
On the products of certain toric folded

symplectic manifolds

J. H. Kim

Abstract. An origami manifold is a smooth, compact, and connected
manifold equipped with a closed 2-form which is symplectic except on a
hypersurface such that the restriction of the 2-form to the hypersurface
has the maximal rank and such that the kernel fibrates with oriented
circle fibers over a compact symplectic base. On the other hand, a toric
origami manifold is an origami manifold with an effective Hamiltonian
torus Tn-action, where n = 1

2 dimM . The product of two toric origami
manifolds may not be a toric origami manifold with the product action
and product form. The aim of this paper is to show that, whenever the
product of two orientable toric origami manifolds with the product action
admits an orientable toric origami form, either one of two toric origami
manifolds actually should be a toric symplectic manifold. In addition, we
also discuss some interesting consequences of our main results.
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1 Introduction

An origami manifold M of dimension 2n is a smooth, compact, and connected man-
ifold equipped with a closed 2-form ω which is symplectic except on a hypersurface
Z, where the restriction ω|Z of ω to Z satisfies (ω|Z)n−1 ̸= 0 and, in addition, Z
is a principal S1-bundle over a compact symplectic base with oriented circles fibers
generated by the kernel of ω|Z . These manifolds form a special class of folded sym-
plectic manifolds, where we simply require the condition that the closed 2-form ω be
symplectic on M\Z and that (ω|Z)n−1 ̸= 0. In this case, the codimension one em-
bedded submanifold Z which is closed in M is called a folding hypersurface or simply
fold, and admits a null foliation which consists of the line fields generated by the
one-dimensional kernel of ω|Z (see [2], [3], [8], and [9] for more details).

For an oriented origami manifold M with fold Z, there is an operation, called the
unfolding, which can convert M into a (disconnected) compact symplectic manifold
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M0 by taking the closures of the connected components of M\Z and identifying
boundary points on the same leaf of the null foliation. In fact, M0 has been obtained
by the so-called symplectic cutting techniques. The resulting manifold M0 is called
the symplectic cut space, while each of its connected components is called a symplectic
cut piece.

Let B0 be the codimension two submanifold of M0 which has been obtained by
identifying the boundary points in the same circle leaf of the foliation. Then it is easy
to see that B0 is a symplectic submanifold of M0 and that, in fact, we can recover
the original origami manifold M by taking the fiber connected sum (or called a radial
blow-up in [3], Section 2.3) of the connected components of M0 along the symplectic
submanifold B0. However, this fiber connected sum operation does not preserve the
symplectic condition of M0, since the normal Euler classes of the normal bundles of
B0 are not opposite (refer to [6], Section 1 for more details).

A toric symplectic manifold of dimension 2n is a compact connected symplectic
manifold with an effective Hamiltonian torus Tn-action. It is well known by a result
of Delzant in [5] that there is a one-to-one correspondence between compact toric
symplectic manifolds up to equivariant symplectomorphisms and Delzant polytopes
up to affine equivalence. As in toric symplectic manifolds, a toric origami manifold of
dimension 2n is an origami manifold with an effective Hamiltonian torus Tn-action.
In this case, the circle fibers of the fold are orbits of a circle subgroup of the torus
Tn, and the moment map µ induces moment maps µi on each connected component
of a toric symplectic manifold M0. The image of each µi is a Delzant polytope (or
moment polytope).

An origami template is a collection of Delzant polytopes with certain folding data
consisting of the template graph G and a pair (ΨV ,ΨE) of maps ΨV : V → P and
ΨE : E → E satisfying certain compatibility conditions, where V (resp. E) denotes
the vertex (resp. edge) set and P (resp. E) denotes the set of all Delzant polytopes
(resp. the set of the facets of elements of P) (see [8], Definition 1.6 for more details).
The polytopes in the image of ΨV are the Delzant polytopes of the symplectic cut
pieces, and for each edge e ∈ E the set ΨE(e) is a facet, called the fold facet, of the
polytopes corresponding to the end vertices of e.

Analogously to toric symplectic manifolds, it has been shown in [3] that toric
origami manifolds correspond bijectively to origami templates. An toric origami tem-
plate is called acyclic if the graph G is acyclic, i.e., G is a tree. Note that for an
acyclic toric origami template its corresponding toric origami manifold always has
an isolated fixed point. It will be also important to recall that every compact toric
symplectic manifold always has an isolated fixed point.

In the paper [8], Holm and Pires studied the topology of acyclic toric origami
manifolds. As consequences, among other things, they proved that the cohomology of
such a toric origami manifold is concentrated in even degrees and that the equivariant
cohomology satisfies the GKM-condition. Quite recently, in the paper [9] they also
determined the fundamental groups and some Betti numbers of general toric origami
manifolds including the non-simply connected case. In the paper [11], Masuda and
Park studied the toric origami manifolds earlier than [9], and associated toric origami
manifolds to multi-fans introduced by Masuda and Hattori in the papers [7] and [10].
By using the notion of a multi-fan, they also studied the fundamental group of toric
origami manifolds in the paper [11] (see also [1] for more recent results).
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With these understood, the aim of this paper is to study some general properties
of the products of two toric origami manifolds. To be more precise, let (M1, ω1) be a
toric origami manifold with non-empty fold Z1, and let (M2, ω2) be a toric symplectic
manifold. Then the product manifold

(M,ω1 + ω2) := (M1, ω1)× (M2, ω2)

is again a toric origami manifold with the product torus action whose fold is Z1×M2.
However, it is easy to see that the product of two toric origami manifolds with non-
empty folds Z1 and Z2 is never a toric origami manifold with the product action
and product form ω1 + ω2, since ω1 + ω2 does not have maximal rank at a point in
Z1×Z2. In view of this observation, Masuda and Park asked if either one of two toric
origami manifolds is actually a toric symplectic manifold, whenever the product of
two orientable toric origami manifolds with the product action admits an orientable
toric origami form. It is not difficult to expect that the resolution of this question
will significantly clarify the structure of the products of two toric origami manifolds,
as we show in Section 2.

Our main result is to affirmatively answer their question ([11], Section 5, Problem),
as follows.

Theorem 1.1. Let M1 (resp. M2) be an orientable toric origami manifold of dimen-
sion 2n1 (resp. 2n2) with respect to the torus action of T1 (resp. T2). Assume that
M1 ×M2 admits an orientable toric origami form with respect to the product action
of T = T1 × T2. Then either one of M1 and M2 always admits a toric symplectic
form.

This paper is organized as follows. In Section 2, we give a proof of Theorem 1.1. In
Section 3, we also provide some interesting consequences of Theorem 1.1. Especially,
we prove that several interesting manifolds with the half-dimensional torus action
including some known examples do not admit any toric origami form. It seems to us
that, compared to the known proofs, our proofs are not only much simpler but also
more transparent, though.

Throughout this paper, for simplicity all toric origami manifolds are orientable,
closed (compact without boundary), connected, and smooth, unless stated otherwise.

2 Proof of Theorem 1.1

The aim of this section is to give a proof of Theorem 1.1, and we will provide its
interesting consequences in Section 3.

First, we begin with stating the following theorem which is the contrapositive of
Theorem 1.1, as follows.

Theorem 2.1. Assume that M1 (resp. M2) of dimension 2n1 (resp. 2n2) does not
admit any toric symplectic form with respect to the torus action of T1 (resp. T2).
Then M1 × M2 of dimension 2n = 2(n1 + n2) cannot admit any orientable toric
origami form with respect to the product action of T := T1 × T2, either.

Proof of Theorem 1.1 and Theorem 2.1. To prove it, let Z be a non-empty fold of the
toric origami manifoldM1×M2 of dimension 2n = 2(n1+n2) with a toric origami form
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Ω. For simplicity, let us assume without loss of generality that Z is connected. By
the definition of the fold Z, there is a principal S1-bundle Z → B with the orientable
circle fibers over a closed symplectic manifold B of dimension 2n− 2. Here the circle
fibers are orbits for a circle subgroup S1 of the torus T, since the action of T is toric
(see [3], Theorem 3.2 or Corollary 3.7). More precisely, we have the following lemma.

Lemma 2.2. The circle subgroup S1 of the torus T inducing the circle orbits of Z is
entirely contained in either T1 or T2.

Proof. To prove it, as in Section 1, we first convert M1 × M2 into a (disconnected)
compact symplectic manifold (M1 × M2)0 by taking the closures of the connected
components of M1 ×M2\Z and identifying boundary points on the same leaf of the
null foliation. As before, let B0 be the codimension two submanifold of (M1 ×M2)0
which has been obtained by identifying the boundary points in the same circle leaf
of the foliation. Then it is important to observe that B0 ⊂ (M1 × M2)0 is fixed
pointwise under the circle subgroup S1 of the torus T. But, since the action of the
torus T on M1×M2 is a product one and the Ti-action on each Mi is locally standard
([8], Lemma 5.1), this implies that the circle subgroup S1 of the torus T inducing the
circle orbits should be contained in either one of T1 and T2. Indeed, in other case
it is easy to see that we cannot have such a real codimension two submanifold B0 in
(M1 ×M2)0 fixed pointwise under a circle subgroup of T. This completes the proof
of Lemma 2.2. �

So, from now on we assume without loss of generality that the circle subgroup S1

is contained in T1.

For i = 1, 2, let πi : M1 × M2 → Mi denote the natural projection on the i-th
factor. Then take any p0 in M1 such that (p0, q0) lies in Z for some q0 ∈ M2. Let
N be the set of all points q in M2 containing q0 for which Ω(p0,q) has maximal rank
2n− 2. By the choice of p0, N is a non-empty subset of π2(Z) ⊂ M2. Then, we have
the following lemma.

Lemma 2.3. The set N actually coincides with M2. In particular, N also coincides
with π2(Z).

Proof. To prove it, we first claim that N is actually open and closed in M2. To see
it, let q be an element of N. Then it follows from the definition of N that Ω(p0,q) has
maximal rank 2n − 2. By Lemma 2.2, note also that the circle subgroup S1 of the
torus T inducing the circle orbits of Z is entirely contained in either T1 or T2.

Since the action of the torus T on M1 ×M2 is a product one and the Ti-action on
Mi is locally standard, it follows from an analogue of Darboux’s theorem for folded
symplectic forms ([4]) and Lemma 2.2 that there is an invariant open subset V1 of a
coordinate chart

(U1, (x1, y1, . . . , xn1 , yn1))

centered at the origin in R2n1 , equipped with the obvious standard torus action (resp.
an invariant open subset V2 of a coordinate chart

(U2, (xn1+1, yn1+1, . . . , xn1+n2 , yn1+n2))
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centered at the origin in R2n2) which is equivariantly isomorphic to an invariant open
neighborhood of p0 (resp. q) with respect to the standard torus action of T1 (resp.
T2) such that over V1 × V2 we have

Ω = x1dx1 ∧ dy1 + dx2 ∧ dy2 + . . .+ dxn1 ∧ dyn1

+ dxn1+1 ∧ dyn1+1 + . . .+ dxn1+n2 ∧ dyn1+n2 .
(2.1)

Here we need to remark that the circle S1 acts on (R2, (x1, y1)) by the rule

(θ, (x1, y1)) 7→ (x1, y1 + θ), y1, θ ∈ R/Z.

Since the fold Z is locally given by x1 = 0 by (2.1), this implies that there should
be an invariant open neighborhood W of q in M2 such that Ω over {p0} × W has
maximal rank 2n− 2. So N should be open in M2.

On the other hand, since Z is a closed subset of a compact product manifold
M1 ×M2, Z is compact and π2 is continuous, π2(Z) is also compact. In particular,
this implies that π2(Z) is a closed subset of M2. Since N ⊂ π2(Z), the closure N̄ of
N is a subset of the closure π2(Z) of π2(Z) that is equal to π2(Z). So, if we take an
element q of N̄, then there is a sequence {qn}∞n=1 in N such that qn converges to q,
as n goes to infinity. That is, we can obtain a sequence {(p0, qn)}∞n=1 in Z such that
(p0, qn) converges to (p0, q) in M1×M2, as n goes to infinity. Since Z is compact and
so complete, actually (p0, q) should be an element of Z, so that Ω(p0,q) has maximal
rank 2n − 2. This means that q is an element of N. That is, N is always closed in
M2.

Since M2 is connected and N is non-empty, this implies that N should be equal
to M2, as desired. �

Now, we are ready to finish the proof of Theorem 1.1. That is, let k : M2 ↪→
M1 × M2 be the inclusion given by q 7→ (p0, q), where, as in Lemma 2.3, p0 is any
element of M1 such that (p0, q0) lies in Z for some q0 ∈ M2. Then it follows from
Lemma 2.3 that Ω(p0,q) has maximal rank 2n − 2 for all q ∈ M2. This implies that
{p0} ×M2 is contained in the fold Z. Moreover, we have the following lemma.

Lemma 2.4. The fold Z is of the form Z1 ×M2, where Z1 is a closed codimension
one submanifold of M1, and so Z is a principal S1-bundle over B1 ×M2 = B, where
B1 is a closed symplectic submanifold of dimension 2n1−2 of the symplectic cut space
of M1.

Proof. To prove it, note that the fold Z for an orientable toric origami product man-
ifold M1 ×M2 with respect to the product action of the torus T = T1 × T2 is of the
form Z1 ×M2, where Z1 is a codimension one submanifold of M1. Since the closure
Z1 ×M2 of Z1 ×M2 is equal to Z1 ×M2 and Z is closed in M1 ×M2, Z1 should be
same as Z1. That is, Z1 is, in fact, closed in M1.

Recall now that the circle subgroup S1 of the torus T inducing the circle orbits in
Z is entirely contained in T1. So Z1 is actually a principal S1-bundle over a closed
symplectic codimension two submanifold B1 of the symplectic cut space of M1. So
we can obtain a principal S1-bundle Z → B1 ×M2 = B. This completes the proof of
Lemma 2.4. �
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Finally, since the fold Z is of the form Z1 × M2 by Lemma 2.4, it follows again
from an analogue of Darboux’s theorem for folded symplectic forms that the pullback
closed 2-form k∗Ω is non-degenerate over all of M2. Moreover, by the definition of a
toric origami form Ω on M1 ×M2, k

∗Ω is preserved by the torus action of T2. Thus,
the pullback closed 2-form k∗Ω defines a toric symplectic form on M2. This completes
the proof of Theorem 1.1. �

Remark 2.1. The proof of Theorem 1.1 shows that the theorem also holds under
the assumption that both M1 (resp. M2) are orientable manifolds equipped with a
locally standard torus action of T1 (resp. T2), where dimTi =

1
2 dimMi (i = 1, 2).

3 Some Applications

The aim of this section is to collect some interesting consequences of Theorem 1.1 (or
Theorem 2.1) and its proof.

To do so, we first show that we can determine whether or not many product
manifolds admits a toric origami form. For example, let S4 be the standard 4-sphere
with the standard T2-action. Then the product S4×S4 does not admit a toric origami
form, since S4 does not admit an orientable toric symplectic form.

Since S2n (n ≥ 2) does not admit any symplectic form, it is easy to see that
S2n × S2 with the standard product Tn+1-action cannot admit any toric symplectic
form, either (e.g., apply the Künneth formula for de Rham cohomology to the product
manifold S2n × S2, and then notice that any possible symplectic form on S2n × S2

should be represented as a sum of an exact form on S2ni and a symplectic form on S2.
This would yield a contradiction to the Stokes’ theorem). So, if we apply Theorem

2.1 to the product manifold
∏k

i=1 S
2ni with the standard product action of

∏k
i=1 Tni ,

it is easy to reprove the following result in [11], Theorem 5.2 in a different way, as
follows.

Proposition 3.1. Let S2ni (ni ≥ 1) be the standard unit sphere in R2ni+1 with

the standard action of Tni . Then the product manifold
∏k

i=1 S
2ni with the standard

product action of
∏k

i=1 Tni admits a toric origami form if and only if all of the ni

except for one index i are equal to one.

Proof. It suffices to prove “only if” part, since “if” part is clearly true. To do so,
assume that

∏k
i=1 S

2ni with the standard product action of
∏k

i=1 Tni admits a toric
origami form, and suppose without loss of generality that both n1 and n2 are not
equal to one. Then, we apply Theorem 2.1 to S2n1 ×

∏k
i=2 S

2ni with the standard

product torus action. As already observed above, it is easy to show that
∏k

i=2 S
2ni

with the standard product torus action cannot admit a toric symplectic form. Since
S2n1 (n1 ≥ 2) does not admit any toric symplectic form with respect to the standard

Tn1 -action, Theorem 2.1 implies that
∏k

i=1 S
2ni with the standard product torus

action cannot admit a toric symplectic form, either. This is a contradiction, which
completes the proof of Proposition 3.1. �

From now on, we shall denote by Tm the compact torus (S1)m in Cm with the
standard torus action of Tm. As briefly mentioned in Section 1, recall that the orbit
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space of a toric origami manifold is realized as the topological space obtained by gluing
the Delzant polytopes along the fold facets as specified by a certain rule. In fact, a
toric origami manifold can be obtained as the equivariant fiber connected sum of toric
symplectic manifolds along the symplectic codimension two submanifolds associated
to the fold facets. If we combine this fact with Lemma 2.4, it is easy to show that
S2n × T 2 with respect to the standard product torus action does not admit any toric
origami form (see [11], Example 2.1 and Proposition 5.3 for a different proof). In fact,
we have the following more general result.

Theorem 3.2. The product manifold S2n×T 2m (n ≥ 2,m ≥ 1 or n = 1,m ≥ 2) with
respect to the standard product torus action does not admit any toric origami form.

Proof. We prove the theorem by contradiction. So, suppose that S2n × T 2m with
respect to the standard product torus action admits a toric origami form. If n ≥ 2
and m = 1, then it follows from Lemma 2.4 that the fold Z would be of the form
S2n−1 × T 2, where S2n−1 is regarded as the equator of S2n. Thus S2n × T 2 should
be obtained by taking the equivariant fiber connected sum of two copies of a toric
symplectic product manifold CPn×T 2 along the symplectic submanifold CPn−1×T 2.
However, it is easy to see that CPn × T 2 with respect to the standard product torus
action cannot admit any toric symplectic form, since the T1-action on T 2 is free and
so does not have any fixed point (toric symplectic manifolds of dimension 2n always
have at least n + 1 fixed points. This can be seen for example by noting that fixed
points correspond to vertcies of the moment polytope, and an n-dimensional polytope
has at least n + 1 vertices). In fact, this case (n ≥ 2 and m = 1) can be proved by
the same technique as in the second case (n ≥ 1 and m ≥ 2) below.

On the other hand, if n ≥ 1 and m ≥ 2, then we want to make use of Theorem
1.1 and its Remark 2.1. Indeed, for this particular case we apply Theorem 1.1 and
its Remark 2.1 to the product manifold (S2n × T 2(m−1))× T 2. Then, since our torus
actions are all locally standard, either S2n × T 2(m−1) or T 2 should admit a toric
symplectic form by Remark 2.1. However, this is not the case, since the standard
torus actions on S2n × T 2(m−1) and T 2 do not have any fixed point. This completes
the proof of Theorem 3.2. �

Recall that S2 × T 2 with the standard product torus action does admit a toric
origami form whose N/N∆ is isomorphic to Z, where N = H2(BT2;Z) is a lattice
and N∆ is the sublattice of N generated by primitive vectors in the one-dimensional
cones in the multi-fan (see [11], Section 3 and [9], Section 2, Table 2.17).

Finally, we close this section with one more example. By applying Theorem 1.1
and Remark 2.1 as in the proof of Theorem 3.2, we can show that T 2m (m ≥ 2)
does not admit any orientable toric origami form, while T 2 does ([8], Figure 2.4 or
this can be seen by taking equivariant fiber connected sum of two copies of a toric
symplectic manifold S2 along the north and south poles). This can be also seen by
looking at the orbit space of a toric origami manifold. Recall that the orbit space of
a toric origami manifold is homotopy equivalent to a bouquet of S1’s. In case of T 2m

with the standard torus action, the orbit space is just the (2m− 1)-dimensional torus
which is not homotopy equivalent to a bouquet of circles (see [11], Section 4).
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