Two Sandwich Theorems for Linear Operators
and the Moment Problem

Octav Olteanu

Abstract

We give a direct proof for theorem 2 [13] (which is equivalent to theorem
1 [15]). Then we apply theorems 1 [15] and 4 [15] to some concrete spaces
of sequences or functions which have a Schauder basis. The polynomials
x;(t) =7, j € N considered in the classical moment problem, are replaced
by the elements of the Schauder basis.
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1 Introduction

Before stating the abstract moment problem, we recall some definitions. A subset
X of areal vector space X is said to be a convex cone if X, + X, C X and
aX, C X, for any a € [0,00). An ordered vector space is a vector space
X endowed with an order relation defined by a convex cone Xy C X in the
following way: 1 < x9 iff 9 —21 € X . X is said to be the positive cone of X.
A vector lattice is an ordered vector space Y such that for any y1, y2 € Y, there
exists the supremum sup{y1, y2} =: y1 V y2. An order complete vector lattice is
a vector lattice in which any family {y; : j € J} C Y bounded from above has a
supremum sup{y; : j € J} =: Vjesy; € Y. For a deep study of ordered vector
spaces see [6] or [20].

The abstract moment problem may be stated in the following way. One give
two ordered vector spaces X,Y and two families of elements {z; : j € J} C
X, {y; : j € J} C Y. One also gives a convex operator p : X — Y. The
problem is to find necessary and sufficient conditions on y; (which are called
moments since they generalize the classical moments), for the existence of a
linear operator f € L(X,Y’), with the following properties:

(1.1) flz;) =y; Vje€J (the moment conditions),
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(1.2) f(Xy) Yy (positivity),

(1.3) f(z) <p(x) Vze X (the generalization of the continuity).

In the classical moment problem we have Y = R, X is a space of functions
on an interval I C R containing the polynomials z;(t) = th, j €N, tel
and p: X — R is a seminorm on X. X is usually a convex cone such that p
is monotone (0 < 1 < z2 = p(x1) < p(x3)). In the moment problem we are
interested in the existence, unicity and construction of the solution f € L(X,Y).
The main purpose of the present work is to characterize the existence of f. If
we note Xo := Sp{x; : j € J} and if we suppose that

Jo: Xo—Y, fo Z)\ﬂj 322)‘1‘%‘

JjEF JjEF

(F C J being a finite subset), is well defined, then the problem of the existence
of the solution is in fact the problem of extending fy to a linear operator f €
L(X,Y) which has the properties (1.2) and (1.3). When Y is an order complete
vector lattice, the abstract moment problem is solved by theorem 1’, which is
equivalent to theorem 1, both of them being stated and proved below (here we
give a direct proof for theorem 1). The Hahn-Banach theorem is a particular
case of theorem 1. It may be obtained taking in theorem 1 X := {0}, when the
order relation on X is the equality relation. The theorem of H. Bauer (see [3]
or [20]) may be easily obtained from theorem 1. The corollary 2 [9, p.336] may
be also got using theorem 1’. In [16] we applied theorem 1’ to some calssical
spaces X of functions (we considered X = C*([0,8]), C?([0,b]), C*([0,b;1] x
[0,b2]), L(]0,b1] x [0,b2]), BV ([a,b])). On the other hand, in [17] we proved
theorem 2 of the present work and we applied it to some spaces of functions and
measures. In section 3 of the present work we prove some applications of the two
general theorems of section 2.

2 General theorems

Theorem 1. Let X be an ordered vector space, let Y be an order complete
vector lattice and let p : X — Y be a convexr operator. Let Xy C X be a vector
subspace and let fo € L(Xo,Y) be a linear operator. The following statements
are equivalent:

(a) there exists a linear and positive extension f € L(X,Y) of fo such that
f(x) <plz) VoelX;

(b) fo(z') <p(x) VY(z',z) € Xox X with 2’ < z.

This theorem was published in [13], without proof. An indirect proof was
published in [14], where we deduced it from a more general result. Here we give
a direct proof.
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Proof of theorem 1.

(a) = (b) is almost obvious (fo(z') = f(2') < f(x) < p(x) V(' ,z) € Xg x X
with 2’ <z, since f(z’) < f(x) by the positivity and linearity of f).

(b) = (a) Let S :={(S, fs) : Xo C S C X, S is a vector subspace of X, fs €
L(S)Y), fs/Xo = fo, fs(x)>0 VxeSNX, and (2/,2) € Sx X, o' <z,
imply fy(2) < p(z)}.

We consider the following natural order relation on S : (S, fs;) < (S2, fs,)
ifft S C Sy and f,,/S1 = fs,. It is easy to see that S is inductively ordered
with respect to this order relation. Let (M, fa;) € S be a maximal element of
S, which exists by Zorn’s lemma. To finish the proof, it is sufficient to prove
that M = X. Supposing the contrary, let Z € X \ M. We construct an element
(M, fy;) € S, where M := M @® Sp{z}, f;; : M — Y being a linear extension
of fpr. This will contradict the maximality of (M, fy;) in S. We have to choose
§ € Y such that defining fy; : M — Y by fi(m + %) := far(m) + g, to have
(M, fir) € S. So, we must show that

(2.1) my+af € Xy, my € M, a € R, imply fys(my) +ay>0inY,

(2.2) ma+ B <z, mo€e M, R, X, imply frr(me)+ 57 < p(z)inY.

For o = 0, (2.1) is true since (M, far) € S. For 8 =0, (2.2) is accomplished
by the same reason. For a # 0 (2.1) is equivalent to (2.1.1) and (2.1.2) taken
together, where:

mi+MTeXy, meM A\ >0=

(2.1.1) = far(ma) + Mg >0, ie. § > —far(mi)/ A,

T~TL1+/1,1.’3€X+, mi € M, w < 0=

(2.1.2) Far(ig) + pa§ >0, ie. § < —far(mn)/pa.

Hence (2.1) is equivalent to (2.1°), where:

(2 1/) Y1 = 7fM(m1)/>\1 <y< 7fM(m1)/N’1 =: 91,
: A >0,y <0, my+ME € Xy, g + i € Xy,

Similarly, (2.2) is equivalent to (2.27):
(2.2) 2= (/) [p(F") = far(M2)] < § < (1/A2)[p(a") — far(ma)] = o,

where
Ao >0, po <0, m2+)\29~c§x’7 m2+,ll2.i'§i'/.

To find an § € Y which fulfills (2.1") and (2.2’), we must prove the following
four inequalities:

(2.3) y1 <1, y1 < w2, Y2 <1, Y2 < yo.

Supposing that (2.3) are proved, we may choose § such that
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Y1 VY2 <Y<y Ay

The proof of the inequalities (2.3) is not difficult. Here we prove that y; < ys.
Let Ay > 0, Ay > 0, my, mg € M such that m;+XZ > 0 and mo+A2% < e X.
Then we get:

—(1/M)m1 £ 3 < (1/A) (2" — ma),

which imply
(24) )\2[—(1/>\1)m1 + (1/)\2)7712] S (EI.
On the other hand, (M, far) € S and (2.4) imply:

Aa[=(1/ A1) far (ma) + (1/A2) far (m2)] < p(2'),

which may be rewritten as follows:

—fu(mi)d < (1/22)[p(2") — far(me)],
ie.
y1 < yo.

Theorem 1’. (Theorem 1 [15]). Let X,Y,p be as in theorem 1 stated above.
Let{z; :je J} C X, {y; : j € J} CY. The following statements are equivalent:

(a) there exists f € L(X,Y) such that f(z) > 0Vr € Xy, f(z;)=y; VjeJ
and f(z) < p(z)Vz € X;

(b) for any finite subset F' C J and any {)\; : j € F} C R, the relation
djer Ajtj S @ in X implies Y icp Ajy; < p(z) in Y.

Theorem 1" is a rewritting of theorem 1 (we take in theorem 1 X := Sp{z; :
Jj € J}, ete).
Theorem 2. (Theorem 4 [15] and 2.1. [17]). Let X,Y,{z; : j € J}, {y; :
J € J} be as in theorem 1" and let fi1, fo € L(X,Y). Let us consider the following
statements:

(a) there exists f € L(X,Y) such that f(x;) = y;, Vi € J and fi(z) <
f(2) < fa(z) Vze Xy

(b) for any finite subset F C J and any {)\; : J € F} C R, we have:

EjGF )\j.’[}j = Z2 — 21 with
z1,22 € Xy = Zjep Ajyj < faz2) — fi(z1);
If X is a vector lattice, we also consider the statement (V' ):

(V') f1(z) < fa(z) Yz € X4 and for any finite subset FF C J and any {\; :
j € F} C R, we have

(2.5)

+ —_
(2.6) Sy < | | D] N —A Do N ;
JEF JEF JEF
(for each x € X, we note ™ := x V0, 7 := (—z) V0 and we have x =

xt -z~ Vz e X);
(¢)ifxy € X . Vjeld, then fi(z;) <y; < falz;) Vje J.
Then (b) < (a) = (c) and, if X is a vector lattice, we have (V') < (b) &

(¢) = (c).
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3 Applications

Theorem 3. Let X be a real separable Hilbert space and let {x; : j € N} a fized
orthonormal basis in X. Let X = {z € X : < z,z; >> 0Vj € N} and let
{y; : j € N} C X such that if we note p,, = Z;io < Yj, Tm > we must have
S oo P2 < 00. Then there exists f € L(X,X), f(X4+) C X4, f(zj) =y; Vj €
N and f(z) <|| z || g, where

oo
Y= Z Pm Tm, T € X.
m=0

Proof. We shall apply theorem 1/, (b) = (a). Let n € N, let {A\g,...., A\n} C R
and let x € X such that

i/\jxj <zx= i <X, T > T
j=0 m=0
By the definition of X, this implies
(3.1) A <<z,z; > Vje{0,1,..,n}
On the other hand, y; € X, Vj € N, is equivalent to
(3.2) <Y, T >>0 Y(j,m) € N2
So, from (3.1) and (3.2) we deduce

n n (o) o0 n
DAy = A (Z < Yj> Tm >$m> =) DN <yprm > | m <
j=0 =0

m=0 m=0 \ j=0

(o] n o0 n
<SS <wz ><ygam > | an < ol | D <ynam > | em| <
m=0 \j=0 m=0 \j=0
o0
[l (Z pmzm> = [lz[|g =: p(@),
m=0

where ||z|| =< z,z >'/2. By theorem 1/, (b) = (a), the conclusion follows.

The theorem is proved.
We go on by two applications of theorem 2. We recall the following notations:

Y= {(ag, ooy Oy o) € RN 03 0y |< 00},
J=0

1°:={(Bo, e Bn, .-.) € RN t supjen | B; |< o0},
We consider the operator fy : I' — [ defined by:
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where

In ' and [*® we consider the convex cone of sequences which have all their
components positive. It is clear that I* C [° and Vz € I}, we have z < fo(z). It
is also well known that [*° is an order complete vector lattice. So, we may apply
theorem 2, (b') = (a), for X := 11, Y :=1°°, fi(z) =z Vo € X and f, defined
as above. We get the following result.
Theorem 4. Let X :=1', Y :=1°, letx; € X, z; := (0,...,0,1,0,...,0,...), j €
N A{yj:jeNtCXCY,y =2, oD 2. The following statements are
equivalent:

(a) there exists f € L(X,Y), f(z;) =y; Vj € N, z < f(z) < fa(z) Vx €
X+,'

(b) for anyn € N and any {Xo, ..., A\n} C R, we have:

(by) S Xald <A H N A, if 0<m <,
=0

and

(b2) D> Na@ <A+ N+ AL if m>=n+lmeN
=0

(¢c) the following three conditions are fulfilled:

(1) a%):O Vje N, Vme N such that0 <m <j—1,
(c2) o =1 vjen,
(c3). oW e0,1] VjeN, Ym>j+1, meN

Proof. To prove (a) < (b), we use (a) < (b’) of theorem 2. We have only to
show that the relations (b1) and (bz) (together) are equivalent to (2.6). We have:

S0 =3 (D oban ) = 3 St | o
§=0 §=0 m=0 m=0 \ j=0
and so, (2.6) may be written as follows:

[e.°]

STDo MG | zm < (A5 A AT 0,0,)=(Ag s Ay s A, 0,0, ) =
m=0 \ j=0
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= (AL A A e A AT A0, = (A, AL e A, 0, =
= (Ao, AdH AL, ooy A et A A, ATt AT N AT AT AT ).

By the definition of Y, (2.6) is equivalent to the statement (b) of theorem
4.
(a) = (c) is almost obvious. Indeed, since z; € X, we have:

;= (0,..,0,1,0,..) <y; = (af,...a¥, . o), ..) < Ty(z;) = (0,...,0,1,1,1,..

m

which imply (c).
(¢) = (b) To prove (¢) = (b1),let n € N and m € N, m <n.
From (¢1), (c2) and (c3) we deduce:

n m—1 n
ZA]'O[%) = Z )\ja%) + )\maggﬂb) + Z )\ja%) =
=0 =0 j=m—+1

-1

3

m—1
Aol 4 A S AT F A = AT AL+ A
j=0

I
o

J
This proves (b1). To finish the proof, we have to show that (c¢) = (b2).
Letm,neN,mer—l.IfjeN, j<n<m-—1,then m > j+ 1 and, by
(c3), o) e [0,1]. This implies:

i.e. (b2). The theorem is proved.
We go on by an application of theorem 2 to a space of analitic functions.
Let p > 0. We denote by A, the set of all complex functions, defined on the
open disk | z |< p of the complex plane, which can be represented as the sum of
an absolutely convergent series

o0
x(z) = Z a;z7,
j=0

the coeflicients «; being real numbers. Then X = A, is a real vector space which
can be ordered by the convex cone

(3.3) Xy = xEAp:x(z):Zajzj7 a; >0 VjeN
7=0

It is easy to see that X is an order complete vector lattice.
Theorem 5. Let X = A, and let X be the cone defined by (3.3). Let us
denote xj(z) == 27, j € N, | z |< p and let us consider the function g €
X, g(2) = 14 z. On the other hand, let {y; : j € N} C X be a sequence in

)
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X, yi(z) = X0, a%)zm, Jj € N, | z |< p. Let us consider the following
statements:

(a) there exists f € L(X,X) such that f(z;) =y; Vje N, z < f(z) <
rxgVr € X4

(b) for any n € N and any {Xo, A1, ..., \n} C R, we have:

(b1) Z Nad) < o,

7=0
(ba) doxe <ML+ A, Yme{1,2,..,n},

j=0

n .
(b3) >Nl <AL

j=0
(b4) Z/\joz%) <0 Vme{n+2,n+3,..};

j=0

(c) the o) fulfill the conditions:

(1) o) =0 jeN, VmeN\{jj+1},
(c2) a;j)zl Vj € N,
(c3) 0<al?) <1 Vjen.

Then we have (a) < (b) < (c).
Proof. For (a) < (b) we apply theorem 2, (a)< (b'), for Y = X, fi(x) =
z, fa(r) = xg, Vo € X. We check that the assertion (b) of theorem 5 is
equivalent to the assertion (b’) of theorem 2. We remark that for any z =
> o @mTm € X4, the relation fi(z) := x < fo(x) := zg is true. Indeed, we

have:
(zg)(2z) = x(2)g(z) = (Z amzm> (1+2)= Zamzm+
0

m=0

oo oo
+ E amz™t = E amz "+
0 m=0

oo oo
+ Z U122 = ag + Z (m + Qp—1)2™.
m=1 m=1

So, we have got:
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o0 o0
2g = aozo+ Y (Cm + Om—1)Tm > 0T0 + Y U,

m=1 m=1

since a—1 >0 Vm € {1,2,...} by the definition of X, > x.

So, we have only to verify the equivalence (2.6) < (b) of theorem 5. Let us write
(2.6) in our particular case. Let n € N, {Ao, A1,..., An} C R. Then (2.6) may be
written in the following way:

Siodiy = Lo (Sisaien) = Yo (Xhme Aal) am <

Sfﬂ((Z?—o/\jmj)Jr) —fl( o \jTj )

= 1 (S atas) = 1 (She Ay ) =

= oA Tm) (L+21) = >0 o A Tm =

= 3o MhTm om0 ATt — Yoo AT =
=m0 AmT + oy N @ =

=Yy (N Am) T+ Xozo + N2

By the definition of X, this is equivalent to (b) of theorem 5.
(a) = (c) Since z; € X, we have from (a):

o0

z; = fi(z;) < Z oD, =y; = flx;) < folej) = 2j(1+21) = x5 + 3541

m=0
By the definition of X, (c) follows.
(c) = (b)
(b1) En:xa(” = a<°>+§n: Aja§) = A
1 7 %0 0% 30 0
, =

by (c¢1) and (cg).

(bs) m e {1,2,..,n} = Z)\ o) = Nalm 4\, _jalmh =

= A+ A1 <AL+ A
by (c1), (c2) and (c3).

(b3) ST nally = xall)y <AL, by (er) and (cs).
7=0

n

(b4) D Na@ =0

Jj=0

if m > mn+ 2, by (¢1). The theorem is proved.
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