma} P_{C}$ establishes a linear mapping $\pi^{-1}\left(x\left(t_{0}\right)\right) \rightarrow \pi^{-1}(x(t))$. Γ is metrizable if there exists a field $\mathcal{E}(\S)$ such that from $\xi_{0} \in \mathcal{E}$, follows ${ }_{\Gamma} P_{C(t)} \xi_{0} \in \mathcal{E}(\S(\sqcup)), \forall \mathcal{C}(\sqcup) \subset \mathcal{M}$. Indicatrices play the role of the unit sphere.

The most simple case is $r=n$. If $\Gamma_{j}{ }^{i} h(x)$ is symmetrical and metrizable by a $g(x)$, then Γ is the Levi-Civita connection $\stackrel{g}{\Gamma}$ of the Riemannian manifold $V_{n}=(M, g)$.

Denoting the set of the Levi-Civita connections for the different g by $\{\stackrel{g}{\Gamma}\}$ and supposing the symmetry $\Gamma_{j}{ }^{i} h(x)=\Gamma_{h}{ }^{i}{ }_{j}(x)$ the question is whether $\Gamma \in\{\stackrel{g}{\Gamma}\}$. - Riemann metrizability of affine connections has been investigated by many authors from different points of view. I mention here only [1], [4], [5], [6], [9], [12].

A Finsler space $F_{n}=(M, \mathcal{L})$ on the manifold M is given by the smooth fundamental function $\mathcal{L}: \mathcal{T} \mathcal{M} \rightarrow \mathcal{R}^{+} ;(x, y) \mapsto \mathcal{L}(\S, \dagger), y \in T_{x} M$ which is supposed to be first order positively homogeneous: $\mathcal{L}(\S, \lambda \dagger)=|\lambda| \mathcal{L}(\S, \dagger), \lambda \in R$. Its indicatrix is given by $I\left(x_{0}\right)=\left\{y \mid \mathcal{L}\left(\S_{\prime}, \dagger\right)=\infty\right\} \subset \mathcal{T}_{\S}, \mathcal{M}$ (the convexity of I is mostly also supposed). Giving of F_{n} is equivalent to giving of $\{I(x)\}$. Then an affine metrical connection should satisfy that from $y_{0} \in I\left(x_{0}\right)$ follows ${ }_{\Gamma} P_{C} y_{0} \in I\left(x_{1}\right), x_{1} \in C\left(t_{1}\right)$ (this could be denoted by ${ }_{\Gamma} P_{C} I\left(x_{0}\right)=I\left(x_{1}\right)$), while ${ }_{\Gamma} P_{C}$ is an affine mapping. However, this is impossible in general, e.g. if $I\left(x_{0}\right)$ is an ellipsoid and $I\left(x_{1}\right)$ is not so. This necessitates the introduction of the so called Finsler vector fields which are sections of a vector bundle $\zeta=\left(E, \pi, T M, V^{n}\right)$, in components $\xi^{i}(x, y)$ with the property $\xi^{i}(x, \lambda y)=\xi^{i}(x, y), \lambda \in R, \lambda y \neq 0$. The set $\left\{\left(x_{0}, \lambda y_{0}\right) \mid \lambda \in R, \lambda y_{0} \neq 0\right\}$ is geometrically a point x_{0} and the direction of y_{0} in $T_{x_{0}} M$; this is called a line-element. So Finsler vectors are defined in line-elements. The length (the norm) of such a vector is defined by $g_{i j}(x, y) \xi^{i}(x, y) \xi^{j}(x, y):=\|\xi(x, y)\|^{2}$, where $g_{i j}:=\frac{1}{2} \frac{\partial^{2} \mathcal{L}^{\epsilon}}{\partial y^{i} \partial y^{j}}$ and hence $g_{i j}(x, \lambda y)=g_{i j}(x, y)$. In an $F_{n}=(M, \mathcal{L}), g_{i j}$ is derived from \mathcal{L}. A more general structure is $F_{n}=(M, g)$, called generalized Finsler space, where we start directly with the metric tensor $g_{i j}(x, y)$.

An affine connection Γ in the Finsler vector bundle ζ can be given locally by the connection coefficients $F_{j}{ }^{i}{ }_{k}(x, y), V_{j}{ }^{i}{ }_{h}(x, y)$ in the form $\Gamma \xi=\xi-d_{\Gamma} \xi$, where

$$
\begin{equation*}
d_{\Gamma} \xi^{i}(x, y)=F_{j}{ }^{i}{ }_{k}(x, y) \xi^{j}(x, y) d x^{k}+V_{j}{ }^{i}{ }_{k}(x, y) \xi^{j}(x, y) d y^{k} . \tag{1}
\end{equation*}
$$

Γ is metrizable if there exists a scalar product $g_{i j}(x, y)$ in each $\pi^{-1}(x, y)$ such that $\left\|{ }_{\Gamma} P_{C} \xi_{0}\right\|=$ constant for any curve $C(t) \subset M$.

2 Connection in μ

We want to find a new, geometric condition for the Riemann metrizability of a vector bundle $\eta=\left(E, \pi, M, V^{r}\right)$ endowed with the affine connection H_{η} given by $\Gamma_{\beta}{ }^{\alpha}{ }_{i}(x)$. First we derive from H_{η} an affine connection H_{μ} in $\mu=\left(E_{\mu}, \pi_{\mu}, M, V^{r^{2}}\right)$, and then from H_{μ} a connection H_{ν} in the bundle $\nu=\left(E_{\nu}, \pi_{\nu}\right.$,
$M, \mathbf{E})$, where \mathbf{E} is the manifold of the ellipsoids in $\pi^{-1}(x) \cong V^{r}$ centered at the origin O of V^{r}.

Let us consider a canonical coordinate system $\left(x^{i}, v^{\alpha}\right)$ in $\pi^{-1}(U) \subset E$, where $U \subset$ M is a coordinate neighbourhood of $x \in M$ and v^{α} are components of $v \in \pi^{-1} \cong V^{r}$. Similarly we have local coordinates $\left(x^{i}, y^{a}\right)$ in $\pi_{\mu}^{-1}(U) \subset E_{\mu}$, where $y^{a}, a=1, \ldots, r^{2}$ are components of $y \in \pi_{\mu}^{-1}(x) \cong V^{r^{2}}$. Let $\stackrel{\alpha}{v} \in \pi^{-1}(x) \cong V^{r}, \alpha, \beta=1, \ldots, r$ be r vectors with components $\left({ }_{v}^{v}\right)^{\beta}$. Since any integer $a\left(1 \leq a \leq r^{2}\right)$ can uniquely be represented in the form $a=(\alpha-1) r+\beta$, and conversely, any pair α, β uniquely determines such an a and thus

$$
\begin{equation*}
y^{a}=(\stackrel{\alpha}{v})^{\beta}, \quad a=(\alpha-1) r+\beta \tag{2}
\end{equation*}
$$

determines a 1:1 mapping between $\pi_{\mu}^{-1}(x)$ and the vector r-tuples $(\stackrel{1}{v}, \ldots, \stackrel{r}{v})$ which can be considered as elements of $\stackrel{r}{\oplus} \pi^{-1}(x) \cong \stackrel{r}{\oplus} V^{r}$.

Having an affine connection H_{η} in η with local connection coefficients $\Gamma_{\beta}{ }^{\alpha}{ }_{i}(x)$, we obtain for the parallel translated of v from x to $x+d x$

$$
{ }_{\Gamma} P_{x, x+d x} v(x)=v(x)-d_{\Gamma} v(x), \quad d_{\Gamma} v^{\beta}(x)=\Gamma_{\sigma}{ }^{\beta}{ }_{i}(x) v^{\sigma} d x^{i} .
$$

Then we define an affine connection H_{μ} in μ with local coefficients $G_{b}{ }^{a}{ }_{i}(x)$ by

$$
\begin{align*}
& d_{G} y:=\left(d_{\Gamma} \stackrel{1}{v}, \ldots, d_{\Gamma} \stackrel{r}{v}\right), \quad y=(\stackrel{1}{v}, \ldots, \stackrel{r}{v}) \tag{3}\\
& d_{\Gamma}(\stackrel{\alpha}{v})^{\beta}=\Gamma_{\sigma}{ }^{\beta}{ }_{i}(x)(\stackrel{\alpha}{v})^{\sigma} d x^{i} .
\end{align*}
$$

$G_{b}{ }^{a}{ }_{i}$ can be expressed explicitely by $\Gamma_{\beta}{ }^{\alpha}{ }_{i}$ as follows:

$$
\begin{align*}
d_{G} y^{a} & =G_{b}{ }^{a}{ }_{i}(x) y^{b} d x^{i} \tag{4}\\
& =d_{G} y^{(\alpha-1) r+\beta}=G_{(\kappa-1) r+\lambda}{ }^{(\alpha-1) r+\beta}{ }_{i}(x) y^{(\kappa-1) r+\lambda} d x^{i}
\end{align*}
$$

since $a=(\alpha-1) r+\beta, b=(\kappa-1) r+\lambda$. By (3) and (2) we get

$$
\begin{align*}
d_{G} y^{(\alpha-1) r+\beta} & =d_{\Gamma}(\stackrel{\alpha}{v})^{\beta}=\Gamma_{\sigma}{ }^{\beta}{ }_{i}(x)(\stackrel{\alpha}{v})^{\sigma} d x^{i}= \\
& =\Gamma_{\sigma}{ }^{\beta}{ }_{i}(x) y^{(\alpha-1) r+\sigma} d x^{i} . \tag{5}
\end{align*}
$$

From (4) and (5) we obtain

$$
\begin{aligned}
G_{(\kappa-1) r+\lambda}{ }^{(\alpha-1) r+\beta}{ }_{i}(x) y^{(\kappa-1) r+\lambda} & =\Gamma_{\sigma}{ }^{\beta}{ }_{i}(x) \delta_{\kappa}^{\alpha} \delta_{\lambda}^{\sigma} y^{(\kappa-1) r+\lambda}= \\
& =\Gamma_{\lambda}{ }^{\beta}{ }_{i}(x) \delta_{\kappa}^{\alpha} y^{(\kappa-1) r+\lambda}
\end{aligned}
$$

and hence

$$
G_{(\kappa-1) r+\lambda}{ }^{(\alpha-1) r+\beta}{ }_{i}(x)=\delta_{\kappa}^{\alpha} \Gamma_{\lambda}{ }^{\beta}{ }_{i}(x) .
$$

3 Connection in ν

An ellipsoid \mathcal{E} in $\pi^{-1}(x) \cong V^{r}$ centered at the origin O of V^{r} has the equation $a_{\alpha \beta} v^{\alpha} v^{\beta}=1, a_{\alpha \beta}=a_{\beta \alpha}$, $\operatorname{Det}\left|a_{\alpha \beta}\right|>0$. The set $\{\mathcal{E}\}=\mathbf{E}$ can be given a natural manifold structure, namely each \mathcal{E} can be identified with the coefficients $a_{\alpha \beta}$ which correspond to a point of $R^{r^{2}}$. Hence \mathbf{E} can be identified with a variety of the Euclidean space $R^{r^{2}}$. Thus $\nu=\left(E_{\nu}, \pi_{\nu}, B, \mathbf{E}\right)$ is a fiber bundle.

Now we want to derive from the H_{μ} determined by the affine connection H_{η} a connection H_{ν} in $\nu: H_{\eta} \Rightarrow H_{\mu} \Rightarrow H_{\nu}$. - Let $y=(\stackrel{1}{v}, \ldots, \stackrel{r}{v}) \in \pi_{\mu}^{-1}(x) \subset E_{\mu}$ be such that $\stackrel{1}{v}, \ldots, \stackrel{r}{v}$ are linearly independent vectors in $\pi^{-1}(x)$. From now on, in this section y denotes elements of E_{μ} with this independence property. The set of these (x, y)-s will be denoted by E_{*} and the corresponding bundle by $\stackrel{*}{\mu}=\left(E_{*}, \pi_{\mu}, M, V_{*}^{r^{2}}\right)$. We remark that $V_{*}^{r^{2}}$ is no vector space, and π_{μ} is a restriction of π_{μ} to $E_{\mu}^{*} \subset E_{\mu}$. H_{μ} is equivalent with the splitting $T_{u} E_{\mu}=V_{u}{ }^{\mu}{ }_{\mu} \oplus H_{u} E_{\mu}, u \in E_{\mu}$. The restriction
of an affine connection H_{μ} to $E_{\mu} \subset E_{\mu}$ is also a connection in E_{μ}^{*}, i.e. $H_{\mu} \subset E_{\mu}$ if $u \in E_{\mu} \subset E_{\mu}$. This is so, because H_{η} takes by parallel translation linearly independent vectors of $\pi^{-1}(x)$ into linearly independent vectors again. Also, H_{μ} can be extended by continuity to a H_{μ}, and if H_{μ} is a restriction of an affine connection H_{μ}, then its extension yields this H_{μ}.

The vectors $\stackrel{\alpha}{v}$ of a y can be considered as a system of conjugate axes of an ellipsoid $\mathcal{E} \in \pi_{\nu}^{-\infty}(\S)$ centered at the origin O, and we order this \mathcal{E} to y. Doing this with every (x, y) we obtain a strong bundle mapping

$$
\rho: E_{*} \rightarrow E_{\nu}, \quad \pi_{\mu}^{-1}(x) \rightarrow \pi_{\nu}^{-1}(x), \quad y \mapsto \mathcal{E}
$$

The inverse $\rho^{-1}(\mathcal{E})=\left\{\dagger^{\prime}, \dagger_{\infty}, \ldots, \dagger, \ldots\right\}$ is an infinite set consisting of $y_{0}=\left(\stackrel{1}{v}_{0}, \ldots, \stackrel{r}{v_{0}}\right.$), $y_{1}=\left(\stackrel{1}{v_{1}}, \ldots, \stackrel{r}{v_{1}}\right), \ldots, y=(\stackrel{1}{v}, \ldots, \stackrel{r}{v}), \ldots$ such that every system $\stackrel{1}{v_{0}}, \ldots, \stackrel{r}{v_{0}} ; \stackrel{1}{v_{1}}, \ldots, \stackrel{r}{v_{1}}$ $; \ldots ; \stackrel{1}{v}, \ldots, \stackrel{r}{v} ; \ldots$ forms conjugate axes of an ellipsoid \mathcal{E}. Elements of $\rho^{-1}(\mathcal{E})$ can be generated from a single element, e.g. from y_{0} as follows: Let V_{0}^{r} be a Euclidean vector space with an orthonormed base $\stackrel{\alpha}{e}$ and $a: \pi^{-1}(x) \rightarrow V_{0}^{r}$ an affine mapping taking $\stackrel{\alpha}{v_{0}}$ into $\stackrel{\alpha}{e}$. Then the set $\left\{\stackrel{\alpha}{v}=a^{-1} \circ f \circ a \stackrel{\alpha}{v_{0}}, \alpha=1, \ldots, r \mid f \in O(r)\right\}$ produces all vector systems $y=(\stackrel{1}{v}, \ldots, \stackrel{r}{v})$ of $\rho^{-1}(\mathcal{E})$, where $O(r)$ denotes the group of rotations of V_{0}^{r}. This induces a classification of $\pi_{\mu}^{-1}(x)$ into equivalence classes, and ρ is a $1: 1$ mapping between the equivalence classes and the ellipsoids.
H_{μ} takes $\pi_{\mu}^{-1}(x)$ into $\pi_{\mu}^{-1}(x+d x)$ and so it takes $y \in \pi_{\mu}^{-1}(x)$ into $\hat{y} \in \pi_{\mu}^{-1}(x+d x)$. However, according to (3), H_{μ} is defined via H_{η}, and in such a way that the images $\hat{y}_{0}, \hat{y}_{1}, \ldots \hat{y}, \ldots$ by H_{μ} of the elements of an equivalence class $\left\{y_{0}, y_{1}, \ldots, y, \ldots\right\}$ (i.e. of conjugate axes systems of an ellipsoid \mathcal{E}) form again an equivalence class in $\pi_{\mu}^{-1}(x+d x)$ (i.e. $\hat{y}_{0}, \hat{y}_{1}, \ldots, \hat{y}, \ldots$ are conjugate axes systems of an ellipsoid again). This is shown on the diagram

$$
\begin{gather*}
\rho(x)\left\{y_{0}, y_{1}, \ldots, y, \ldots\right\}=\mathcal{E}(\S) \in \pi_{\nu}^{-\infty}(\S) \\
\downarrow H_{\mu} \tag{6}\\
\downarrow H_{\nu} \\
\rho(x+d x)\left\{\hat{y}_{0}, \hat{y}_{1}, \ldots, \hat{y}, \ldots\right\}=\hat{\mathcal{E}}(x+d x) \in \pi_{\nu}^{-1}(x+d x) .
\end{gather*}
$$

It means that $H_{\mu}: \pi_{\mu}^{-1}(x) \rightarrow \pi_{\mu}^{-1}(x+d x)$ preserves equivalence classes. Thus

$$
\rho \circ H_{\mu} \circ \rho^{-1}: \pi_{\nu}^{-1}(x) \rightarrow \pi_{\nu}^{-1}(x+d x)
$$

yields a connection H_{ν} in ν (This fact is discussed in more detail in [10], [11]).
If H_{ν} is integrable at least for one $\mathcal{E}, \in \pi_{\nu}^{-\infty}\left(\S_{\prime}\right)$ and $\mathcal{E}(\S), \mathcal{E}\left(\S_{\prime}\right)=\mathcal{E}$, is the integral manifold, then $\mathcal{E}(\S)$ can be considered as indicatrix $I(x)$ and $g_{\alpha \beta}(x)$ in the equation $g_{\alpha \beta}(x) v^{\alpha} v^{\beta}=1$ of $\mathcal{E}(\S)$ as metric tensor. Any v_{0} leading to a point of $\mathcal{E}_{l}: \sqsubseteq_{l} \in \mathcal{E}$, can be an axe of a conjugate axes system of \mathcal{E}_{l}. Then, according to our construction, the parallel translated v of v_{0} according to H_{η} along a curve $C \subset M$ from x_{0} to x is an element of $\mathcal{E}(\S)$:

$$
{ }_{H_{\eta}} P_{C ; x_{0}, x} v_{0}=v \in{ }_{H_{\nu}} P_{C ; x_{0}, x} \mathcal{E}_{\prime}=\mathcal{E}(\S)
$$

and hence

$$
\left\|v_{0}\right\|_{g\left(x_{0}\right)}=\|v\|_{g(x)} .
$$

We remark that v depends on the path C joining x_{0} and x, but $\mathcal{E}(\S)$ does not. This means: if H_{ν} is integrable, then H_{η} is metrizable.

The converse is obvious. If H_{η} is metrical with respect to $g(x)$, then $\mathcal{E}(\S):=\mathcal{I}(\S)$ is an integral manifold of H_{ν}.

Thus we obtain the
Theorem. The affine connection H_{η} of a vector bundle η is Riemann metrizable iff the constructed connection H_{ν} in a bundle ν fibered with ellipsoids is integrable.

4 Coefficients of H_{ν}

We want to determine the connection coefficients of $H_{\nu} . H_{\nu}$ orders to the ellipsoid $\mathcal{E}(\S)$

$$
\begin{equation*}
a_{\alpha \beta}(x) v^{\alpha} v^{\beta}=1 \in \pi_{\nu}^{-1}(x) \tag{7}
\end{equation*}
$$

the ellipsoid $\hat{\mathcal{E}}(x+d x)$

$$
\begin{equation*}
a_{\alpha \beta}(x+d x) v^{\alpha}(x+d x) v^{\beta}(x+d x)=1 \in \pi_{\nu}^{-1}(x+d x) \tag{8}
\end{equation*}
$$

According to the definition (construction) of H_{ν} this last equation is satisfied by the parallel translated with respect to H_{η} of $v^{\alpha}(x)$, i.e. by $v^{\alpha}(x+d x)=v^{\alpha}(x)-$ $\Gamma_{\sigma}{ }^{\alpha}{ }_{i}(x) v^{\sigma}(x) d x^{i}+o\left(d x^{i}\right)$. (Since we work with linear connections, $o\left(d x^{i}\right)$, i.e. higher order terms in $d x^{i}$, can be omitted.) Then the parallel translated of $a_{\alpha \beta}(x)$ according to H_{ν} are the $a_{\alpha \beta}(x+d x)$ appearing in (8). Denoting the connection coefficients of H_{ν} by $M_{\alpha \beta i}\left(x, a_{\kappa \lambda}\right)$ we obtain from (8)

$$
\left(a_{\alpha \beta}+M_{\alpha \beta i}\left(x, a_{\kappa \lambda}\right) d x^{i}\right)\left(v^{\alpha}-\Gamma_{\sigma}{ }^{\alpha}{ }_{i} v^{\sigma} d x^{i}\right)\left(v^{\beta}-\Gamma_{\sigma}{ }^{\beta}{ }_{i} v^{\sigma} d x^{i}\right)=1
$$

or

$$
a_{\alpha \beta} v^{\alpha} v^{\beta}+\left[M_{\alpha \beta i}-a_{\kappa \lambda}\left(\Gamma_{\beta}{ }_{i}{ }_{i} \delta_{\alpha}^{\kappa}+\Gamma_{\alpha}{ }^{\kappa}{ }_{i} \delta_{\beta}^{\lambda}\right)\right] v^{\alpha} v^{\beta} d x^{i}+o\left(d x^{i}\right)=1 .
$$

By (7) the right hand side drops out with $a_{\alpha \beta} v^{\alpha} v^{\beta}$. The remaining expression must vanish for every $v \in \mathcal{E}(\S)$ and for every $d x^{i}$. Thus, omitting $o\left(d x^{i}\right)$, we get

$$
M_{\alpha \beta i}\left(x, a_{\kappa \lambda}\right)=\left(\Gamma_{\beta}{ }_{i} \delta_{\alpha}^{\kappa}+\Gamma_{\alpha}{ }^{\kappa}{ }_{i} \delta_{\beta}^{\lambda}\right) a_{\kappa \lambda}
$$

This means that $M_{\alpha \beta i}\left(x, a_{\kappa \lambda}\right)$ is linear in $a_{\kappa \lambda}$, i.e. H_{ν} is an affine connection and its connection coefficients are

$$
\begin{equation*}
M_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i}(x)=\Gamma_{\alpha}{ }^{\kappa}{ }_{i}(x) \delta_{\beta}^{\lambda}+\Gamma_{\beta}{ }^{\lambda}{ }_{i}(x) \delta_{\alpha}^{\kappa} \tag{9}
\end{equation*}
$$

We remark that these coefficients are symmetric in the sense that $M_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i}=M_{\beta \alpha}{ }^{\lambda \kappa}{ }_{i}$. Thus the symmetry of $a_{\alpha \beta}(x)$ implies the symmetry of $a_{\alpha \beta}(x+d x)=a_{\alpha \beta}(x)+$ $M_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i}(x) a_{\kappa \lambda} d x^{i}$ too, which are the coefficients of $\hat{\mathcal{E}}(x+d x)$.

The condition of the absolute parallelism of $a_{\alpha \beta}(x)$ with respect to H_{ν} is

$$
\frac{\partial a_{\alpha \beta}}{\partial x^{i}}=-M_{\alpha \beta^{\kappa \lambda}}^{i}(x) a_{\kappa \lambda}(x) .
$$

This is integrable iff

$$
\begin{gathered}
T_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i j}(x) a_{\kappa \lambda}(x)=0 \\
T_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i j} \equiv\left(\frac{\partial M_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i}}{\partial x^{j}}-M_{\alpha \beta}{ }^{\mu \nu}{ }_{i} M_{\mu \nu}{ }^{\kappa \lambda}{ }_{j}\right)_{[i, j]}
\end{gathered}
$$

has a solution for $a_{\kappa \lambda}$ with positive determinant. We find that

$$
T_{\alpha \beta}{ }^{\kappa \lambda}{ }_{i j}=R_{\alpha}{ }^{\kappa}{ }_{i j} \delta_{\beta}^{\lambda}+R_{\beta}{ }^{\lambda}{ }_{i j} \delta_{\alpha}^{\kappa},
$$

where R is the curvature tensor of $\Gamma_{\beta}{ }^{\alpha}{ }_{i}(x)$.

5 Finsler vector bundles

Considering a Finsler vector bundle $\zeta=\left(E, \pi, T M, V^{n}\right)$ and a connection Γ with connection coefficients $F_{j}{ }^{i}{ }_{h}(x, y), V_{j}{ }^{i}{ }_{h}(x, y)$ we have (1). In this case the base manifold $T M$ has dimension $2 n$. Its coordinates can be denoted by $u^{A}, A=1, \ldots, 2 n ; u^{i}=x^{i}$, $u^{n+i}=y^{i} . \mathcal{E}(\S, \dagger)$ has the equation $a_{i j}(x, y) \xi^{i} \xi^{j}=1$, and the equation of $\hat{\mathcal{E}}(x+d x)$ is

$$
a_{i j}(x+d x, y+d y) \xi^{i}(x+d x, y+d y) \xi^{j}(x+d x, y+d y)=1 .
$$

Here

$$
a_{i j}(x+d x, y+d y)=a_{i j}(x)+M_{i j}{ }^{r s}{ }_{h}(x, y) a_{r s}(x, y) d x^{h}+M_{i j}{ }^{r s}{ }_{n+k}(x, y) a_{r s} d y^{h} .
$$

Contrasting with (9), here the last index of M runs from 1 to $2 n$ the other indices from 1 to n. Considerations and calculations similar to those done above yield

$$
\begin{aligned}
M_{i j}{ }^{r s}{ }_{h} & =F_{j}{ }^{s}{ }_{h} \delta_{i}^{r}+F_{i}{ }^{r}{ }_{h} \delta_{j}^{s} \\
M_{i j}{ }^{r s}{ }_{n+k} & =V_{j}^{s}{ }_{k} \delta_{i}^{r}+V_{i}^{r}{ }_{k} \delta_{j}^{s},
\end{aligned}
$$

and furthermore

$$
\begin{aligned}
T_{i j}{ }^{r s}{ }_{k h} & ={ }^{F} R_{i}{ }^{r}{ }_{k h} \delta_{j}^{s}+{ }^{F} R_{j}{ }^{s}{ }_{k h} \delta_{i}^{r} \\
T_{i j}{ }^{r s}{ }_{n+k} n+h & ={ }^{V} R_{i}{ }^{r}{ }_{k h} \delta_{j}^{s}+{ }^{V} R_{j}{ }^{s}{ }_{k h} \delta_{i}^{r},
\end{aligned}
$$

where ${ }^{F} R$ and ${ }^{V} R$ are formed from $F_{j}{ }^{s}{ }_{i}$ and $V_{j}{ }^{s}{ }_{i}$ resp. like common curvature tensors. Finally

$$
\begin{aligned}
& T_{i j}{ }^{r}{ }_{n+h k}=\frac{\partial M_{i j}{ }^{r}{ }_{n+h}}{\partial x^{k}}-\frac{\partial M_{i j}{ }^{r}{ }_{k}}{\partial y^{h}}+\left(V_{j}{ }^{s}{ }_{k} F_{s}{ }^{c}{ }_{h}-F_{j}{ }^{s}{ }_{k} V_{s}{ }^{c}{ }_{h}\right) \delta_{i}^{b}+ \\
& +V_{j}{ }^{c} F_{i}{ }^{b}{ }_{h}-F_{j}{ }^{c}{ }_{k} V_{i}^{b}{ }_{h}+V_{i}^{b}{ }_{k} F_{j}{ }^{c}{ }_{h}-F_{i}^{b}{ }_{k} V_{j}{ }^{c}{ }_{h}+\left(V_{i}^{r}{ }_{k} F_{r}{ }^{b}{ }_{h}-F_{i}{ }^{r}{ }_{k} V_{r}{ }^{b}{ }_{h}\right) \delta_{j}^{c} .
\end{aligned}
$$

One can use other connections, e.g. a pre-Finsler connection $F \Gamma\left(F_{j}{ }^{i}{ }_{k}, N^{i}{ }_{j}, V_{j}{ }^{i}{ }_{h}\right)$ and h - and v-covariant derivatives

$$
\begin{aligned}
\xi^{i}{ }_{\mid k} & =\frac{\partial \xi^{i}}{\partial x^{k}}-\frac{\partial \xi^{i}}{\partial y^{r}} N^{r}{ }_{k}+F_{j}{ }^{i}{ }_{k} \xi^{j} \\
\left.\xi^{i}\right|_{k} & =\frac{\partial \xi^{i}}{\partial y^{k}}+V_{j}{ }^{i}{ }_{k} \xi^{j} .
\end{aligned}
$$

In this case (1) becomes

$$
d_{\Gamma} \xi^{i}=\left(F_{j}{ }^{i}{ }_{k}-V_{j}{ }^{i}{ }_{r} N^{r}{ }_{k}\right) \xi^{j} d x^{k}+V_{j}{ }^{i}{ }_{k} \xi^{j} d y^{k},
$$

or

$$
d_{\Gamma} \xi^{i}=\left[\left(F_{j}{ }^{i}{ }_{k}-V_{j}{ }^{i}{ }_{r} F_{s}{ }^{r}{ }_{k} y^{s}\right) d x^{k}+V_{j}{ }^{i}{ }_{k} d y^{k}\right] \xi^{j}
$$

if $F \Gamma$ is without deflection. These lead to other formulae for $M_{i j}{ }^{r s}{ }_{A}$ and $T_{i j}{ }^{r s}{ }_{A B}$. If $F_{j}{ }^{i}{ }_{k}$ and $V_{j}{ }^{i}{ }_{k}$ are symmetric, $F \Gamma$ is without deflection and metrizable, then $F \Gamma$ is the Cartan connection.

Finally we mention still another affine connection introduced by M. Matsumoto [7], [8] (see also [2], [3]) which is an ordinary affine connection derived from a Finsler connection $F \Gamma\left(F_{j}{ }^{i}{ }_{k}, N^{i}{ }_{j}, V_{j}{ }^{i}{ }_{k}\right)$. Starting with an $F \Gamma$ and a nonvanishing vector field $Y(x)$ which depends on the point x only

$$
\begin{equation*}
\underline{\Gamma}_{j}{ }^{i}{ }_{k}(x):=F_{j}{ }^{i}{ }_{k}(x, Y(x))+V_{j}{ }^{i}{ }_{r}(x, Y(x))\left(\frac{\partial Y^{r}}{\partial x^{k}}+Y^{s}(x) F_{s}{ }^{r}{ }_{k}(x, Y(x))\right) \tag{10}
\end{equation*}
$$

turn out to be connection coefficients of an ordinary affine connection. Using the vector field $Y(x)$ one can associate to any Finsler vector field $\xi^{i}(x, y)$ an ordinary vector field $\underline{\xi}^{i}(x):=\xi^{i}(x, Y(x))$. Then there exists a nice relation among the covariant derivative $\underline{\xi}^{i} ; k$ constructed with $\underline{\Gamma}$, and the h - and v-covariant derivatives with respect to $F \Gamma$, namely

$$
\underline{\xi}^{i} ; k=\left.\left[\xi^{i}{ }_{\mid k}+\left.\xi^{i}\right|_{k}\left(\frac{\partial Y^{r}}{\partial x^{k}}+Y^{s} F_{s}{ }^{r}{ }_{k}\right)\right]\right|_{y=Y(x)}
$$

Given a $\underline{\Gamma}$ and a $Y(x)$, there are many $F \Gamma$ which satisfy (10). Then we can use our method to search for metrizable ones among these $F \Gamma$, e.g. for such, where $F \Gamma$ satisfies (10) with the given $\underline{\Gamma}$ and $Y(x)$ and $g_{i j \mid k}=\left.g_{i j}\right|_{k}=0$ with respect to this $F \Gamma$.

Acknowledgements. This research was supported by OTKA: T-17261.
Erratum. Received August 4, 1994; Revised August 15, 1995. Editorial Board decided to reprint this paper since the first printing in BJGA, 1,1 (1996), pp.83-90, contains several missprints due to e-mail and computer transmission.

References

[1] S. Golab, Uber die Metrisierbarkeit der affin-zusammenhangenden Raume, Tensor N.S., 9 (1959), 1-7.
[2] R. S. Ingarden, M. Matsumoto and L. Tamássy, Vector-field relative Finsler space in two physical examples, to appear.
[3] R. S. Ingarden and M. Matsumoto, On the 1953 Barthel connection of a Finsler space and its physical aspects, Publ. Math. Debrecen, vol. 43, 87-90, 1993.
[4] A. Jakubowicz, Uber die Metrisierbarkeit der affin-zusammenhangenden Raume I., II., III. Tensor N. S., vol 14, 132-137, 1963; vol 17, 28-43, 1966; vol 18, 259-270, 1967.
[5] O. Kowalski, On regular curvature structures, Math. Z., vol 125, 129-138, 1972.
[6] D. Krupka and A. E. Sattarov The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca, vol 35, 217-222, 1985.
[7] M. Matsumoto, Contributions of prescribed supporting element and the Cartan connection, Tensor N.S., vol 49, 9-17, 1990.
[8] M. Matsumoto, Theory of Y-extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., vol 26, 647-665, 1986.
[9] Z. I. Szabó, Positive definite Berwald spaces, Tensor N.S., vol 35, 25-39, 1981.
[10] L. Tamássy and L. Kozma, Connections in k-vector bundles, Math. Pannonica, vol 6, 105-114, 1995.
[11] L. Tamássy, Induced areal spaces and reduction of the connection in an areal space to connection in a vector bundle, An. Sţ. Univ. Ovidius Constantza, vol 3, to appear, 1996.
[12] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge, 1934.
Institute of Mathematics
Kossuth Lajos University
Pf.12, Debrecen
H-4010 Hungary

