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Abstract. The compactness theorem of Galloway is a stronger version of
the Bonnet-Myers theorem allowing the Ricci scalar to take also negative
values from a set of real numbers which is bounded below. In this paper
we allow any negative value for the Ricci scalar, and adding a condition
on its average, we find again that the manifold is compact and provide
an upper bound of its diameter. Also, with no condition on Ricci scalar
itself, but with a condition on its average, we find again the compactness
of the manifold. All considerations are done in the category of Finsler
manifolds.
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1 Introduction

The classical results from the Riemannian geometry as Hopf-Rinow theorem, Bonnet-
Myers Theorem, Synge Theorem and others have been extended to Finsler manifolds
due to the efforts of many geometers. These results have been summarized in the
well-known textbook by D. Bao, S.S. Chern and Z. Shen [4], in a coherent and clear
theory of geodesics on such manifolds. The quoted text-book was followed by a lot
of papers aiming to extend to the Finslerian framework and other important results
from Riemannian geometry. See [2], [3], [5], [8], [9], [10] etc.

Recall that the Bonnet-Myers Theorem states that if the Ricci scalar Ric of a
Finsler manifold M satisfies Ric ≥ (n − 1)a > 0 then every geodesic with length
π/

√
a or longer must contain conjugate points, the diameter of M is at most π/

√
a

and in fact M is compact.
The later two assertions are direct consequences of the former when it is written

as follows: Let σ(t), 0 ≤ t ≤ L be a unit speed geodesic with velocity field T and

Ric(t) := Ric(σ(t),T ). If Ric(t) ≥ (n − 1)a > 0 for every t ∈ [0, L] and if L ≥ π√
a
,

then σ must contain conjugate points to σ(0).
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In [2] we extended to Finsler manifolds the compactness theorem of Galloway (see
[7]). The essential step was to prove that if

Ric(t) ≥ (n− 1)a+
df

dt

for some function f with |f(t)| ≤ Λ

π
, Λ ≥ 0 and if

L ≥ Λ

a(n− 1)
+

√
π2

a
+

Λ2

a2(n− 1)2
,

then σ must contain conjugate points to σ(0). Then when the Finsler manifold
M is forward(backward) geodesically complete, it follows that it is compact with

diam(M) ≤ Λ

a(n− 1)
+

√
π2

a
+

Λ2

a2(n− 1)2
.

In this paper we prove

Theorem 1.1. Let (M,F ) be a forward geodesically complete connected Finsler man-
ifold of dimension n. Suppose that

a) The Ricci scalar Ric has the following uniform positive upper bound

Ric < (n− 1)a

for a constant a > 0,

b) For every geodesic σ parameterized by the arc-length t ∈ [0, L] we have∫ L

0

Ric(t)dt ≥ a(n− 1)L+ εΛ,

for ε = ±1 and a constant Λ > 0.

Then:

(1) Along every geodesic the distance between any two successive conjugate points

is at most −ε Λ
a(n−1) +

√
π2

a + Λ2

a2(n−1)2 .

(2) The diameter of M is at most −ε Λ
a(n−1) +

√
π2

a + Λ2

a2(n−1)2 .

(3) M is compact.

Theorem 1.2. Let (M,F ) be a forward geodesically complete connected Finsler man-
ifold of dimension n. If there exists a point p ∈ M such that along each geodesic
σ : [0,∞) → M emanating from p and parameterized by arc length t the condition∫ ∞

0

Ric(t)dt = ∞,

holds, then M is compact.
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The above theorems have possible applications in a Finslerian theory of Relativity.
Their Riemannian versions were already used in standard theory of Relativity. Thus
in his Thesis submitted at the University of California, San Diego, T. Frankel has used
Myers Theorem to obtain a bound on the size of a fluid mass in stationary space-time
universe. Later, in [7] G. Galloway made use of Frankel’s method to obtain a closure
theorem which has as its conclusion the “finiteness” of the “spatial part” of a space-
time obeying certain cosmological assumptions for cosmological models more general
than the classical Friedmann models. He continued to discuss the implications of his
theorem in Physics in a joint paper with T. Frankel, [6]. In 2013, G. Galloway and E.
Woolgar [8] extended some of Galloway’s results to the so-called Bakry-Émery Ricci
tensor.

The structure of the paper is as follows. In Section 2 we recall, mainly following
the text-book [4], the results from Finsler geometry to be used. The next two sections
are devoted to the proofs of the Theorem 1.1 and Theorem 1.2, respectively.

2 Preliminaries

We shall use the notations, the terminology and results from [4] without comments.

Finsler manifolds. Index form.

Let (M,F ) be a Finsler manifold. The Finsler structure F is a function F :
TM → [0,∞), (x, y) → F (x, y) which is C∞ on the slit tangent bundle TM\0,

positively homogeneous of degree 1 in y, and whose Hessian matrix gij :=
1

2

∂2F 2

∂yi∂yi

is positive-definite at every point of TM\0.
The Chern connection of local coefficients Γi

jk(x, y) is a linear connection in the
pull-back bundle π∗TM over TM\0, where π : TM → M is the natural projection.
It is only h-metrical and it has two curvatures Rj

i
kh, Pj

i
kh.

Let y be a non zero element of TxM . Then, gy(x) := g(x, y) = gij(x, y)dx
i ⊗ dxj

is an inner product, which is used to measure lengths and angles in TxM .

For a vector field W (t) := W i(t)
∂

∂xi
along a curve σ, whose tangent vector field

is T , the expression,

(2.1) DTW =

[
dW i

dt
+W jT k(Γi

jk(σ, T ))

]
∂

∂xi

is called the covariant derivative with reference vector T .
One says that W is parallel along σ if DTW = 0, with reference vector T . One

defines parallel transport (with reference vector T ) on the standard way. The parallel
transport preserves gT -lengths and angles.

The constant speed geodesics are solutions of DTT = 0, with reference vector T .
Let σ(t) = expx(tT ), x ∈ M, 0 ≤ t ≤ L be a geodesic of constant speed 1. One

abbreviates g(σ,T ) by gT .
For two continuous and piecewise C∞ vector fields V and W along σ the index

form is

(2.2) I(V,W ) =

∫ L

0

[gT (DTV,DTW )− gT (R(V, T )T,W )]dt.
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Here DT is calculated with reference vector T of length 1 and

R(V, T )T := (T jRi
jkhT

h)V k ∂

∂xi

is evaluated at the point (σ, T ).
The index form is bilinear and symmetric.
Let T ∧ V be the flag (a plane in TxM) spanned by the flagpole T and by a unit

vector V which is orthogonal to the flagpole. The flag curvature in the point (σ(t), T )
and for the said flag is then given by

(2.3) K(T ∧ V ) = gT (R(V, T )T, V ) = V i(T jRjikhT
h)V k =: V iRikV

k.

If W is a continuous piecewise C∞ vector field such that it is gT−orthogonal to σ we
have

(2.2’) I(W,W ) =

∫ L

0

[gT (DTW,DTW )−K(T ∧W )gT (W,W )]dt,

where K(T ∧W ) is the flag curvature of the flag with flagpole T and transverse edge
W .

Let 0 =: t0 < t1 < ... < th := L be a partition of [0, L] such that V and W are
both C∞ on each closed subinterval [ts−1, ts]. Using integration by parts, one can
rewrite the index form as

(2.4)
I(V,W ) = gT (DTV,W )

∣∣∣∣∣
L

0

−
∑h−1

s=1 gT (DTV,W )|t
+
s

t−s
−
∫ L

0
gT (DTDTV+

+R(V, T )T,W )dt.

The second term in the right side of the above equality disappears if V is of the
class C1 along σ. And the first term vanishes if W (0) = W (r) = 0. A vector field J
along σ is said to be a Jacobi field if it satisfies the equation

(2.5) DTDTJ +R(J, T )T = 0.

One says that q = σ(L) is conjugate with p = σ(0) along σ if there exists a nonzero
Jacobi field J along σ which vanishes at p and q, i.e. J(0) = J(L) = 0.

We recall from [4] p.182 the following result

Proposition 2.1. Let σ(t), 0 ≤ t ≤ r be a geodesic in a Finsler manifold (M,F ).
Suppose no point σ(t), 0 < t ≤ r is conjugate to p := σ(0). Let W be any piecewise
C∞ vector field along σ and let J denote the unique Jacobi field along σ that has the
same boundary values as W . That is, J(0) = W (0) and J(r) = W (r). Then

(2.6) I(W,W ) ≥ I(J, J).

Equality holds if and only if W is actually a Jacobi field, in which case the said J
coincides with W .

As an application of this result we obtain the following corollary
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Corollary 2.2. Let σ(t), 0 ≤ t ≤ r be a geodesic in a Finsler manifold (M,F ).
Let W be a piecewise C∞ vector field along σ, which is nowhere 0 on (0, r), satisfies
W (0) = W (r) = 0 and I(W,W ) ≤ 0 on [0, r]. Then, the geodesic σ(t) must contain
conjugate points with σ(0).

Proof. We proceed by contradiction. Suppose that no point σ(t), 0 < t ≤ r is conju-
gate to σ(0). By the definition of the conjugate points, the unique Jacobi field which
vanishes at the endpoints of σ(t), 0 ≤ t ≤ r is identically zero. The vector field W
satisfies W (0) = W (r) = 0 and it can not be a Jacobi field since is nowhere zero
on (0, r). By the Proposition 2.1 we have 0 = I(J, J) < I(W,W ) ≤ 0 which is a
contradiction. Thus σ(r) or an σ(t) for t < r should be conjugate with σ(0). �

Ricci scalar

Let {l = y
F (x,y) , eα, α = 1, . . . , n − 1} be a gy-orthonormal basis for the fiber of

π∗TM over the point (x, y) ∈ TM\0. With respect to it one has K(x,y)(l ∧ eα) =
gy(R(eα, l)l, eα) = Rαα.

The Ricci scalar denoted by Ric(x,y) is

Ric(x,y) :=

n−1∑
α=1

K(x, y, l ∧ eα) =

n−1∑
α=1

Rαα.

If (M,F ) has constant flag curvature c, then Ric(x,y) = (n− 1)c.

3 Proof of Theorem 1.1

It suffices to prove that if along every unit speed geodesic σ(t), 0 ≤ t ≤ L the Ricci
scalar satisfies the hypothesis a) and b) of the Theorem 1.1 and if

L ≥ −ε
Λ

a(n− 1)
+

√
π2

a
+

Λ2

a2(n− 1)2
,

then σ must contain conjugate points to σ(0).
Using the parallel transport with reference vector T we construct a moving frame

{ei(t)} along σ such that
(i) Each ei is parallel along σ, that is DT ei = 0,
(ii) {ei(t)} is a gT -orthonormal frame,
(iii) en = T .
Define Wα(t) = f(t)eα(t) for some smooth function f , α = 1, 2, ..., n− 1.
Fix a positive r ≥ L and consider the index from I for σ(t), 0 ≤ t ≤ r. By (2.2’)

we have

I(Wα,Wα) =

∫ r

0

[g(DTWα, DTWα)− g(Wα,Wα)K(T,Wα)]dt,

where K(T ∧Wα) is the flag curvature evaluated at the point (σ(t), T ) ∈ TM\0.
We have DTWα = dfα

dt eα and since the flag curvature does not depend on vectors
spanning the flag, the equality K(T,Wα) = K(T, eα) holds.
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Using these facts, I(Wα,Wα) takes the form

(3.1) I(Wα,Wα) =

∫ r

0

[(
df

dt

)2

− f2K(T, eα)

]
dt.

We take f(t) = sin
πt

r
and we get

(3.2) I(Wα,Wα) =
π2

2r
−
∫ r

0

sin2
πt

r
K(T, eα)dt.

Summing over α one obtains

(3.3)
∑
α

I(Wα,Wα) = (n− 1)
π2

2r
−
∫ r

0

Ric(t)dt+

∫ r

0

Ric(t) cos2
πt

r
dt.

By the assumptions a) and b) one gets

(3.4)
∑
α

I(Wα,Wα) ≤ (n− 1)
π2

2r
− (n− 1)ar − εΛ + (n− 1)a

∫ r

0

cos2
πt

r
dt.

Computing the indicated integral one yields

(3.5)
∑
α

I(Wα,Wα) ≤
(n− 1)

2r
(π2 − 2ε

Λ

n− 1
r − ar2)

and we have
∑

α I(Wα,Wα) ≤ 0 if r ≥ L = −ε Λ
a(n−1) +

√
π2

a + Λ2

a2(n−1)2 . It follows

that some I(Wα,Wα) must be non-positive and let denote that Wα by W .
This W satisfies the hypothesis of the Corollary 2.2. Applying it the desired

conclusion follows.
In order to prove the statements 2)-3) of the Theorem 1.1, the same arguments as

those from [4], p. 196-198, are used. We outline them in the following.
Since M is forward geodesically complete, by the Hopf-Rinow theorem any pair

of points in M can be joined by a minimal geodesic. It is known that the cut point
of σ(0) appears before or coincide with the first conjugate point to σ(0). As we have
just proved, such a geodesic must have the length less than or equal with −ε Λ

a(n−1) +√
π2

a + Λ2

a2(n−1)2 . Thus diam (M) ≤ −ε Λ
a(n−1) +

√
π2

a + Λ2

a2(n−1)2 , hence 2) holds. By

the statement 2) the manifold M is forwardly bounded from the above. As it is always
closed in its own topology, using again the Hopf-Rinow theorem one concludes that
M is compact, that is, the statement 3) holds. Thus the Theorem 1.1 is completely
proved. �

Remark 3.1. If in the main theorem (Theorem 1.2) from [10] the function max is
explicitly written, two statements are obtained. The one covers the first three items
of the Bonnet-Myers Theorem. The other one is similar with the case ε = −1 from
Theorem 1.1 except that the bound of the diameter of M is π√

a
+ Λ

a(n−1) . This is

clearly less than our bound in the case ε = −1. But our bound in the case ε = +1
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is strictly lesser then the bound π√
a
+ Λ

a(n−1) . The latter was found in [10] by using

a Ricatti inequation satisfied by the trace of the Hessian of the Finslerian distance
function on M . Thus we have three different bounds for the diameter of M , all
depending on Λ. If Λ increases to +∞ two of them monotonically increase also to
+∞ and one monotonically decreases to zero. For Λ = 0 all three reduce to the bound
given by the Bonnet-Myers Theorem.

4 Proof of Theorem 1.2

Before going on we notice that in the proof of Theorem 1.1 a main fact was that
for given a point p ∈ M every unit speed geodesic emanating from p contains a first
point conjugates to p. Then using the Morse index form a evaluation of length of the
geodesic from p to this first conjugate point was performed. Based on it a bound of
the diameter of M was found and from here the conclusion that M is compact. But
the same conclusion can be derived directly from the just mentioned main fact. In
the Riemannian case the remark is due to W. Ambrose [1]. In our framework it can
be formulated as follows.

Lemma 4.1. Let (M,F ) be a forward geodesically complete connected Finsler man-
ifold of dimension n. If there exists a point p ∈ M such that every geodesic ray
emanating from p has a point conjugate to p along that ray, then M is compact.

Proof. Let Sp be the indicatrix in the point p ∈ M . For each p ∈ M and y ∈ Sp

we consider the unit speed geodesic from p with the initial velocity y. Each such
geodesic is defined for any t ∈ [0,∞). Let cy be the value of t in the first conjugate
point of p and iy the value of t in the cut point of p. By the hypothesis, the set of cy
is forwardly bounded from above (if cy = ∞ one says that p has no conjugate points
along that geodesic) and since one has iy ≤ cy it follows that supy∈Sp

iy ≤ supy∈Sp
cy

and because the diameter of M is less or equal with supy∈Sp
iy it comes out that M

is forwardly bounded from the above. Since M is closed in its own topology, by the
Hopf-Rinow theorem it is compact. �

Thus in order to prove the Theorem 1.2 it suffices to prove that there exists a
point p ∈ such that every unit speed geodesic σ : [0,∞) → M issuing from p has a
point conjugate to p along σ : [0,∞) → M . The Morse index lemma will be used
again. We repeat the construction leading to the formula (3.1) from Section 3 and
replace the function f by the following one:

f(t) =


t, t ∈ [0, 1)
1, t ∈ [a, b]
r − t

r − b
, t ∈ [b, r]

Then summing over α, instead of (3.3) one gets

(4.1)

∑
α I(Wα,Wα) =

∫ 1

0
((n− 1)− t2Ric(t))dt−

∫ b

1
Ric(t)dt+

+
∫ r

b

(
n− 1

(r − b)2
− (r − t)2

(r − b)2
Ric(t)

)
dt.
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In the right hand of this equality, the first integral is finite, by the hypothesis of
the Theorem 1.2, the second integral in (4.1) diverges to −∞ and by an integration
by parts it comes out that the third integral tends to 0 when r tends to ∞.

Thus
∑

α I(Wα,Wα) ≤ 0 and hence there exists a W as in Corollary 2.1 such
that I(W,W ) ≤ 0. The Corollary 2.1 implies that p has a conjugate point along the
geodesic σ : [0,∞) → M . �
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