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Abstract. It is known that Seiberg-Witten monopole equations are im-
portant for the investigations of smooth 4−manifolds. In this study we
write the similar equations for 6−dimensional manifold M with structure
group SU(3). For Dirac equation we use the associated Spinc−structure
to the SU(3)−structure. For the curvature equation we make use of the
decomposition Λ2(M) = Λ2

1(M) ⊕ Λ2
6(M) ⊕ Λ2

8(M) [1]. We consider the
part Λ2

1(M)⊕ Λ2
6(M) as the bundle of self-dual 2−forms. Lastly, we give

a global solution for these equations.
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1 Introduction

The Seiberg-Witten monopole equations, introduced by Witten in [12], play an impor-
tant role in the topology of smooth 4−manifolds. Seiberg-Witten equations in dimen-
sion greater than four have been investigated by some authors [2, 3, 4, 7, 8]. In this pa-
per, we are mainly interested in 6−dimensional manifolds with SU(3)−structure and
write down Seiberg-Witten-like equations on these manifolds. The Seiberg-Witten
equations consist of two equations. The first one is Dirac equation which is the
harmonicity condition of spinor fields. The second one is called the curvature equa-
tion which couples the self-dual part of the curvature form with spinor field. In
order to write down the Dirac equation the manifold must have a Spinc−structure.
6−dimensional differentiable manifolds with SU(3)−structure have Spinc−structure.
Therefore, one can write down Dirac equation on such manifolds. On the other hand,
to write down curvature equation one needs the self-duality notion of a 2−form. In
4−dimension self-duality of a 2−form is well known and this concept is being used
in both mathematics and physics widely. We define self-duality of a 2−form on
a 6−manifold with SU(3)−structure which is consistent with the other self-duality
concepts in literature in 6−dimension [3, 10]. Thus, we achieve to write the curvature
equation by means of this self-duality concept.
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The plan of this article is the following. In Section 2, we give some basic facts
about 6−dimensional SU(3)−manifolds and define self-dual 2−forms with complex
values by using SU(3)−action on the space of 2−forms on such manifolds. In Sec-
tion 3, we discuss Spinc−structures and Dirac operator with respect to any given
Spinc−structure. In Section 4, we write down Seiberg-Witten-like equations on
6−dimensional SU(3)−manifolds. In Section 5, we state these equations on 6− di-
mensional Euclidean space. Finally, we give a global solution to these equations.

2 Self-duality on 6−dimensional SU(3)−manifolds

The space of 2−forms splits into self-dual and anti-self-dual parts by using Hodge *
operator on 4−dimensional Riemannian manifolds. Any self dual 2−form η satisfies
∗η = η. But this definition does not generalize to higher dimensional manifolds. Self-
duality of a 2−form has been studied on some specific dimensions [2, 3, 4]. In this
section, we define self-duality of 2−forms on 6−dimensional SU(3)−manifolds.

A 6−dimensional Riemannian manifoldM is called a SU(3)−manifold if its struc-
ture group reduces to the Lie group SU(3). A SU(3)−structure on M is determined
by the choice of a non-degenerate 2−form ω and a normalized positive 3−form Ω. In
fact such a pair (ω,Ω) induces an almost complex structure J on TM , a J−compatible

hermitian metric g and a complex (3, 0)−form ε of constant norm 2
3
2 . Then, J can

be defined on the space of 1−forms T ∗(M) in a natural manner and extended to its
complexification T ∗(M)⊗R C, denoted also by J . It satisfies the equation J2 = −Id.
The complexification T ∗(M)⊗R C splits into the ±i−subspaces of J as follows:

Λ1(M) = T ∗(M)⊗R C = Λ1,0(M)⊕ Λ0,1(M)

where
Λ1,0(M) = {Z ∈ T ∗(M6)⊗R C|JZ = iZ}
Λ0,1(M) = {Z ∈ T ∗(M6)⊗R C|JZ = −iZ}.

The space Λp,q(M) is defined by

Λp,q(M) = span{u ∧ v|u ∈ Λp(Λ1,0(M)), v ∈ Λq(Λ0,1(M))}.

Then, we have

Λr(M) =
∑

p+q=r

Λp,q(M).

Note that the endomorphism J of TM also induces an endomorphism on Λr(M),
again denoted by J . This satisfies the identity J2 = (−1)rI. In particular, J acts on
a 2−form η by

(Jη)(X,Y ) = η(JX, JY ).

Hence, we have the following:

Λ1,1(M) = {η ∈ Λ2(M) : Jη = η}
Λ2,0(M)⊕ Λ0,2(M) = {η ∈ Λ2(M) : Jη = −η}

If we consider the natural action of SU(3) on space of 2−forms Λ2(M), then Λ2(M)
decomposes as follows:

(2.1) Λ2(M) = Λ2
1(M)⊕ Λ2

6(M)⊕ Λ2
8(M)
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where
Λ2
1(M) = {rω : r ∈ R}

Λ2
6(M) = {η ∈ Λ2(M) : J(η) = −η}

Λ2
8(M) = {η ∈ Λ2(M) : J(η) = η and η ∧ ω ∧ ω = 0}.

(See [1] for more details.)
Any 2−form with complex values can be written as follows:

(2.2) Λ2(M)⊗R C = Λ2,0(M)⊕ Λ0,2(M)⊕ Λ1,1(M).

By complexifying the space of 2−forms we get the following:

(2.3) Λ2(M)⊗R C = Cω ⊕ (Λ2
6(M)⊗R C)⊕ (Λ2

8(M)⊗R C).

Using (2.2) and (2.3) we deduce that

(2.4) Λ2,0(M)⊕ Λ0,2(M)⊕ Λ1,1(M) = Cω ⊕ (Λ2
6(M)⊗R C)⊕ (Λ2

8(M)⊗R C).

A direct calculation yields

(2.5)
Λ1,1(M) = Cω ⊕ (Λ2

8(M)⊗R C)
Λ2,0(M)⊕ Λ0,2(M) = Λ2

6(M)⊗R C.

Definition 2.1. If F ∈ Λ2(M,C), then we may decompose the 2−form F as

F = F 2,0 + F 0,2 + (F 0)1,1 + Cω

where F 2,0 is of type (2, 0) and (F 0)1,1 is of type (1, 1) but with zero ω−trace. Then,
the self-dual part of F is F 2,0+F 0,2+Cω, denoted by F+ and the anti-self-dual part
of F is (F 0)1,1, denoted by F−.

Some authors make use of the decomposition of F in Definition (2.1) to define
anti-self-dual instantons [11].

From (2.5) the space of self-dual 2−forms is given by

Λ2
+ = Cω ⊕ (Λ2

6(M)⊗R C)

and the space of anti-self-dual 2−forms is given by

Λ2
− = Λ2

8(M)⊗R C.

3 Spinc−structure and Dirac operator

In this section, we recall the main definitions concerning Spinc−structure and the
associated Dirac operator.

Let M be an n−dimensional differentiable manifold with structure group SO(n).
Then, there is an open covering {Uα}α∈A of M and transition functions
gαβ : Uα ∩ Uβ → SO(n) for TM . If there exists another collection of transition
functions

g̃αβ : Uα ∩ Uβ → Spinc(n)
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such that following diagram commutes

Spinc(n)

Ad 2:1

��
Uα ∩ Uβ

g̃αβ

99rrrrrrrrrr
gαβ

// SO(n)

that is, Ad ◦ g̃αβ = gαβ and the cocycle condition g̃αβ g̃βγ = g̃αγ on Uα ∩ Uβ ∩ Uγ

is satisfied then M is called a Spinc manifold. Then one can construct a principal
Spinc(n)−bundle PSpinc(n) on M and a 2− 1 bundle map Λ : PSpinc(n) → PSO(n).

Let (PSpinc(n),Λ) be a Spinc−structure onM . We can construct a new associated
complex vector bundle

S = PSpinc(n) ×κ ∆n

where κ : Spinc(n) → Aut(∆n) is the spinor representation of Spinc(n). This complex
vector bundle is called spinor bundle for a given Spinc−structure on M and sections
of S are called spinor fields. The principal bundle PSpinc(n) and the spinor bundle S
have been studied extensively [6, 9]. The spinor bundle S splits into a direct sum

S = S+ ⊕ S− where S± = PSpinc(n) ×κ± ∆±
n .

The exact sequence 1 → Spin(n) → Spinc(n)
l→ S1 → 1 implies Spinc(n)/Spin(n) =

S1. Then, we deduce that PS1 = PSpinc(n)/Spin(n) is an S
1−bundle over M . Hence,

L := PSpinc(n) ×l C = PS1 ×U(1) C

is a determinant line bundle.
Now, fix a connection A : TPS1 → iR in the principal U(1)−bundle PS1 . By using

this connection and the Levi-Civita connection ∇ on TM we can obtain a connection

∇A : Γ(S) → Γ(T ∗M ⊗ S)

on S, which is called spinor covariant derivative operator and it satisfies

∇A
V (W · ψ) =W · ∇A

V ψ + (∇VW ) · ψ

where V,W ∈ Γ(TM) and ψ is a spinor, a section of S. At this point we can define
the associated Dirac operator DA : Γ(S) → Γ(S) locally by

DA(ψ) =
n∑

i=1

κ(ei)∇A
ei(ψ).

where {e1, e2, . . . , en} is any positively oriented local orthonormal frame of TM . The
Dirac operator decomposes into the sum of two operators D±

A : Γ(S±) → Γ(S∓).

4 Seiberg-Witten-like equations on 6−dimensional
SU(3)−manifolds

Let M be 6−dimensional SU(3)−manifold. Fix a Spinc−structure and a connection
A in the principal U(1)−bundle PS1 associated to the Spinc−structure. The spinor
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bundle S on a Spinc manifold M is defined by associated complex vector bundle

S = PSpinc(6) ×κ ∆6

where κ : Spinc(6) → Aut(∆6) is the spinor representation of Spinc(6). This vector
bundle splits into the sum of two subbundles S+ and S−. Namely, S = S+ ⊕ S−,
S± = PSpinc(6) ×κ± ∆±

6 For a spinor ψ ∈ S+ we define an imaginary valued 2−form
σ(ψ) by the formula

(4.1) σ(ψ)(X,Y ) =< X · Y · ψ,ψ > + < X,Y > |ψ|2

where X,Y ∈ Γ(TM).

Definition 4.1. LetM be 6−dimensional SU(3)−manifold. Fix a Spinc(6)−structure
and a connection A in the U(1)−principal bundle PS1 associated with the Spinc struc-
ture. For ψ ∈ Γ(S+) Seiberg-Witten-like equations are defined by

(4.2)
DAψ = 0

F+
A = −1

4
σ(ψ)+.

where F+
A is the self-dual part of the curvature FA and σ(ψ)+ is the self-dual part of

the 2−form σ(ψ) corresponding to the spinor ψ ∈ Γ(S+).

5 Local interpretations of Seiberg-Witten-like equa-
tions

Dirac equation which is the first one of Seiberg-Witten equations can be written on
any 2n−dimensional Spinc manifold. Firstly consider a Spinc−structure κ on R6

which is coming from the representation of the complex Clifford algebra Cl6. The
Spinc connection ∇A on R6 is given by

∇A
j Ψ =

∂Ψ

∂xj
+AjΨ,

where Aj : R6−→iR and Ψ : R6 −→ C4 are smooth maps. Then, the associated
connection on the line bundle L = R6 × C is the connection 1−form

A =
6∑

i=1

Aidxi ∈ Ω1
(
R6, iR

)
and its curvature 2-form is given by

FA = dA =
∑
i<j

Fijdxi ∧ dxj ∈ Ω2
(
R6, iR

)
,

where Fij =
∂Aj

∂xi
− ∂Ai

∂xj
for i, j = 1, . . . , 6 . Now we can write the Dirac operator DA

on R6 with respect to a given Spinc−structure and Spinc−connection ∇A. The Dirac
equation can be expressed as

DAΨ = 0.
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Firstly we consider the following decompositions of 2−forms on R6. We denote
by {e1, e2, e3, e4, e5, e6} the standard basis of R6 and by {e1, e2, e3, e4, e5, e6} the dual
one. Fix on R6 the standard symplectic form

ω0 = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

and the standard complex volume form

φ0 = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6)

and the complex structure J0 by

J0(e1) = e2 J0(e3) = e4 J0(e5) = e6.

Any 2−form F =
∑

i<j Fije
i ∧ ej ∈ Ω2(R6,C) can be decomposed into three part,

we call the one belonging to Cω0⊕(Λ2
6(R6)⊗C) the self-dual part of F and we denote

it by F+. We call Cω0⊕ (Λ2
6(R6)⊗C) as the space of self-dual 2−forms the following

2−forms constitute a basis for this space

f1 = e1 ∧ e3 − e2 ∧ e4
f2 = e1 ∧ e4 + e2 ∧ e3
f3 = e1 ∧ e5 − e2 ∧ e6
f4 = e1 ∧ e6 + e2 ∧ e5
f5 = e3 ∧ e5 − e4 ∧ e6
f6 = e3 ∧ e6 + e4 ∧ e5
f7 = ω0 = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6.

Let FA be the curvature form of the iR-valued connection 1-form A and F+
A be

its self-dual part. Then,

F+
A =

7∑
i=1

< FA, fi >
fi

|fi|2
= 1

2 [(F13 − F24)f1 + (F14 + F23)f2 + (F15 − F26)f3

+(F16 + F25)f4 + (F35 − F46)f5 + (F36 + F45)f6]
+1

3 (F12 + F34 + F56)f7

Now we calculate the 2−form σ(ψ)+. Let {e1, e2, e3, e4, e5, e6} be the standard basis
of R6 and {e1, e2, e3, e4, e5, e6} the dual one. Then σ(ψ) can be written in the following
way:

σ(ψ) =
∑
i<j

< eiejψ,ψ > ei ∧ ej

The projection onto the subspace Λ+
2 is given by

σ(ψ)+ =

7∑
i=1

< σ(ψ), fi >
fi

|fi|2
.

If σ(ψ)+ is calculated explicitly, then we obtain the following identity:

σ(ψ)+ = i(ψ4ψ3 + ψ3ψ4)f1 + (−ψ4ψ3 + ψ3ψ4)f2 + (ψ4ψ1 − ψ1ψ4)f3 + i(ψ4ψ1 + ψ1ψ4)f4
+i(ψ4ψ2 + ψ2ψ4)f5 + (−ψ4ψ2 + ψ2ψ4)f6 +

i
3 (|ψ1|2 + |ψ2|2 + |ψ3|2 − 3|ψ4|2)f7
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Hence, the curvature form can be defined as follows:

(5.1) F+
A = −1

4
σ(ψ)+.

From the definition of σ(ψ) we obtain the following theorem:

Theorem 5.1. |σ(ψ)|2 = 3|ψ|4

Corollary 5.2. The curvature equation can be written in the following form:

< FA, fi >= −1
2 < ψψ∗, ρ+(fi) >

< FA, fi >= −1
4 < ψ, ρ+(fi)ψ >

for i = 1, 2, . . . , 7.

Seiberg-Witten equations on R6 are studied with a different self-duality concept
in [5].

6 A global solution to Seiberg-Witten-like equations
on 6−dimensional SU(3)−manifolds

The 2−form ω acts as an endomorphism in the bundle S. The endomorphism ω :
S → S has the eigenvalues 3i, i, −i and −3i and the corresponding eigensubspaces
have dimension 1, 3, 3 and 1, respectively. The spinor bundle S splits into

S = S(3i)⊕ S(i)⊕ S(−i)⊕ S(−3i)

where S(k) = {ψ ∈ S : ωψ = kψ}, (k = 3i, i,−i,−3i) are the corresponding
subspaces. The subbundles S+ and S− are given by

S+ = S(i)⊕ S(−3i), S− = S(−i)⊕ S(3i),

respectively. Moreover, we have the following isomorphisms:

(6.1) S+ ∼= Λ0,0 ⊕ Λ0,2, S− ∼= Λ0,1 ⊕ Λ0,3.

Now we give a global solution of the Seiberg-Witten-like equations. For this, let
(M6, J, g) be a Kahler manifold. Denote by Φ0 the spinor S(−3i) ∼= Λ0,0 correspond-
ing to the constant function 1. Hence, we have

(6.2) Φ0 =


0
0
0
1


in chosen coordinates. Here Φ0 ∈ S(−3i) i.e., σ(Φ0) = −iω. The line bundle
L = Λ2(TM) of the canonical Spinc structure has the Levi-Civita connection A0.
Then, the corresponding Dirac operator DA0 : Γ(S+) → Γ(S−) is given by

DA0 =
√
2(∂0 ⊕ ∂

∗
2).
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Now suppose that the scalar curvature s of the Kahler manifold (M6, J, g) is negative

and constant. Let Φ1 =

√
−2s

3
Φ0. Then, Φ1 is a spinor in S(−3i) and

(6.3) DA0Φ1 = 0

(6.4) σ(Φ1) = −i|Φ1|2ω = −i(−2s

3
)ω =

2

3
isω.

Moreover, the curvature FA0 in the line bundle L = Λ2(TM) is given by

(6.5) FA0 = iρ

where ρ is the Ricci form, ρ(X,Y ) = g(X, JRicY ) and Ric : TM → TM is the Ricci
tensor. In local coordinates the almost complex structure J is given as follows:

J =


0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 .

Since J ◦Ric = Ric ◦ J , we obtain the reduced form of the Ric in the following way:

Ric =


R11 0 R13 R14 R15 R16

0 R11 −R14 −R13 −R16 R15

R13 −R14 R33 0 R35 R36

R14 −R13 0 R33 −R36 R35

R15 −R16 R35 −R36 R55 0
R16 R15 R36 R35 0 R55

 .

Then, the Ricci form ρ can be written as follows:
ρ = −R11e

1∧e2−R33e
3∧e4−R55e

5∧e6+R13(e
1∧e4−e2∧e3)−R15(e

1∧e6−e2∧e5)+
R14(e

1∧e3+e2∧e4)+R16(e
1∧e5+e2∧e6)+R36(e

3∧e5+e4∧e6)−R35(e
3∧e6−e4∧e5).

Moreover, the 2−forms
e1 ∧ e4 − e2 ∧ e3
e1 ∧ e6 − e2 ∧ e5
e1 ∧ e3 + e2 ∧ e4
e1 ∧ e5 + e2 ∧ e6
e3 ∧ e5 + e4 ∧ e6
e3 ∧ e6 − e4 ∧ e5

are anti-self-dual 2−forms. The projection of ρ onto the subbundle Λ2
+ is given by

the formula

ρ+ =< ρ, ω >
ω

|ω|2
= −R11 +R44 +R66

3
ω = −s

6
ω.

By using (6.5) and (6.4) we obtain

(6.6) F+
A0

= iρ+ = − isω
6

= −1

4
σ(Φ1).
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Since σ(Φ1) is a self-dual 2−form we have σ(Φ1)
+ = σ(Φ1). From the identities (6.3)

and (6.6), the pairs (A0,Φ1) = (A0,

√
−2s

3
Φ0) is a solution of Seiberg-Witten-like

equations in (4.2).
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