
Sufficient Decrease Principle

on Riemannian Manifolds

Constantin Udrişte

Abstract

Tools from Riemannian geometry (suitable Riemannian metric, expo-
nential map, search along geodesics, covariant differentiation, sectional
curvature, etc) are now used in Mathematical Programming to obtain
deeply theoretical results and practical algorithms [3]-[11].

§1 lists basic propositions appearing in the numerical finding of a criti-
cal point of a real function defined on a Riemannian manifold. 2 – 3 develop
the steplength analysis in terms of geodesics and Riemannian version of
Taylor formula (which contains the parallel translation along geodesics),
insisting on sufficient decrease principle. 4 analyses the strong influence of
the sectional curvature on descent algorithms. 5 proves that the central
path of a convex program is in fact a minus gradient line with respect to
a suitable Riemannian metric.

The main theorems refer to the convergence of the sequence

xi+1 = expxi
(ωitiXi),

produced by a descent method, to a critical point of a function f , the
convergence of the sequence

{df(xi)(ei) | ei = Xi/ ‖ Xi ‖}
to zero, and the convergence of the sequence of distances {d(xi, xi+1)} to
zero.
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Key words: zeros, geodesics, sufficient decrease, forcing functions, reverse mod-
ulus, curvature and descent algorithms, central path.

1 Numerical methods for finding zeros of a ten-
sor field

Let (M, g) be a complete finite-dimensional Riemannian manifold. The Rieman-
nian metric g produces:
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1) the energy (halph of square of the norm) of a tensor field; in particular,
for a vector field X we have the energy

f =
1
2
‖ X ‖2= 1

2
g(X, X);

2) the length L(γ) =
∫ b

a
‖ γ̇(t) ‖ dt of a piecewise C1 curve

γ : [a, b] → M ;

3) the Riemannian connection ∇, the parallel translation, and the geodesics;
4) the distance

d(x, y) = inf
γ∈Γ

L(γ),

where Γ is the set of all piecewise C1 regular curves γ : [a, b] → M joining the
points x, y ∈ M , i.e., γ(a) = x, γ(b) = y;

5) the raising and the lowering of the indices of tensor components;
6) the sectional curvature of the manifold; etc.
The topology induced by the distance d on M coincides with the manifold

topology of M . Also (M, d) is a complete metric space. The open ball in (M, d)
with center x0 and radius r is denoted by B(x0, r).

The completeness of (M, g) implies the fact that any geodesic γ : [0, 1] → M
can be extended to a geodesic of type γ : R → M and that any two points of M
can be joined by a minimal geodesic.

Let γ : [0, 1] → M be a geodesic joining the points γ(0) = x, γ(1) = y. The
parallel translation from x to y along γ will be denoted by τxy.

Let γ(t) = expx(tX) be the geodesic which verifies the initial conditions
γ(0) = x, γ̇(0) = X ∈ TxM . We know that for any x ∈ M there exists ε > 0
such that X ∈ TxM, ‖ X ‖< ε imply d(x, expx X) =‖ X ‖.

Generally, zeros of a C∞ vector field or 1–form are global minimum points,
and hence critical points, of their energies. The numerical methods used for the
finding of such zeros has as base iterative procedures of the type [3]–[11]

(1) xi+1 = expxi
(ritiXi),

where the vector Xi ∈ TxiM indicates the direction and sense of moving from
the starting point xi, the number ti determines the steplength on the geodesic
which starts from xi tangent to Xi, and the number ri is a relaxation parameter.
These procedures do not depend on the local coordinate system, but depend on
geodesics and the sectional curvature of the manifold.

Let us consider a C∞ 1–form ω. If xi is not a zero of the 1–form ω, then we
select Xi ∈ TxiM by the condition ω(xi)(Xi) < 0 having in mind at least two
reasons:

1) if ω = df, f : D ⊂ M → R, the preceding inequality shows that Xi

determines a direction and sense of decreasing of f , i.e., df(Xi) < 0;
2) if f = 1

2g−1(ω, ω) is the energy of ω and ∇ω(xi) is nondegenerate, then
the equalities

df(Yi) = g−1(∇Yiω, ω) = ω(g−1∇Yiω), Xi = g−1∇Yiω



Sufficient Decrease Principle 113

and the inequality ω(xi)(Xi) < 0 show that Yi determines a descent direction
and sense of the energy f (this idea corresponds to Riemann–Newton method
for finding zeros of a 1–form).
Remark. The ideas in this paper hold true for general tensor fields, though
they are formulated here for 1–forms. Let T be a C∞ tensor field on M and
f = 1

2 ‖ T ‖2 be its energy. The zeros of T , i.e., the solutions of the algebraic
system T (x) = 0, are global minimum points, and hence critical points, of the
energy f . Therefore an extended descent method, for example an extendend
Riemann–Newton method, can be used to find zeros of any tensor field.

Let x∗ be a zero of the 1–form ω. If (∇ω)(x∗) is nondegenerate, then the
zero x∗ is called nondegenerate. The Riemann–Newton method for finding of
the point x∗ was studied in, [3]–[11].

In this paper we refer especially to the case ω = df , where f : D ⊂ M → R
is a C1 function. The solutions of the system df(x) = 0 are called critical points
of f . The study of the convergence of the numerical procedure (1) towards the
critical point x∗ of f , or to a minimizer f∗ of f , is based on the following
propositions [6]

(2) f(xi + 1) ≤ f(xi), i = 1, 2, . . .

(3) lim
i→∞

xi = x∗, df(x∗) = 0

(4) lim
i→∞

df(xi)(ei) = 0, where ei = Xi/ ‖ Xi ‖
(5) lim

i→∞
df(xi) = 0

(6) df(xi)(Xi) ≤ −ε ‖ Xi ‖, ε > 0, ∀i ≥ i0
(7) lim

i→∞
d(xi, xi+1) = 0.

In §2 - §3 we shall analyse especially the basic proposition (4) showing that
its validity depends only upon the steplength of the algorithm and on very mild
conditions for f itself. In the theorems 2.4, 3.4 appears also the proposition (7).

2 Sufficient decrease principle on Riemannian
manifolds

Let (M, g) be a complete, finite–dimensional Riemannian manifold. In this para-
graph we shall develop the steplength analysis and we shall prove that propo-
sition (4) is true for certain steplength algorithms and arbitrary Xi 6= 0. The
decreasing condition (2) is not usually enough to imply (4), even if the inequality
is strict. There exist however decreasing conditions which imply (4). These type
of decreasing is called a sufficient decrease and it is usual described using the
forcing functions.
2.1. Definition. A function σ : [0,∞) → [0,∞) for which the convergence of
the sequence {σ(ti)} to zero implies the convergence of {ti} to zero, for any
sequence {ti}, is called a forcing function.
Example. Any function σ : [0,∞) → [0,∞) which is increasing and positive
definite is a forcing function.
2.2. Theorem (Sufficient decrease principle). If f : D ⊂ M → R, and

1) f is of class C1,



114 C.Udrişte

2) f is bounded below on D0 ⊂ D,
3) there exists a forcing function σ such that

(8) f(xi+1)− f(xi) ≤ −σ(| df(xi)(ei) |), ei = Xi/ ‖ Xi ‖,

then the proposition (4) is satisfied.
Proof. By (2)–(3), the sequence {f(xi)} is convergent as a decreasing bounded
sequence. Hence limi→∞(f(xi) − f(xi+1)) = 0, and consequently by (3) the
proposition (4) holds true.

In the following we shall look for estimations of type (8), for various
steplength algorithms. For these it is necessary to be sure that the sequence
generated by (1) remains in D0. Denote D1 = {x ∈ D | f(x) ≤ f(x1)} and D10

the path–connected component of the sublevel set D1 containing x1.
2.3. Lemma. If f : D → R, where D ⊂ M is an open set, and

1) f is continuous on D,
2) f is of class C1 on the compact set D10 for some x1 ∈ D,

then for any x ∈ D10 and X ∈ TxM with df(x)(X) < 0, and γ(t) = expx(tX),
there exists t∗ such that f(x) = f(γ(t∗)) and γ(t) ∈ D10 for any t ∈ (0, t∗].

If s > 0 is a number satisfying f(γ(t)) < f(x), ∀γ(t) ∈ γ([0, s])∩D10, then
γ([0, s]) ⊂ D10.
Proof. Let

J = {t1 > 0 | γ([0, t1]) ⊂ D, f(γ(t)) < f(x), ∀t ∈ (0, t1]}

and t∗ = sup J . The number t∗ is well–defined since the set J is nonvoid. By
compactness of D10, we have t∗ < ∞ and γ([0, t∗]) ⊂ D10 . Suppose f(γ(t∗)) <
f(x). Since D is open and f is continuous, we can select δ > 0 such that γ(t) ∈ D
and f(γ(t)) < f(x), ∀t ∈ [t∗, t∗ + δ], in contradiction with the definition of t∗.
It rests f(x) = f(γ(t∗)). The last statement is immediate because s < t∗.

Denote by τxy the parallel translation from x to y along a geodesic joining
the points x, y.
2.4. Theorem (Majoration principle). Let f : D → R, where D ⊂ M is
open and f is of class C1. Suppose that D10 is a compact set and

‖ df(x)− τ−1
xy df(y) ‖≤ ad(x, y), ∀x, y ∈ D10.

If the sequence {xi} generated by (1) satisfies the conditions:
- {Xi} is a sequence of nonzero vectors, each vector being fixed by the condi-

tions Xi ∈ TxiM, df(xi)(Xi) ≤ 0;
- the steplength ti and the relaxation parameter ri satisfy

ti = −(a ‖ Xi ‖)−1df(xi)(ei), ε ≤ ri ≤ 2− ε, i = 1, 2, ...

with
ei = Xi/ ‖ Xi ‖, ε ∈ (0, 1),

then the sequence {xi} remains in D10, and the propositions (4), (7) are satisfied.
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Proof. We use the complete induction. Suppose xi ∈ D10. If df(xi)(Xi) = 0,
then xi = xi+1. Therefore we impose df(xi)(Xi) < 0.

Let γi(t) = expxi
(tXi). From

f(γi(t)) = f(xi) + tdf(xi)(Xi) + t

∫ 1

0

(τ−1df(γi(st))− df(xi))(Xi)ds,

d(x, y) = st ‖ Xi ‖,
it follows

f(γi(t))− f(xi) ≤ tdf(xi)(Xi) +
1
2
at2 ‖ Xi ‖2,

whenever the geodesic γi(t) is included in D. Also, Lemma 2.3, with s = (2−ε)ti,
ensures xi+1 ∈ D10. We have

f(xi)− f(xi+1) ≥ −ritidf(xi)(Xi)− a

2
(riti ‖ Xi ‖)2 =

=
ri

a
(df(xi)(ei))2 − r2

i

2
(df(xi)(ei))2 =

1
2a

(
2ri − r2

i

)
(df(xi)(ei))2 ≥

≥ 1
2a

ε(2− ε)(df(xi)(ei))2

since 2ri − r2
i = 1 − (1 − ri)2 ≥ 1 − (1 − ε)2 = ε(2 − ε). We remark that

σ(t) = ε
2a (2− ε)t2 is a forcing function and hence

lim
i→∞

df(xi)(ei) = 0.

Finally, if the selected geodesic is minimal, then

d(xi, xi+1) = riti ‖ Xi ‖= −ria
−1df(xi)(ei)

implies
lim

i→∞
d(xi, xi+1) = 0.

3 Reverse modulus of continuity of a 1–form as
forcing function

In the sequel, the forcing function ct2 is replaced by a more complex forcing
function. In this sense the following ideas hold true for general 1–forms, though
they are formulated for ω = df , where f : D ⊂ M → R is a C1 function.

Let τxy be the parallel translation along a geodesic joining x to y.
3.1. Definition. Let f : D ⊂ M → R be a function of class C1. Assume that
on some D0 ⊂ D we have

s = sup
{‖ df(x)− τ−1

xy df(y) ‖, x, y ∈ D0

}
> 0,

and denote
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β(t) = inf
{
d(x, y) | x, y ∈ D0, ‖ df(x)− τ−1

xy df(y) ‖≥ t
}

, t ∈ [0, s).

The function

δ : [o,∞) → [0,∞), δ(t) =

{
β(t) for t ∈ [0, s)

lim
t↗s

β(t) for t ∈ [s,∞)

is called the reverse modulus of continuity of the 1–form df on D0.
The function δ is increasing and δ(0) = 0. The following lemma shows that

δ is a forcing function.
3.2. Lemma. If the 1–form df is uniformly continuous on D0 ⊂ D and s is
strictly positive, then δ(t) > 0, ∀t > 0.
Proof. Suppose δ(t) = 0 for some t > 0. Then, given ε > 0, ∃x, y ∈ D0 with
‖ df(x)− τ−1

xy df(y) ‖≥ t and d(x, y) ≤ ε, contradicting the uniform continuity of
df .

Let γ(t) = expxi
(tXi), t ∈ [0, 1]. The sufficient decrease principle reduces

to the hypotheses that τ−1
xiγ(t)df(γ(t))(Xi) is sufficiently smaller with respect

to df(xi)(Xi). In other words, for µ ∈ [0, 1), the suitable steplength ti can be
defined as

(9) ti = min
{

t ≥ 0 | τ−1
xiγ(t)df(γ(t))(Xi) = µdf(xi)(Xi)

}
.

3.3. Theorem. Suppose f : D ⊂ M → R is of class C1 on the open set D. If
D10 is compact, µ ∈ [0, 1), ε ∈ (0, 1] and the iterative process (1) works under
df(xi)(Xi) ≤ 0, Xi 6= 0, ε ≤ ri ≤ 1, and the condition (9), then the sequence {xi}
is included in D10 , it is strongly downward and the proposition (4) is satisfied.
Proof. We use the complete induction. Suppose xi ∈ D10. If df(xi)(Xi) = 0,
then ti = 0 and hence xi+1 = xi. Consequently it is necessary df(xi)(Xi) < 0.
Then Lemma 2.3 assures the existence of si > 0, with the geodesic γ(s) =
expxi

(sXi), s ∈ [0, si] included in D10 and f(xi) = f(xi+1). By the meanvalue
theorem, there exists ŝ ∈ (0, si) with τ−1

xiγ(ŝ)df(γ(ŝ))(Xi) = 0. Using the con-
tinuity of df , the equation in (9) has a solution in (0, si) and df(xi)(Xi) < 0
implies the existence of ti > 0. Since ri ≤ 1, the point xi+1 is well defined and
xi+1 ∈ D10.

On the other hand

(10) τ−1
xiγ(t)df(γ(t))(Xi) = µdf(xi)(Xi) < 0, ∀t ∈ [0, riti),

and hance f(γ(t)) is decreasing on [0, riti]. Hence

f(xi) ≥ f
(
γxixi+1(t)

) ≥ f(xi+1), ∀t ∈ [0, 1],

i.e., the sequence {xi} is strongly downward in D10.
For the last part suppose µ > 0. Then the meanvalue theorem and (10) give

(11) f(xi)− f(xi+1) = −ritiτ
−1
xiγ(t)df(γ(t))(Xi) ≥ −tiεµdf(xi)(Xi).

To avoid the triviality, we suppose that f is nonconstant on D10. Lemma 3.2
shows that the reverse modulus of continuity of the 1–form df is a forcing func-
tion on D10. From ei = Xi/ ‖ Xi ‖,
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(µ− 1)df(xi)(ei) = τ−1
xiγ(ti)

df(γ(ti))(ei)− df(xi)(ei) ≤

≤‖ df(xi)− τ−1
xiγ(ti)

df(γ(ti)) ‖
and the definition of δ, we find

ti ‖ Xi ‖≥ δ[(µ− 1)df(xi)(ei)].

Then (11) is continued by

(12) f(xi)− f(xi+1) ≥ −ti ‖ Xi ‖ εµdf(xi)(ei) ≥ σ(−df(xi)(ei)),

where
σ(t) = µεtδ((1− µ)t), t ≥ 0.

Since σ is a forcing function, the proof is finished for µ > 0.
Let µ = 0. We replace the steplength ti with t̄i given by Theorem 3.3 for µ =

1
2 . Denoting x̄i+1 = γ(t̄i) it follows f(x̄i+1) ≥ f(xi+1). Further the estimation
(12) takes place with x̄i+1 instead of xi+1 for σ(t) = 1

2εtδ
(

t
2

)
and hence

f(xi)− f(xi+1) ≥ f(xi)− f(x̄i+1) ≥ σ(−df(xi)(ei)).

Since this last idea is very important, it will be punctuated like
Comparison principle. Suppose that two different steplength algorithms I, II
produce from xi the points xI

i+1 and xII
i+1. If

f(xi)− f
(
xI

i+1

) ≥ σ(| df(xi)(ei) |), ei = Xi/ ‖ Xi ‖,

where σ is a forcing function, then it is enough to prove

f
(
xI

i+1

) ≥ f
(
xII

i+1

)

in order to obtain

f(xi)− f
(
xII

i+1

) ≥ f(xi)− f
(
xI

i+1

) ≥ σ(| df(xi)(ei) |).

Remark. The preceding theorem permits only relaxation factors satisfying ri ≤
1. Results for ri > 1, require stronger conditions on f .
3.4.Theorem. Let D ⊂ M be open and f : D → R be of class C2. Suppose that
D10 is compact and

a ‖ Xx ‖2≤ Hessf(Xx, Xx) ≤ b ‖ Xx ‖2, ∀x ∈ D10, ∀Xx ∈ TxM,

where b ≥ a > 0. If µ ∈ [0, 1), ε ∈ (0, 1) and the sequence (1) is fixed
by df(xi)(Xi) ≤ 0, Xi 6= 0, with ti in Theorem 3.3 and 1 ≤ ri ≤ r̄ ==

1 +
(

a
b

) 1
2 · (1 − ε), then the sequence {xi} is included in D10, and the propo-

sitions (4), (7) are satisfied.
Proof. We use the complete induction. Suppose xi ∈ D10 and df(xi)(Xi) < 0.
Already we know that ti is well–defined and γ([0, ti]) ⊂ D10, f(xi+1) =
f(γ(ti)) < f(xi). By the continuity of f , there exists t ∈ (ti, r̄ti] such that
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γ([0, t]) ⊂ D10. Denoting yi+1 = γ(β), β ∈ (0, εti), τ = τxixi+1 , the Taylor for-
mula with the rest in the integral form implies

f(xi)− f(γ(t)) = (f(xi)− f(yi+1)) + (f(yi+1)− f(xi+1))−

−(f(γ(t))− f(xi+1)) = f(xi)− f(yi+1) + (β − ti)τ−1df(xi+1)(Xi)+

+(β − ti)2
∫ 1

0

(1− s)τ−1Hessf(γxi+1(s(ti − β)Xi))(Xi, Xi)ds−

−(t− ti)τ−1df(xi+1)(Xi)−

−(ti − t)2
∫ 1

0

(1− s)τ−1Hessf(γxi+1(s(ti − t)Xi))(Xi, Xi)ds ≥

≥ f(xi)− f(yi+1) + (β − t)τ−1df(xi+1)(Xi)+

+
1
2
(ti − β)2a ‖ Xi ‖2 −1

2
(ti − t)2b ‖ Xi ‖2≥

≥ f(xi)− f(yi+1) + (ε− 1)tiτ−1df(xi+1)(Xi)+

+
1
2
t2i ‖ Xi ‖2 [(1− ε)2a− a

b
(1− ε)2b] =

= f(xi)− f(yi+1) + (ε− 1)µtidf(xi)(Xi) > 0.

Consequently γ([0, r̄ti]) ⊂ D10 and particularly xi+1 ∈ D‘0.
We remark that

(µ− 1)df(xi)(Xi) = τ−1df(xi+1)(Xi)− df(xi)(Xi) =

= ti

∫ 1

0

τ−1Hess(γ(stXi))(Xi, Xi)ds,

and hence

tib ‖ Xi ‖≥ (µ− 1)df(xi)(ei) ≥ ati ‖ Xi ‖≥ ad(xi, xi+1).

If µ > 0, we find

f(xi)− f(xi+1) ≥ (1− ε)µti ‖ Xi ‖| df(xi)(ei) ≥

≥ (1− ε)µ[(1− µ)/b][df(xi)(ei)]2

and hence
lim

i→∞
df(xi)(ei) = 0, lim

i→∞
d(xi, xi+1) = 0.

For µ = 0, we can apply the comparison principle.
3.5. Theorem. Let D ⊂ M be an open set, f : D → R be of class C1, and D10

be compact. If the sequence

xi+1 = expxi
(tiXi), i = 1, 2, ...

is fixed by Xi 6= 0 and
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(13) f(xi+1) = min
t
{f(γ(t)) | γ(t) = expxi

(tXi) ∈ D10},

then {xi} is included in D10, {xi} is strongly downward and the proposition (4)
is satisfied.
Proof. If xi ∈ D10, then the connected part D10 of the set Di : f(x) ≤ f(xi),
is compact and there exist ti satisfying (13). Hence xi+1 ∈ Di0. Suppose
df(xi)(Xi) ≤ 0, and x̄i+1 is obtained as in Theorem 3.3 with µ = 0. Then
f(xi+1) ≤ f(x̄i+1) and hence

f(xi)− f(xi+1) ≥ f(xi)− f(x̄i+1) ≥ σ(−df(xi)(ei)), ei = Xi/ ‖ Xi ‖,
with σ(t) = 1

2εtδ
(

t
2

)
. Consequently lim

i→∞
df(xi)(ei) = 0.

As σ([0, ti]) ⊂ Di0, we have

f(xi) ≥ f(γ(t)) ≥ f(xi+1), ∀t ∈ [0, 1],

i.e., the sequence {xi} is strongly downward.

4 Influence of the sectional curvature on descent
algorithms

Denote by K the sectional curvature of the Riemannian manifold (M, g). If
K > 0, then the adjacent geodesic starting at the some point tend to approx-
imate one each other and consequently we have a liberality in selecting the
decrease vector Xi and the steplength ti along the corresponding geodesic, with-
out distancing ourselves essentially from the critical point x∗ of the function
f . If K < 0, then the behaviour of geodesics is contrary, namely, the adjacent
geodesics of a given geodesic, all starting at a given point, will go away exponen-
tially from it; consequently, on manifolds with negative curvature we are forced
to select carefully the decrease vector Xi and the steplength ti(either enough
small number or enough great number for each i).
4.1. Topogonov Theorem. Let (M, g) be a complete Riemannian mani-
fold with K ≥ H, and γ1, γ2 be segments of normal geodesics in M with
γ1(0) = γ2(0). Let

∑
(H) be a 2–dimensional manifold with constant curva-

ture H. Suppose that γ1 is a minimal geodesic and L(γ2) ≤ π√
H

, when H > 0. If
γ̄1, γ̄2 are two geodesics in

∑
(H) satisfying γ̄1(0) = γ̄2(0), L(γi) = L(γ̄i) = Li,

ang(γ̄′1(0), γ̄′2(0)) = ang (γ′1(0), γ′2(0)), then

d(γ1(L1), γ2(L2)) ≤ d(γ̄1(L1), γ̄2(L2)).

4.2. Corollary. Let (M, g) be a complete Riemannian manifold with K ≥ 0. If
γ1(t) = expx(tX1), γ2(t) = expx(tX2) are normal geodesics (i.e.,
‖ X1 ‖=‖ X2 ‖= 1), then

d(γ1(t1), γ2(t2)) ≤‖ t2X2 − t1X1 ‖ .

4.3. Lemma. If f : M → R is a C1 convex function, {xi} is generated by (1),
with Xi = −gradf(xi) and K ≥ 0, then



120 C.Udrişte

d2(xi+1, y) ≤ d2(xi, y) + t2i + 2
ti

‖ Xi ‖ (f(y)− f(xi)), ∀y ∈ M.

Proof. Let γ1(t) = expxi
(tX1) be a minimal geodesic, with

γ1(0) = xi, γ1(t1) = y, t1 = d(xi, y)

and let

γ2(t) = expxi
(tX2), df(X2) < 0, X2 = Xi = − grad f(xi),

γ2(0) = xi, γ2(ti) = xi+1, ti = t2.

From Corollary 4.2 and the convexity of C1 functions, i.e.,

f(xi) + t1df(X1)(xi) ≤ f(γ1(t1)),

it follows

d2(xi+1, y) ≤
∥∥∥∥ti

Xi

‖ Xi ‖ − t1X1

∥∥∥∥
2

= t21 + t2i − 2
ti

‖ Xi ‖g(Xi, t1X1) ≤

≤ d2(xi, y) + t2i +
2ti

‖ df(xi) ‖ (f(y)− f(xi)).

In the hypotheses of Lemma 4.3, we have

d2(xi+1, z) ≤ d2(x, z) + t2i , ∀i ∈ N, ∀z ∈ O,

where O = {z ∈ M | f(z) ≤ infif(xi)}.
4.4. Theorem. Same hypotheses as in Lemma 4.3. Let O∗ be the set of all
minimizers of f. If x∗ ∈ O∗ and xi 6∈ O∗, then d(xi+1, x∗) < d(xi, x∗) for all ti
satisfying

0 < ti <
2

‖ df(xi) ‖ (f(xi)− f(x∗)).

Proof. Lemma 4.3 with y = x∗ gives

d2(xi+1, x∗) ≤ d2(xi, x∗) + t2i + 2
ti

‖ df(xi) ‖ (f(x∗)− f(xi)).

Since xi 6= x∗, the inequality 0 < ti < 2
‖df(xi)‖ (f(xi) − f(x∗)) implies t2i +

2 ti

‖df(xi)‖ (f(x∗)− f(xi)) < 0.

In the hypotheses of Lemma 4.3, we can select a suitable steplength ti for
which the sequence (1) converges to x∗ and the sequence f(xi) has an infimum
[3], [8].
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5 Central path of a convex program like minus
gradient line

Let (M, g) be a complete n–dimensional Riemannian manifold. We consider the
convex programming problem

max f0(x) subject to fα(x) ≤ 0, α = 1, ..., m; x ∈ M.

The interior of the feasible region F : fα(x) ≤ 0 is denoted by F 0, and we
accept the following assumptions: 1) F 0 is nonemtpy; 2) F 0 is bounded; 3) the
functions −f0, fα are C2 convex functions on F 0.

The convexity of the functions fα implies the total convexity of the set F 0.
The logarithmic barrier function associated to the preceding convex program

is defined by

φ(x, µ) = −f0(x)
µ

−
m∑

α=1

ln(−fα(x)),

where µ is the barrier strictly positive parameter. The first and the second
covariant derivatives of φ with respect to the Riemannian connection induced
by the metric g are

dφ(x, µ) = −df0(x)
µ

+
m∑

α=1

dfα(x)
−fα(x)

,

H(x, µ) = Hessφ(x, µ) = −Hessf0(x)
µ

+
m∑

α=1

[
Hessfα(x)
−fα(x)

+
dfα(x)⊗ dfα(x)

fα(x)2

]
.

The Hessian H is positive semidefinite since φ is a convex function.
Suppose H is positive definite, and we use alternatively the Riemannian

manifolds (M, g) and (M,H). The function φ is strictly convex on F 0 in (M, g),
and takes infinite values on the boundary ∂F . Consequently φ achieves the
minimal value at a unique critical point x = x(µ), called the µ–center, solution
of the system

−df0(x)
µ

+
m∑

α=1

dfα(x)
−fα(x)

= 0.

5.1.Definition. The set of all µ–centers, when µ runs from ∞ to 0, is called the
primal central path.
5.2. Theorem. On the Riemannian manifold (M, g), the primal central path is
a reparametrized integral curve of the vector field

−H−1df0 = −gradf0.

Proof. Deriving with respect to µ in the system which describes x(µ), via the
covariant derivative induced by the Riemannian metric g, we obtain

µ2H(x, µ)
(

dx

dµ

)
+ df0(x) = 0 or

dx

dµ
= −µ−2H−1 ◦ df0.
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Consequently, the central path is a minus gradient line for the Riemannian
metric µ2H. By the substitution µ = − 1

u , u ∈ (−∞, 0) we find dx
du = −H−1 ◦f0.

In other words, the central path is a reparametrized minus gradient line for
the Riemannian metric H.
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