On a Geometrical Interpolation Problem
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Abstract

Given a finite set of points A in R™ and a geometrical pattern ® we
define a type of distance between A and ® and study how to find a pattern
® among a parametrized family of geometrical objects such that such a
distance is minimum.
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1 Preliminaries

Many bidimensional ”patterns” have a concatenation of plane curve arcs as
boundaries; similarly, 3-dimensional ”patterns” have as boundary a concatena-
tion of surface pieces. For this reason, it could be useful to introduce and to
study some new metrical properties, which permit to formulate and solve some
interpolation problems.

Let U C R™ be an open set and fix an integer k > 1. Consider a map
f:U — RF of class CY(U), f = (f1,..., fx)T; for any @ € U, denote J;(x) =
(ngJ), 1<i<k, 1< j<n, the Jacobian matrix. The most important case in
what follows will be when k& < n; in this case, a point x € U is said regular for
[ if rank(J¢(z)) = k. The set of type f~1(0) generalize the plane curves, the
surfaces, space curves etc.
Definition 1.1. We call a pattern in U any set of the form ¢ = U]Vil ®,;, such
that there are C! functions g; : U — R*, 1 < i < M and ®; C gi_f(O) have all
their points regular.

If k=1, ® C g~1(0), where g = g1 - go...gas; if @ is regular for g;, 1 < i < M,
it could be not regular for g.

Given a point a € U, a = (a1, ...,a,)T a pattern ® as above, it could be useful
to define a suitable distance d(a, ®) between them. If so, take Ay, As, ..., Ay € U
as N distinct points (”points of surveillance”); one knows that even the simple
interpolation Lagrange problem has some obstructions to be solved, instead it
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could be useful to determine, under some conditions, a function f such that the
sum Y2 d(A;, f71(0))? is minimum. Such problems will be treated in what
follows.

On the other hand, recall that if A € M}, ,(R), B € My 1 (R) are two matrices,
then AT € M, 1 (R) means the Penrose pseudoinverse of A, [4] and by putting
BT = AATB, the vector £ = AT B is unique in R™ such that A¢ = BT, the
latter being just the orthogonal projection of B on ImA (that is || B— Bt || =
minimum); £ is called the pseudosolution of the linear system AX = B. If k <n
and rankA = n, then AT = AT . (AAT)~ L,

2 A distance between a point and a pattern

Definition 2.1. Let U C R"™ be open and f : U — R¥, f = (f1,..., fx)T be a
Cl-map; for any point a € U define the distance from a to the pattern f~1(0)
as being

(1) 5(a, f~1(0)) =|| J¢(a)T - f(a) || (Euclidean norm)

Example. In the case when k£ = 1 and f is linear nonnull, f(z) =Y . | ¢;z;, put
¢ = (c1,...,cn)T; then for any a € R, a = (ay,...,a,)T, one has f(a) = ¢ - a,
J(a) =T and Jy(a)t = T Putp=a— Jg(a)™ - f(a) hence p =a — W(c
¢’ -a). Then f(p) = ¢’ - p =0 and the vector a — p is normal to the hyperplane
f71(0). In this case, || a — p ||= §(a, f~1(0)), justifying thus the definition 2.1.
So § extends the Euclidean distance.

Proposition 2.2. Suppose that 1 < k < n and a € U is a reqular point for a
Cl-map f:U — RF. Then

(2) 8(a, f710) = (f(@) - (J5(a) - Tp(@)T)”

Proof. Let J = J¢(a) hence rankJ = k (maximum); in this case, the symmetri-
cal matrix J - JT is invertible and moreover, J* = JT . (J - JT)~1. Then by the
definition 2.1.,

0a, fH0)? = ¥ f(a) [P=< T f(a), "+ f(a) >= f(a)" - (JH)"-T" f(a).
Since J* = JT(J - JT)~!, one obtains:
8a, f710)* = f@)" - (J-T) T JT (T fla).

But J-JT-(J-JT)~! = I, therefore §(a, f71(0))2 = f(a)T - (J-JT)"1- f(a),
whence the proposition.

Corollary 2.3. Fiz a € U. The map f — &(a, f~1(0)), restricted to C'-
functions on U for which a is reqular, is continuous.

Corollary 2.4. Let f; : R" — R, fi(z) = X7, ajjx;, where Y5, af; =1 for
1 <4<k <n and the k x n-matric A = (a;;) has the rank k. Consider the
hyperplanes
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and put B = (b, ...,b;)T. Then the pseudosolution of the linear system A-X = B
minimizes the sum Zle §(x, H;)?.

Proof. Define f : R* — RF f(z) = (fi(x) — by, ..., fu(x) — bx) hence by
proposition 2.2 §(z, f~1(0)) = f(x)T - (AAT)"! . f(z) for any x € R™. Put
Bt = AA*B = (bf,...,b])T; then £ = A* B is the pseudosolution of the system
AX = B and Af = AATB = B*. We have

d(x, H;) = d(z, H;) = | fi(x) — b
6(&, Hi) = d(&, Hy) = | fi(§) — bil,

D o(w Hi)® = d(f(2),0)? > d(Imf,b)* >|| B - B ||’=

k k k
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The distance given in the definition 2.1 has some convenient geometrical
properties. Under obvious hypothesis, one directly proves:
Proposition 2.5. Let a € U and a C'-function f: U — RF.

1) If A € Mg(R) is nonsingular and g = A - f, then §(a, f~1(0)) =
6(047 g—l(o));

2) If Q@ € M, (R) is an orthogonal matriz and T : R™ — R", Tx = Qx + ¢ is
an isometry, then 6(a, f~1(0)) = §(Ta, Tf~1(0));

3) For any A > 0, 6(Aa, g~*(0)) = Ad(a, f~1(0)), where g(x) = f (%).

3 A least-square interpolation problem and an
algorithm

Let A= {A;,..., Ay} CU (U C R"open) be a fized set of distinct ”points of
surveillance”. For any pattern ® = f~1(0), where f : U — R* is a C''-function
such that each A; is regular for f, we put

N
3) O(A®) =3 oA f7H0)*.

One can formulate the following problem:

(I). Given A, determine a function f which minimizes 5(A, f~1(0)). Such
a problem could have some applications in Pattern Recognition [3]. In fact it
is a geometrical nonlinear variant of the least squares method and the solution
is generally not unique. In [1] one proves that whenever F' C R" is closed and
f:R™ — R is continuous, with F = f~1(0), then for any continuous function
€ : R" — (0,00) there exists a C*°-function g : R® — R such that ¢71(0) = F
and Vo € R", |f(x) — g(z)| < e(x). This shows that for any pattern there are
smooth functions which define it.
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In what follows, we present the case when the unknown belongs to a
parametrized family of functions (e.g. quadrics, cubics, spline-functions etc).

Let P C R™ be an open subset in a parameters space and F : U x P — RF
be a map such that for any p € P, p = (p1, ..., pm)*, F determines a C*-function
f:U — RF z — F(x,p); suppose there is a bijective correspondence between
such functions and parameters (this happens for instance in the case of the
polynomial functions of degree at most d, where P = R™ and m = ( n ;Lr d ;
in such a case, the function (A, ®) becomes a function of the coefficients of
the polynomials). In the case of the linear dependence on parameters, we also
can impose supplementary relations on parameters, which do not modify the
solution; for instance, the following condition

N
(4) > T(A) - Jp(A)T = .
i=1

Indeed, since the matrices J;(A;) - Jp(A;)T are symmetrical, positively semi-
definite and nonsingular (A4; being supposed regular points of f), these matrixes
result positively definite and the same is true for the matrix C' = ZZ\; Jr(4;) -
J¢(A;)T. So there is an orthogonal matrix @ € M (R) such that Q7 -C-Q = I
and therefore @ f will verify (4).

Suppose now that the points Ay, ..., Ay are "sufficiently near” of f~1(0),
in the sense that §(A4;, f=1(0)) ~|| f(4;) ||, for each i. By (3), §(A, f~1(0)) ~
Zfil | f(A;) ||>. Finally suppose fixed r C?-functions ¢1,...,¢, : U — RF,
linearly independent and consider that the unknown C2-function f has the form
f=(f1, fu)¥, where f; = E;leijgpj, 1 < i < k, with p;; unknown real
constant (as parameters); in matricial writing, f = P - ¢, where P = (p;;) €

M, ,(R). Check the function f, that is the matrix P, such that the sum Zivzl I
f(A;) ||? is minimum, with the restriction (4). In this case,

N N
DA IP= D F(A)T - F(A) =
i=1 i=1

N
=3 (4)" P PT - p(A) = tr(PT - A-P),

where A = Zil ©(A;) - p(A)T € M.(R) is a known symmetrical, positively
semi-definite matrix. On the other part, since

Jp(Ai) - Jp(A)" = P Jp(Ai) - Jp(Ai)" - P,

by putting
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with B € M,.(R) known, the relation (4) becomes P?-B-P = ;. Thus, the above
least-squares problem reduces to the following matricial one: check a matriz
P € M, x(R) of rank k such that PT-B-P = I, and tr(PT - A- P) be minimum.

In order to solve this, we first remark that P7 - A- P can be assumed diagonal
[indeed, PT - A- P is symmetrical and positively semi-definite, hence there is an
orthogonal matrix Q € M (R), i.e., Q- QT = I, such that QT(PT - A- P)Q is
diagonal; but tr(PT-A-P) = tr((PQ)T-A-P-Q) and moreover, PT-B-P = I, if
and only if (PQ)T-B-P-Q = Ij. Thus, one can substitute P by PQ]. Denote by
21, ..., ), the column vectors of the matrix P; then tr(PT-A-P) = Y% 2T A,
and the relation PT-B-P = I, can be written 27 B-x; = §;; forany 1 <,j < k.
Consider the Lagrangean

k E ok
L(x1,...;xp, L) = ZQ:ZTAQ:Z- — Z Z)\uv(acZva — Ouw),
i=1

u=1v=1

where L = (Ayy); 1 < w,v < k is the matrix of the Lagrange multipliers; the
necessary (here also sufficient) extreme condition is V£ = 0 and this leeds to
AP — BPL = 0. But PTAP = D (diagonal) hence L = I4L = (PTBP)L =
PT(BPL) = PTAP = D. Therefore the matrix L will be diagonal and much
more, positively semi-definite (since A is so). Put L = diag(as, ..., o) and the
relation AP — BPL = 0 leeds to (A — a;B)z; = 0, 1 < i < k, hence z; is an
eigenvector of the matrix-bundle A — aB, with an eigenvalue «;. One can apply
different methods to determine the vectors x; and, by this, the matrix P.

All the above can be shortly concentrated in the following.
Proposition 3.1. (Algorithm to solve the problem II). Let U C R™ be an open
set. Fix r linearly independent C?-functions 1, ..., . : U — R*¥ and N 7points
of surveillance” Aq,...,Axy € U. The problem is to look for a function f:U —
R* [whose components fi,..., fr, are linear combinations of @1, ..., ., namely
(f1ss f) = (01, -y 0r) P, with P € M, ,x(R) a matriz to be determined], such
that the pattern f=1(0) is the nearest to the set A= {Aq,.., An}.

Step I

Determine the rxr-matrices A = Zf\;l 0(Ai)-0(A)T and B = Zf\il Jo(As)-
Jo(A)T, where © = (p1,...,0r)T.

Step 11

The column-vectors 1, ...,k of the looked for matriz P (of rank k) are just
the eigen vectors of the matriz-bundle A—aB and moreover verify PTBP = Ij,.
One determines thus x4, ...,z and P.

As well as the matrices A, B are known (that depending on the choise of the
functions ¢y, ..., ¢,-), this algorithm requires O(r?) operations.

4 A Newton-Raphson type result
In the paper [2] it was proved the following result:

Let D C R™ be a nonempty convex bounded set, f : D — D a C?-map
such that any point of f~1(0) is nonsingular for f. For u € D fixed, define the
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function h,, : D x [0,1] — R™, hy(z,t) = f(z)+ (¢t —1)f(u). Then for a.e. u € D,
the set
{(z,t) e Dx[0,1]|0 <t <1, hy(zt)=0}

either consists of a finite number of closed curves in D X [0, 1], or a finite number
of arcs in D x (0, 1) with their ends in D x {1} or D x {0}, or a finite number of
arcs which start from D x {0} and end in D x {1}; all these three kinds of curves
are disjoint, of class C'. Therefore, one can found a solution for the equation
f(x) = 0 by following the curve h;!(0) which starts from (u, 0) for some u € D;
such a curve will attain a solution £ of the equation f(z) =0 as soon ast =1 is
touched.

Let f: U — R" be a C?-map (U C R" open) and h(z,t), h: U x R — R"
a C%-map such that for any x € U, h(z,1) = f(z) and the equation h(x,0) = 0
has a solution u € U; for instance, take h(x,t) = f(x) + (t — 1) f(u) as above,
or h(z,t) = (1 — t)(x — u) + tf(z). Suppose that (y) = h~1(0) is a curve in
R"™*! which joins (u,0) and a point (,1) such that f(¢) = 0. Let a € () be
fixed; choose a tangent vector 7 in a at (y) such that Jy(a) -7 =10, || 7 ||=1

and det ( Ji(Ta) > > 0. Then choose a step p > 0 sufficiently small such that if

b= a-+pr, then h(b) is near to 0. Put ¢ = b— J;(b)* - h(b). By the definition 2.1,
5(b,h=1(0)) =|| b — ¢ ||; c is just near the point where the hyperplane, passing
by b and orthogonal to b, intersects (). If u is a point of simple bifurcation
for k, then in the neighborhood of u, h~1(0) represents the union of two curves
~1,7v2; if we take the arc length s as parameter and ~;(0) = u, 72(0) = u, then

det ( :YJ?S% ) changes its sign in s = 0 for v = v; and v = 72 and conversely;

both the curves are suitable for the next algorithm.

Proposition 4.1. Suppose f,h satisfy the conditions of the above formulated
result of [2]. Take a solution w € D of the equation h(x,0) = 0. Take ay =
(u,0) and apply the described scheme which yields the sequence (ay)r>0, where
ar+1 = ¢ and ap = a as above. This sequence converges to a point (£,1) such
that f(€) = 0.

The proof uses a typical reasoning for the Newton-Raphson method. The new
thing is that b can be singular for h and for this reason we use the pseudoinverse;
in fact by the Sard theorem almost all points of R™ are regular values for the
map h.
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