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Abstract. In the present paper, we show the existence of warped prod-
uct semi-slant submanifolds in a Kenmotsu manifold by an example. We
locally characterize the warped product semi-slant submanfiolds in a Ken-
motsu manifold. Such submanifold does not exist in Kähler, Sasakian and
cosymplectic manifolds. Further, we search some geometric properties to
construct an inequality for second fundamental form of the immersion of
warped product submanifolds in Kenmotsu space forms. The equality case
is also discussed.
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1 Introduction

The idea of slant submanifolds of an almost Hermitian manifold was given by Chen
[9] as a generalization of holomorphic and totally real submanifolds. Later on, N.
Papaghiuc [21] introduced another class of submanifolds, called semi-slant submani-
folds which generalize CR as well as slant submanifolds. On the other hand, warped
products appeared in differential geometry, generalizing the class of Riemannian prod-
uct manifolds [4]. The study of warped products are applied in general relativity to
model the standard space time, specially in the neighborhood of massive stars and
black holes. Let N1 and N2 be two Riemannian manifolds with Riemannian metrics g1
and g2, respectively, and f > 0 be a differential function on N1. Consider the product
manifoldN1×N2 with its projections π1 : N1×N2 → N1 and π2 : N1×N2 → N2. Then
their warped product N1 ×f N2 is the Riemannian manifold (N1 × N2, g) equipped
with the Riemannian structure such that

∥X∥2 = ∥π1⋆(X)∥2 + (f ◦ π1)2∥π2⋆(X)∥2,

for any tangent vector X on M , where ⋆ is the symbol for the tangent maps. It was
proved in [4] that for a warped product manifold M = N1 ×f N2, we have

(1.1) ∇XZ = ∇ZX = (X ln f)Z,
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for any X ∈ TN1 and Z ∈ TN2, where ∇ denotes the Levi-Civita connection on M .
A warped product manifold N1×f N2 is said to be trivial if the warping function f is
constant. For a survey on warped products as Riemannian submanifolds we refer to
([2], [10], [12], [17]). Recently, Sahin [22] introduced the notion of semi-slant warped
product in complex geometry.

On the other hand, Kenmotsu [15] studied a class of almost contact metric man-
ifolds, so called Kenmotsu manifolds. He showed that Kenmotsu manifold is locally
a warped product I ×f N of an interval I and a Kähler manifold N with warping
function f(t) = set; where s is a nonzero constant. Kenmotsu manifolds were studied
by many authors such as De [13], Binh, Tamassy, De and Tarafdar [3], Ozgur ([19],
[20]). Since Kenmotsu manifolds are themselves locally warped product spaces, it
is interesting to study geometry of warped product submanifolds in the context of
Kenmotsu manifolds. Several authors has studied warped product submanifolds of
Kenmotsu manifolds (see for example, [1], [2], [18], [24] and the references therein).
Non-existence of warped product semi-slant submanifolds in Kähler, cosymplectic and
Sasakian manifolds was shown in [22], [16] and [23], respectively. On the contrary,
there do exist warped product semi-slant submanifolds in Kenmotsu manifolds as
given in Example 3.1.

Chen used Codazzi equation to construct a relation between the second funda-
mental form and the warping function for a CR-warped product in complex space
forms [10]. Later on, it was extended for Sasakian and Kenmotsu space forms in [17]
and [1], respectively. We use Gauss equation to establish an inequality in terms of
the second fundamental form and the scalar curvatures.

This paper is organized as: In section 2, we enlist the basic definitions and equa-
tions which we need for the next sections. In Section 3, warped product semi-slant
submanifolds in Kenmotsu manifolds are characterized. We also prove the existence
of warped product semi-slant subamnifolds in Kenmotsu manifolds by an example. In
the last section, we discuss some geometric properties, specially NT -minimality and
using this result, we derive a general inequality. Finally, we establish an inequality for
a more general type of warped product submanifolds NT ×f N in a Kenmotsu space
form.

2 Preliminaries

A (2m + 1)−dimensional C∞ manifold M̄ is said to have an almost contact metric
structure if there exist on M̄ a tensor field ϕ of type (1, 1), a vector field ξ, a 1−form
η and a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1,

η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

where X and Y are vector fields on M̄ [5].
A Riemannian manifold M̄ with an almost contact metric structure (ϕ, ξ, η, g) is

called a Kenmotsu manifold if [15]

(2.1) (∇̄Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

for all X,Y ∈ TM̄ . From (2.1) we also have ∇̄Xξ = X − η(X)ξ, for all X ∈ TM̄ .



88 Abdulqader Mustafa, Avik De and Siraj Uddin

LetM be a Riemannian manifold isometrically immersed in a Kenmotsu manifold
M̄ . Then, Gauss and Weingarten formulae are respectively given by [8]

∇̄XY = ∇XY + h(X,Y ),

and
∇̄XN = −ANX +∇⊥

XN,

for all vector fields X,Y tangent to M , where ∇ is the induced Riemannian connec-
tion on M , N is a vector field normal to M , h is the second fundamental form of
M , ∇⊥ is the normal connection in the normal bundle T⊥M and AN is the shape
operator corresponding to N . Clearly, g(ANX,Y ) = g(h(X,Y ), N), where g denotes
the Riemannian metric on M̄ as well as the metric induced on M .

The equation of Gauss for the submanifold M is given by [8]

R(X,Y, Z,W ) = R̄(X,Y, Z,W ) + g(h(X,W ), h(Y, Z))

−g(h(X,Z), h(Y,W )),(2.2)

for all X,Y, Z,W ∈ TM , where R̄ and R are the curvature tensors of M̄ and M
respectively.

For any X ∈ TM and N ∈ T⊥M , we write ϕX = PX + FX, and ϕN = tN +
fN , where PX, tN are the tangential components and FX, fN are the normal
components of ϕX and ϕN , respectively. If PX = 0 (resp. FX = 0), then M is
called an invariant (resp. anti-invariant) submanifold.

The covariant derivatives of the tensor fields P and F are defined as

(∇XP )Y = ∇XPY − P∇XY,(2.3)

(∇XF )Y = ∇⊥
XFY − F∇XY .(2.4)

Also, we have

(∇XP )Y = AFYX + th(X,Y )− g(X,PY )ξ − η(Y )PX,(2.5)

(∇XF )Y = fh(X,Y )− h(X,PY )− η(Y )FX.(2.6)

We recall that the Riemannian curvature tensor of a Kenmotsu space form M̄(c)
of constant ϕ-sectional curvature c is given by [15]

R̄(X,Y, Z,W ) =
c− 3

4
{g(X,W )g(Y, Z)− g(X,Z)g(Y,W )}

− c+ 1

4
{η(Z)[η(Y )g(X,W )− η(X)g(Y,W )]

+ η(W )[g(Y, Z)η(X)− g(X,Z)η(Y )]− g(ϕX,W )g(ϕY,Z)

+ g(ϕX,Z)g(ϕY,W ) + 2g(ϕX, Y )g(ϕZ,W )},(2.7)

for any vector fields X,Y, Z,W tangent to M̄ .
For an orthonormal frame {e1, · · · , en} of TM , the mean curvature vector H is

given by

H =
1

n

n∑
i=1

h(ei, ei),
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where n = dimM . The submanifold M is said to be totally geodesic in M̄ if h = 0,
and minimal if H = 0. If h(X,Y ) = g(X,Y )H for all X,Y ∈ TM , then M is called
totally umbilical. It is easy to check that a totally umbilical submanifold in Kenmotsu
manifold is always totally geodesic. For differentiable function ψ on M , the gradient
∇⃗ψ and the Laplacian ∆ψ of ψ are defined respectively by

g(∇⃗ψ,X) = Xψ,

and

∆ψ =
n∑

i=1

((∇eiei)ψ − eieiψ),

for any vector field X tangent to M . The scalar curvature τ of M is defined by

τ(TM) =
∑

1≤i<j≤n

K(ei ∧ ej),

where K(ei ∧ ej) is the sectional curvature of the plane section spanned by ei and ej .
Let Πk be a k-plane section of TM and {e1, · · · , ek} any orthonormal frame of Πk.
The scalar curvature τ(Πk) of Πk is given by

τ(Πk) =
∑

1≤i<j≤k

K(ei ∧ ej).

Let M be a submanifold of an almost contact metric manifold M̄ . For each non
zero vector X tangent to M at x, such that X is not proportional to ξ, if the angle
θ(X) (0 ≤ θ(X) ≤ π/2) between ϕX and TxM is constant for all X ∈ TxM − ⟨ξ⟩
and x ∈ M , then M is said to be a slant submanifold [6]. Obviously, if θ = 0, M
is invariant and if θ = π/2, M is an anti-invariant submanifold. A slant submanifold
is said to be proper slant if it is neither invariant nor anti-invariant. For ξ ∈ T⊥M ,
following the same procedure as in [6] we can easily verify the following:

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold M̄ such
that ξ ∈ T⊥M . Then M is slant if and only if there exists a constant δ ∈ [0, 1] such
that P 2X = −δX. Furthermore, if θ is slant angle, then δ = cos2 θ. Also, for all
X,Y ∈ TM ,

(2.8) g(PX,PY ) = cos2 θg(X,Y ),

(2.9) g(FX,FY ) = sin2 θg(X,Y ),

Definition 2.1. [7] A submanifold M of an almost contact manifold M̄ is said to be
a proper semi-slant submanifold if there exist two distributions D and Dθ such that

(i) TM = D ⊕Dθ ⊕ ⟨ξ⟩
(ii) D is invariant i.e., ϕD ⊆ TM .
(iii) Dθ is slant with slant angle 0 ̸= θ ̸= π

2 .

A semi-slant submanifold M is said to be mixed geodesic if h(X,Z) = 0, for any
X ∈ D and Z ∈ Dθ.

If νx is the maximal invariant subspace of the normal space T⊥
x M , x ∈ M , then

in the case of semi-slant submanifold, ν : x → νx, x ∈ M , forms a subbundle of the
normal bundle T⊥M . Then, T⊥M can be decomposed as T⊥M = FDθ ⊕ ν.
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3 Characterization for warped products

In this section, we prove a local characterization for warped product semi-slant sub-
manifolds M = NT ×f Nθ, with ξ tangent to NT , in a Kenmotsu manifold. We first
prove the following:

Lemma 3.1. Let M = NT ×f Nθ be a warped product semi-slant submanifold in a
Kenmotsu manifold M̄ such that ξ is tangent to NT , where NT and Nθ are invariant
and slant submanifolds of M̄ , respectively. Then

(i) Xlnf − η(X) = 0,

(ii) AFZX = th(X,Z) = 0,

for all X ∈ TNT and Z ∈ TNθ.

Proof. From (2.3) and (2.5) we have

AFZX + th(X,Z) = (∇XP )Z = (Xlnf)PZ − (Xlnf)PZ = 0,

which implies

(3.1) AFZX + th(X,Z) = 0,

and thus for all Z,W ∈ TNθ,

(3.2) g(h(X,W ), FZ) = g(h(X,Z), FW ).

Again, from (2.3) and (2.5) we get

th(X,Z)− η(X)PZ = (∇ZP )X = (PXlnf)Z − (Xlnf)PZ,

which implies

(3.3) {Xlnf − η(X)}g(PZ,W ) = (PXlnf)g(Z,W ) + g(h(X,Z), FW ).

Interchanging Z and W in the above equation we obtain

(3.4) {Xlnf − η(X)}g(PW,Z) = (PXlnf)g(Z,W ) + g(h(X,W ), FZ).

From (3.3) and (3.4) we conclude that Xlnf − η(X) = 0, and it directly implies
PXlnf = 0, for all X ∈ TNT . Therefore, from (3.1) and (3.3) we obtain the lemma.
�

Theorem 3.2. Let M be a proper semi-slant submanifold of Kenmotsu manifold M̄ .
Then M is locally a warped product of invariant and slant submanifolds if and only if

(3.5) AFZX = 0,

for any X ∈ D ⊕ ⟨ξ⟩ and any Z ∈ Dθ, where D ⊕ ⟨ξ⟩ and Dθ are invariant and slant
distributions of M , respectively.
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Proof. LetM be a semi-slant submanifold of a Kenmotsu manifold M̄ such that (3.5)
holds. Let Y be a vector field in D⊕ ⟨ξ⟩, Z ∈ Dθ and V ∈ TM . Then, from (2.9) we
have

sin2 θg(∇V Y, Z) = g(F∇V Y, FZ)

= −g((∇V F )Y, FZ)

= g(fh(V, Y )− h(V, PY )− η(Y )FV, FZ)

= −g(AfFZY +AFZPY, V ) + sin2 θη(Y )g(V, Z).(3.6)

Now, −Z = ϕ2Z = P 2Z + tFZ + fFZ + FPZ, implies that fFZ = −FPZ. Hence,
from (3.5) and (3.6) we conclude g(∇V Y,Z) = η(Y )g(V,Z), since sin2 θ ̸= 0.

So, if V ∈ D⊕ ⟨ξ⟩, we obtain ∇V Y ⊥ Dθ, which implies D⊕ ⟨ξ⟩ is integrable and
each of its leaves NT is totally geodesic in M .

Next, if we consider V ∈ Dθ, then g(∇V Z, Y ) = −g(V, Z)g(ξ, Y ), for all Y ∈ D⊕
⟨ξ⟩. Hence, Dθ is integrable. Let us considerNθ to be a leaf ofDθ and h

θ be the second
fundamental form of the immersion of Nθ in M . Then we have g(hθ(V, Z), Y ) =
g(∇V Z, Y ) = −g(V, Z)g(ξ, Y ), for all Y ∈ D ⊕ ⟨ξ⟩. Hence Nθ is totally umbilical

in M with mean curvature vector ξ. Moreover, if
⊥
∇ is the normal connection of the

immersion Nθ in M , then g(
⊥
∇Zξ, Y ) = g(∇Zξ, Y ) = g(Z − η(Z)ξ, Y ) = 0, implying

the mean curvature vector of Nθ is parallel. Thus the leaves of D ⊕ ⟨ξ⟩ are totally
geodesic and the leaves ofDθ are totally umbilical with parallel mean curvature vector.
Hence by a result of Hiepko [14], M is a warped product of the type M = NT ×f Nθ,
ξ tangent to NT , for some function f defined on NT .

The converse part is obvious from Lemma 3.1. �

Now we provide an example of warped product semi-slant submanifold of a Ken-
motsu manifold.

Example 3.1. Let M̄1, M̄2 be two Kähler manifolds. Then M̄1 × M̄2 is a Kähler
manifold. Let Nθ ⊂ M̄2 be a slant submanifold. Note that, M̄ = R ×f (M̄1 × M̄2),
f = et is a Kenmotsu manifold.

Then NT = R ×f M̄1 ⊂ M̄ is an invariant submanifold of M̄ and Nθ ⊂ M̄ is a
slant submanifold of M̄ .

Therefore, NT ×f Nθ = R ×f (M̄1 × Nθ) ⊂ M̄ is a warped product semi-slant
submanifold of the Kenmotsu manifold M̄ .

4 Inequality for warped products NT ×f N

In this section, we consider an n-dimensional warped product submanifold M =
NT ×f N of a (2m+ 1)-dimensional Kenmotsu manifold M̄ such that ξ is tangent to
NT , where NT is an invariant submanifold of M̄ and N is a Riemannian submanifold
of M̄ . Let the dimension of NT be n1 and the dimension of N be n2, then n = n1+n2.
We consider the orthonormal frame {e1, · · · , e2m+1} of TM̄ where e1, · · · , es, es+1 =
ϕe1, · · · , en1−1 = ϕes, en1 = ξ are tangent to NT , en1+1, · · · , en = en1+n2 are tangent
to N , en+1 = Fen1+1, · · · , en+n2 = Fen.

In the beginning of this section, we prove the following lemma for later use.
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Lemma 4.1. Let M = NT ×f N , with ξ tangent to NT be a warped product sub-
manifold in a Kenmotsu manifold M̄ , such that NT is invariant in M̄ , and N is a
Riemannian submanifold of M̄ . Then, for any X,Y ∈ TNT , Z ∈ TN and the normal
vector ζ ∈ ν, the following holds:

(i) g(h(X,Y ), FZ) = 0,
(ii) g(h(X,X), ζ) = −g(h(ϕX, ϕX), ζ).

Proof. We have,

g(h(X,Y ), FZ) = g(∇̄XY, FZ)

= g(∇̄XY, ϕZ)− g(∇̄XY, PZ).(4.1)

Since, g(Y, PZ) = g(Y, ϕZ) = −g(ϕY,Z) = 0, for Y ∈ TNT , Z ∈ TN , from the above
equation (4.1) and the Kenmotsu structure equation (2.1) we obtain

g(h(X,Y ), FZ) = g(ϕY, ∇̄XZ) + g(Y, ∇̄XPZ)

= g(ϕY,∇XZ) + g(Y,∇XPZ).(4.2)

Hence, using (1.1) in the above equation, we get the required result (i). To prove the
second part, we make use of (1.1) and (2) to obtain

∇XϕX + h(ϕX,X)− ϕ∇XX − ϕh(X,X) = −g(X,X)ξ + η(X)X.

Taking the inner product with ϕζ, we deduce

(4.3) g(h(ϕX,X), ϕζ) = g(h(X,X), ζ).

Interchanging X with ϕX in (4.3) and using (1.1), we obtain

g(h(ϕX, ϕX), ζ) = −g(h(X,ϕX), ϕζ) + η(X)g(h(ξ, ϕX), ϕζ).

Since for a Kenmotsu manifold h(ξ, ϕX) = 0, hence we get

(4.4) (h(ϕX, ϕX), ζ) = −g(h(X,ϕX), ϕζ).

Thus the result follows from (4.3) and (4.4). �

Definition 4.1. [11]An immersion φ : N1×fN2 → M̄ is called Ni-totally geodesic if
the partial second fundamental form hi vanishes identically. It is called Ni-minimal
if the partial mean curvature vector Hi vanishes, for i = 1 or 2.

Theorem 4.2. In a Kenmotsu manifold M̄ , every isometric immersion φ : M =
NT ×f N −→ M̄ , with ξ tangent to NT , is NT -minimal, where NT is an invariant
submanifold of M̄ , and N is a Riemannian submanifold of M̄ .

Proof. By definition, the squared norm of the mean curvature vector H restricted to
NT is given by

||H1||2 =
1

n21

2m+1∑
r=n+1

(hr11 + · · ·+ hrn1n1
)2.
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Using the frames of TNT and TN and the fact that for a Kenmotsu manifold h(ξ, ξ) =
0, the above definition can be expanded as

(4.5) ||H1||2 =
1

n21

2m+1∑
r=n+1

(hr11 + · · ·+ hrss + hrs+1s+1 + · · ·+ hr2s2s)
2,

where
hrij = g(h(ei, ej), er), 1 ≤ i, j ≤ n, n+ 1 ≤ r ≤ 2m+ 1.

Using Lemma 4.1, we obtain ||H1||2 = 0. �

From the above proof, we obtain the following result.

Corollary 4.3. Let φ be an isometric immersion φ : M = NT ×f N −→ M̄ , with ξ
tangent to NT , such that NT is an invariant submanifold of M̄ , and N is a Rieman-
nian submanifold of M̄ . Then, the squared mean curvature of M is

||H||2 =
1

n2

2m+1∑
r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)
2.

Now, we construct a general inequality for the warped product submanifold M =
NT ×f N in a Kenmotsu manifold M̄ by applying Gauss equation and the preceding
theory.

Theorem 4.4. Let φ : M = NT ×f N −→ M̄ , be an isometric immersion of an
n-dimensional warped product submanifold M into a (2m+1)-dimensional Kenmotsu
manifold M̄ such that NT is an n1-dimensional invariant submanifold tangent to ξ
and N is an n2-dimensional Riemannian submanifold of M̄ . Then, we have

(i) 1
2 ||h||

2 ≥ τ̄(TM)− τ̄(TNT )− τ̄(TN)− n2∆f
f .

(ii) If the equality in (i) holds, then NT and N are totally geodesic and totally
umbilical submanifolds in M̄ , respectively.

Proof. Putting X = W = ei, Y = Z = ej in the Gauss equation (2.2) and taking
summation over 1 ≤ i, j ≤ n(i ̸= j), we obtain

(4.6) 2τ(TM) = 2τ̄(TM) + n2||H||2 − ||h||2.

In view of (2.8), we get

(4.7) ||h||2 = −2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej)− 2τ(TNT )− 2τ(TN) + 2τ̄(TM) + n2||H||2.

Again, using Gauss equation (2.2), we calculate

(4.8) τ(TNT ) = τ̄(TNT ) +
2m+1∑
r=n+1

∑
1≤i<k≤n1

(hriih
r
kk − (hrik)

2),

and

(4.9) τ(TN) = τ̄(TN) +
2m+1∑
r=n+1

∑
n1+1≤j<t≤n

(hrjjh
r
tt − (hrjt)

2).
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In view of (4.8) and (4.9), the equation (4.7) transforms into

||h||2 = −2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej)− 2τ̄(TNT )− 2τ̄(TN) + 2τ̄(TM)

−2
2m+1∑
r=n+1

∑
1≤i<k≤n1

(hriih
r
kk − (hrik)

2) + n2||H||2

− 2

2m+1∑
r=n+1

∑
n1+1≤j<t≤n

(hrjjh
r
tt − (hrjt)

2),

which is equivalent to the following form

||h||2 = −2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej)− 2τ̄(TNT )− 2τ̄(TN) + 2τ̄(TM)

−
2m+1∑
r=n+1

∑
1≤i ̸=k≤n1

(hriih
r
kk − (hrik)

2) + n2||H||2

−
2m+1∑
r=n+1

∑
n1+1≤j ̸=t≤n

(hrjjh
r
tt − (hrjt)

2).(4.10)

Since φ is an NT -minimal immersion, we have

2m+1∑
r=n+1

∑
1≤i̸=k≤n1

(hriih
r
kk − (hrik)

2) = −
2m+1∑
r=n+1

n1∑
i,k=1

(hrik)
2.

Hence, (4.10) takes the following form:

||h||2=−2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej)− 2τ̄(TNT )− 2τ̄(TN) + 2τ̄(TM)

+
2m+1∑
r=n+1

∑
1≤i ̸=k≤n1

(hrik)
2 + n2||H||2

−n2∥H∥2 +
2m+1∑
r=n+1

∑
n1+1≤j ̸=t≤n

(hrjt)
2.(4.11)

Next, we use the following formula for general warped products [4]

(4.12)

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej) =
n2∆f

f
.

Then from (4.11) and (4.12), the inequality (i) follows immediately.
Now, if the equality holds in (i), then we must have h(X,Y ) = 0, for both X,Y ∈

TNT , and for both X,Y ∈ TN . Hence, the immersion NT → M is totally geodesic
and the immersion N →M is totally umbilical. �
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For a warped product semi-slant submanifold M = NT ×f Nθ −→ M̄ , we have

∇⃗lnf = ξ by Lemma 3.1. Further, since ∆f
f = ∆lnf − g(∇⃗lnf, ∇⃗lnf), we calculate

n1∑
i=1

n∑
j=n1+1

K(ei ∧ ej) = n2∆lnf − n2 g(∇⃗lnf, ∇⃗lnf)

= −n2
n1∑
i=1

g(∇eiξ, ei)− n2g(ξ, ξ)

= −n1n2.(4.13)

Hence we obtain the following:

Corollary 4.5. Let φ : M = NT ×f Nθ −→ M̄ , be an isometric immersion of an
n-dimensional warped product semi-slant submanifold M into a (2m+1)-dimensional
Kenmotsu manifold M̄ such that NT is an n1-dimensional invariant submanifold tan-
gent to ξ and Nθ is an n2-dimensional proper slant submanifold of M̄ . Then, we have

(i) 1
2 ||h||

2 ≥ τ̄(TM)− τ̄(TNT )− τ̄(TN) + n1n2.
(ii) If the equality in (i) holds, then NT and N are totally geodesic and totally

umbilical submanifolds in M̄ , respectively.

Now, we can derive the following relation for a Kenmotsu space form:

Theorem 4.6. Let φ : M = NT ×f N −→ M̄(c) be an isometric immersion from a
warped product submanifold M into a Kenmotsu space form M̄(c) with constant ϕ-
sectional curvature c where NT is an n1-dimensional invariant submanifold tangent
to ξ and N is an n2-dimensional Riemannian submanifold of M̄(c). Then, we have

(i) ||h||2 ≥ (c−3)
2 n1n2 +

(c+1)
2 n2 − 2n2∆f

f ,

(ii) If the equality in (i) holds, then NT and N are totally geodesic and totally
umbilical submanifolds in M̄ , respectively.

Proof. Putting X = W = ei, Y = Z = ej in the curvature equation (2.7) for Ken-
motsu space form, we obtain

2τ̄(TNT ) =
(c− 3)

4

∑
1≤i ̸=j≤n1

{g(ei, ei)g(ej , ej)− g(ei, ej)g(ej , ei)}

− (c+ 1)

4
{η(en1

)
∑

1≤i≤n1

[η(en1
)g(ei, ei)− η(ei)g(en1

, ei)]

+ η(en1
)

∑
1≤j≤n1

[g(ej , ej)η(en1
)− g(en1

, ej)η(ej)]

−
∑

1≤i ̸=j≤n1

g(ϕei, ei)g(ϕej , ej) + 3
∑

1≤i ̸=j≤n1

g(ϕei, ej)g(ϕej , ei)}

=
(c− 3)

4
n1(n1 − 1) +

(c+ 1)

4
(n1 − 1).(4.14)

Similarly, we obtain

(4.15) 2τ̄(TN) =
(c− 3)

4
n2(n2 − 1) + 3

(c+ 1)

4

∑
n1+1≤α ̸=β≤n

g(ϕeα, eβ)
2.
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and

(4.16) 2τ̄(TM) =
(c− 3)

4
n(n− 1) +

(c+ 1)

4

(n− 1) + 3
∑

n1+1≤α ̸=β≤n

g(ϕeα, eβ)
2

 .
Therefore, using Theorem 4.4, we obtain the required results. �

We have the following consequence of the above theorem.

Corollary 4.7. Let φ : M = NT ×f Nθ −→ M̄(c) be an isometric immersion from
a warped product submanifold M into a Kenmotsu space form M̄(c) with constant ϕ-
sectional curvature c where NT is an n1-dimensional invariant submanifold tangent
to ξ and Nθ is an n2-dimensional proper slant submanifold of M̄(c). Then, we have

(i) ||h||2 ≥ (c+1)
2 n2(n1 + 1),

(ii) If the equality in (i) holds, then NT and N are totally geodesic and totally
umbilical submanifolds in M̄ , respectively.
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