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Abstract

The Bianchi equations are determined for the deformed spinor bundle
S̃(2)M = S(2)M × R. Also, the Yang-Mills-Higgs equations are derived,
and a geometrical interpretation of the Higgs field is given.

Mathematics Subject Classification: 81R25, 81T13, 53B30, 81T20, 53B50
Key words: deformed spinor bundle, Bianchi identities, Yang-Mills-Higgs equa-
tions, Higgs field.

1 Introduction

In our previous works [1],[2] the concepts of spinor bundle S(2)M as well as of
deformed spinor bundle S̃(2)M of order two, were introduced in the framework
of a geometrical generalization of the proper spinor bundles as they have been
studied from different authors e.g. [3],[4],[8].
The study of fundamental geometrical subjects as well as the gauge covariant
derivatives, connections field equations e.t.c. in a deformed spinor bundle S̃(2)M ,
has been developed in a sufficiently generalized approach [2]. In these spaces the
internal variables or the gauge variables of fibration have been substituted by
the internal (Dirac) variables ω = (ξ, ξ̄). In addition, another central point of
our consideration is that of the internal fibres C4.
The initial spinor bundle (S(2)M, π, F ), π : S(2)M −→ M was constructed from
the one of the principal fibre bundles with fibre F = C4 (C4 denotes the complex
space) and M the base manifold of space-time events of signature (+,−,−,−).
A spinor in x ∈ M is an element of the spinor bundle S(2)M [1],

(xµ, ξα, ξ̄α) ∈ S(2)M.

A spinor field is section of S(2)M . A generalization of the spinor bundle S(2)M
in a internal deformed system, has been given in the work [2]. The form of this
bundle determined as
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S̃(2)M = S(2)M ×R

where R represents the internal on dimension fibre of deformation. The metrical
structure in the deformed spinor bundle S̃(2)M has the form:

(1.1) G = gµν(x, ξ, ξ̄)dxµ ⊗ dxν + gαβ(x, ξ, ξ̄, λ)Dξ̄α ⊗Dξ̄∗β+

+gαβ(x, ξ, ξ̄, λ)Dξα ⊗Dξ∗β + g0,0(x, ξ, ξ̄, λ)Dλ⊗Dλ.

where ”*” denotes Hermitean conjugation. The local adapted frame is given by:

(1.2)
δ

δζA
= { δ

δxλ
,

δ

δξα
,

δ

δξ̄α
,

∂

∂λ
}

and the associated dual frame:

(1.3) δζA = {DxK ≡ dxK , DξβDξ̄β , D0λ}
where the terms δ

δλ , δ
δξα

, D0λ, DxK , Dξβ , Dξ̄β are provided by the relations
(6)-(7) of [2].
The considered connection in S̃(2)M is a d-connection [5] having with respect
to the adapted basis the coefficients (cf. [2]).

ΓA
BC = {Γ(∗)µ

νρ , Cµ
να, C̄µα

ν , Γ(∗)µ
ν0 , Γ̄(∗)α

βλ , C̃β
αγ , C̃βα

γ , Γ̃(∗)β
αγ ,Γ(∗)β

αν , Cγ
βα,

(1.4) Cγα
β , Cα

β0,Γ
(∗)0
0µ , C̄0α

) , C0
0α, L0

00}.
The metric G of relation (1.1) could be considered as a definite physical appli-
cation like the one given by R. Miron and G. Atanasiu for Lagrange spaces [6]
for the case of spinor bundles of order two. According to our approach on S̃(2)M
the internal variables ξ and ξ̄ play a crucial role similar to the variables y(1),
y(2) of the vector bundles of order two.
The non-linear connection on S̃(2)M is defined analogously to the vector bundles
at order two (cf. [6]) but in a gauge covariant form:

(1.5) T (S̃(2)M) = H(S̃(2)M)⊕ F (1)(S̃(2)M)⊕ F (2)(S̃(2)M)⊕R

where H, F (1), F (2), R represent the horizontal vertical normal and deformation
distributions respectively.
In the following, in section 2, we study the Bianchi identities and Yang-Mills-
Higgs fields on S̃(2)M bundle in section 3.
Bianchi Identities In order to study of Bianchi Identities (kinematic con-
straints) it is necessary to use the Jacobi identities:

(1.6) S(XY Z)[D̃
(∗)
X , [D̃(∗)

Y , D̃
(∗)
Z ]] = 0.

There are forty-eight Bianchi relations derived from twenty-four different types of
Jacobi identities. Two of these relations are identically zero. Therefore remain
forty-six Bianchi relations. We will give now some characteristic cases of the
Bianchi identities.
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Similarly to our previous work [2], the gauge covariant derivative will take the
form

(1.7) D̃(∗)
µ =

δ̃

δxµ
+

1
2
ω(∗)ab

µ Jab

where
δ̃

δxµ
=

∂

∂xµ
−Nαµ

∂

∂ξα
− N̄α

µ

∂

∂ξ̄α
−N0

µ

∂

∂λ

or
δ̃

δxµ
= Ãa

µPa

with
Ãa

µ = Aa
µ −N0

µLk
0La

k

Pa =
∂

∂xa

Aa
µ = ha

µ −Nαµψ̄αa − N̄α
µ ψa

α.

After some calculations we get:

[D̃(∗)
µ , [D̃(∗)

κ , D̃
(∗)
λ ]] = (

δR̃a
κλ

∂xµ
+ R̃a

bκλAb
µ + ω(∗)ab

µc R̃c
κλ)Pa

(1.8) +(
1
2

δR̃ce
κλ

∂xµ
+ ω(∗)cd

µ R̃e
dκλ)Jce

and ω
(∗)ab
µ represent the Lorentz-spin connection coefficients. We define also:

(1.9) D̃µR̃ce
κλ =

1
2

δ̃R̃ce
κλ

δxµ
+ ω(∗)cd

µ R̃e
dκλ

(1.10) D̃µR̃a
κλ =

δ̃R̃α
κλ

δxµ
+ R̃a

bκλÃb
µ + ω(∗)a

µc R̃c
κλ.

By cyclic permutation of the independent generators Jce, Pa we get the following
Bianchi identities,

(1.11) D̃µR̃a
κλ + D̃κR̃a

λµ + D̃λR̃a
µκ = 0

(1.12) D̃µR̃ce
κλ + D̃κR̃ce

λµ + D̃λR̃ce
µκ = 0.

Using the Jacobi identities Q(α,β,γ)[D̃
(∗)
α , [D̃(∗)

β , D̃
(∗)
γ ]] = 0 the Bianchi identities

with respect to spinor quantities produce the relations,

(1.13) D̃αQab
βγ + D̃βQab

γα + D̃γQab
αβ = 0.
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(1.14) D̃αQa
βγ + D̃βQa

γα + D̃γQa
αβ = 0.

The new Jacobi identity, due to λ, has the form

(1.15) [D(∗)
0 , [D(∗)

0 , D
(∗)
0 ]] = 0

which yields us no Bianchi identity.
Bianchi identities of mixed type give us the kinematic constraint which encom-
pass space-time, spinors and deformed gauge covariant derivatives. In that case
from the Jacobi identities

Qµα0[D̃(∗)
µ , [D̃(∗)

α , D̃
(∗)
0 ]] = 0.

we get the relations:

(1.16) [D̃(∗)
µ , [D̃(∗)

α , D̃
(∗)
0 ]] = (

δ̃P̃ d
0α

δxµ
+ P̃ d

c0αAe
µ + ω(∗)d

µa P̃ a
0α)Pd+

+(
1
2

δ̃P̃ cd
0α

δxµ
+ ω(∗)c

µα P̃ ad
0α )Jcd

(1.17) [D̃(∗)
α , [D̃(∗)

0 , D̃(∗)
µ ]] = (

∂P̃ d
µ0

∂ξ̄α
+ P̃ d

cµ0A
c
α + ∗ω(∗)d

αa P̃ a
µ0)Pd+

+(
1
2

∂P̃ cd
µ0

∂ξ̄α
+ ω(∗)c

αa P̃ ad
µ0 )Jcd

(1.18) [D̃(∗)
0 , [D̃(∗)

µ , D̃(∗)
α ]] = (

∂P̃ d
αµ

∂λ
+ P̃ d

cαµAc
0 + ω

(∗)d
0a P̃ a

αµ)Pd+

+(
1
2

∂P̃ cd
αµ

∂λ
+ ω

(∗)c
0a P̃ ad

αµ)Jcd

where,

D̃(∗)
µ =

δ̃

δxµ
+

1
2
ω(∗)ab

µ Jab

D̃(∗)
α =

∂

∂ξ̄α
+

1
2
Θ(∗)ab

α Jab

D̃
(∗)
0 =

∂

∂λ
+ ωab

0 Jab

∂

∂λ
= Lµ

0ha
µPa

∂

∂ξ̄α
= ψa

αPa.

Now we put,



Bianchi Identities, Yang-Mills, Higgs Field 79

(1.19) D̃µP̃ d
0α =

δ̃P̃ d
0α

δxµ
+ P̃ d

cµ0A
c
µ + ω(∗)d

αa P̃ a
µ0

(1.20) D̃αP̃ d
µ0 = (

∂P̃ d
µ0

∂ξ̄α
+ P̃ d

cµ0A
c
µ + ω(∗)d

αa P̃ a
µ0)

(1.21) D̃0P̃
d
αµ =

∂P̃ d
αµ

∂λ
+ P̃ d

cαµAc
0 + ω

(∗)d
0a P̃ a

αµ

in virtue of [14],[15],[16] we get the identity

(1.22) D̃µP̃ d
0α + D̃αP̃ d

µ0 + D̃0P̃
d
αµ = 0.

Similarly we define

(1.23) D̃µP̃ cd
0α =

1
2

∂P̃ cd
0α

∂xµ
+ ω(∗)c

µa P̃ ad
0α

(1.24) D̃αP̃ cd
µ0 =

1
2

∂P̃ cd
µ0

∂ξ̄α
+ ω(∗)c

αa P̃ ad
µ0

(1.25) D̃0P̃
cd
αµ =

1
2

∂P̃ cd
αµ

∂λ
+ ω

(∗)c
0α P̃ ad

αµ

From (1.18)-(1.20) we get

(1.26) D̃µP̃ cd
0α + D̃αP̃ cd

µ0 + D̃0P̃
cd
αµ = 0

2 Yang-Mills-Higgs equations. A geometrical in-
terpretation of Higgs Field.

The study of Yang-Mills-Higgs equations within the framework of the geomet-
rical structure of S̃(2)(M)-bundle that contains the one-dimensional fibre as an
internal deformed system can characterize the Higgs field which is studied in
the elementary particle physics. In our description we are allowed to choose a
scalar from the internal deformed fibre of the spinor bundle S̃(2)(M). Its con-
tribution to the Lagrangian density provides us with the generated Yang-Mills-
Higgs equations.
In the following we define a gauge potential Ã = (Aµ, Aα, Āα, φ) with space-time
and spinor components, φ : R −→ g which takes its values in a Lie Algebra g.

Ã : S̃(M) −→ g

ÃX = Ai
Xτi,[τi, τj ] = Ck

ijτk
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ÃX = {Aµ, Aα, Āα, φ}
where the elements τi are the components which satisfy the commutation rela-
tions of the Lie algebra. Then Ã is called a g-valued spinor gauge potential.
We can define the gauge covariant derivatives:

D̂µ = D̃µ + iAµ

(2.1) D̂α = D̃α + iAα

D̂α = ˜̄D
α

+ iAµ.

In virtue of the preceding relations we can get the following theorem:
Theorem 2.1. The commutators of gauge covariant derivatives on a S̃(2)M
deformed bundle are given by the relations:

a) [D̂µ, D̂ν ] = [D̃µ, D̃ν ] + iF̃µν

b) [D̂µ, ˆ̄D
α
] = [D̃µ, ˜̄D

α
] + iF̃α

µ

(2.2) c) [D̂α, ˆ̄D
β
] = [D̃α, ˜̄D

β
] + iF̃ β

α

d) [D̂α, ˆ̄Dβ ] = [D̃α, ˜̄Dβ ] + iF̃αβ

e) [D̂µ, ˆ̄Dα] = [D̃µ, ˜̄Dα] + iF̃µα

f) [ ˆ̄D
α
, ˆ̄D

β
] = [ ˜̄D

α
, ˜̄D

β
] + i ˜̄F

αβ
.

The curvature two-forms F̃XY , F̃XY , FX
Y X, Y = {α, β, µ, ν} are the g-valued

field strengths on S̃(2)M and they have the following form:

F̃µν = D̃µAν − D̃νAµ + i[Aµ, Aν ]

F̃µα = D̃µAα − D̃αAµ + i[Aα, Aµ]

˜̄F
β

α = D̃αĀβ − ˜̄D
β
Āα + i[Aα, Āβ ]

(2.3) ˜̄F
α

µ = D̃µĀα − ˜̄DαAµ + i[Aµ, Āα]

F̃αβ = D̃αAβ − D̃βAα + i[Aα, Aβ ]

˜̄F
αβ

= ˜̄D
α
Āβ − ˜̄D

β
Āα + i[Āα, Āβ ]

The appropriate Lagrangian density of Yang-Mills (Higgs) can be written in the
form

(2.4) L̃ = tr(F̃µν F̃µν + tr(F̃µα
˜̄F

µα
+ tr(F̃αβ

˜̄F
αβ

+ tr( ˜̄F
β

α
˜̄F

α

β
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+
1
2
m2φ2 − 1

2
tr[(D̂µφ)(D̂µφ)]− 1

2
tr[(D̂αφ)(D̂µφ)]

In our case the Yang-Mills(Higgs) generalized action can be written in the form

(2.5) ĨY M(H) =
∫
L̃d4xd4ξd4ξ̄dλ.

From the Euler-Lagrange equations

(2.6)
δL̃

δAY
= D̃X(

∂L̃

∂(D̃XAY )
)− ∂L̃

∂AY
= 0

the variation of L̃ with respect to Aλ is

(2.7) D̃k(
∂L̃

∂(D̃kAλ)
) + D̃β(

∂L̃

∂(D̃βAλ)
) + ˜̄D

β
(

∂L̃

∂( ˜̄DβAλ)
)− ∂L̃

∂Aλ
= 0

and it will give us after some straightforward calculations the equation:

(2.8) D̂kF̃ kλ + D̂β
˜̄F

λβ
+ ˆ̄D

β
F̃λ

β + [φ, D̂λφ] = 0

Similarly from the variation of L̃ with respect to Aα and Āβ we associate the
equations:

(2.9) D̂k
˜̄F

kγ
+ D̂δ

˜̄F
γ

δ + ˆ̄D
δ ˜̄F

γ

δ + [φ, D̂γφ] = 0

(2.10) D̂kF̃ k
γ + D̂δF̃

δ
γ + ˆ̄D

δ
F̃δγ + [φ, ˆ̄Dγφ] = 0

So we can state the following theorem:
Theorem 2.2. The Yang-Mills-Higgs equations of S̃(2)M -bundle are given by
the relations [2.4]-[2.5].

3 Conclusions

1. In this paper we studied the Bianchi identities choosing a Lagrangian density
that contains the component φ of a g-valued spinor gauge field of mass m ∈ R.
Also we derived the Yang-Mills-Higgs equations on S(2)M × R. When m0 ∈ R
the gauge symmetry is spontaneous broken which is connected with Higgs field.
2. The introduction of d-connections in the internal (spinor) structures on
S̃(2)M -bundle provides the presentation of parallelism of the spin components
constraints which satisfy by the field strengths.
3. In the metric G (relation (1)) of the bundle S̃(2)M , the term gαβDξαDξ∗β has
a physical meaning since it expresses the measure of the number of particles to
same point of the space.
4. The above mentioned approach can be combined with the phase transforma-
tions of the fibre U(1) on a bundle S(2)M ×U(1) in the Higgs mechanism. This
will be the subject of our future study.
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