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Abstract. In this paper we continue the study of the complex Beil met-
rics, in complex Finsler geometry, [18]. Primarily, we determine the main
geometric objects corresponding to these metrics, e.g. the Chern-Finsler
complex non-linear connection, the Chern-Finsler complex linear connec-
tion and the holomorphic curvature. We focus our study on the cases when
a complex Finsler space, endowed with a complex Beil metric, becomes
weakly Kähler and Kähler. Also, our study proves that a given complex
Finsler metric is projectively related to its associated complex Beil met-
ric. As an application of this theory, we set the variational problem of
the complex Beil metric constructed with the weakly gravitational metric.
In this case we find the Chern-Finsler complex non-linear connection by
using another approach.
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1 Introduction

The Beil metrics were introduced and studied by R. G. Beil in [9, 10] to develop a
unified field theory. Beil’s idea was, that if the connection contains the field, then the
metric itself should contain the electromagnetic potential vectors. This is a natural
extension of general relativity since the gravitational potentials are also part of the
metric. The importance of this type of metric has been pointed out in many studies,
[13, 19, 11, 14, 15], etc, but the configuration was given by M. Anastasiei and H.
Shimada in [7].

The study of the complex version of the Beil metric is initiated by us in [18],
considering a generalized complex Lagrange metric

(1.1) ∗giȷ̄ = giȷ̄ + σBiBȷ̄,

where giȷ̄ is the fundamental metric tensor of a complex Finsler space, σ is a real
valued function, and Bi is a covector. This metric is called the complex Beil metric,
if 1 + σBiB

i ̸= 0. Here the evolution of this metric, i.e. the weakly regular and the
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regular cases, is studied, and the situation when the metric is a complex Lagrange
one is exemplified.

The aim of the present paper is to give an approach of the complex Beil metric
in complex Finsler geometry. After a short introduction in complex Finsler geome-
try (Section 2), in Section 3 the necessary and sufficient conditions under which the
tensor from (1.1) is the fundamental metric tensor of a complex Finsler space, (The-
orem 3.1), are pointed out. As a result, we can construct the geometry related to
this metric, more specifically, we express its main geometric objects: Chern-Finsler
connection, holomorphic curvature, Käher and Berwald conditions and projectively
related properties.

Moreover, our goal is to show that this type of treatment also attempts to empha-
size physical interpretation. To serve this objective, we found an application of the
metric given by (1.1). In this case, is constructed the Lagrangian of a complex Beil
metric arising from the weakly gravitational metric perturbed by an electromagnetic
potential. Solving the variational problem associated to this Lagrangian, we reob-
tain the Chern-Finsler complex non-linear connection (Theorem 4.2). The complex
geodesics corresponding to the complex Beil metric are given in Theorem 4.3.

2 Preliminaries

Let M be an n−dimensional complex manifold. The complexified of the real tangent
bundle TCM splits into the sum of holomorphic tangent bundle T ′M and its conjugate
T ′′M. The bundle T ′M is in its turn a complex manifold. The local coordinates in
a chart will be denoted by u = (zk, ηk), k = 1, . . . , n, which are changed by the

following rules: z′k = z′k(z), η′k = ∂z′k

∂zj η
j . The complexified tangent bundle of T ′M

is decomposed in the direct sum of T ′(T ′M) and T ′′(T ′M), respectively. A natural
local frame for T ′

u(T
′M) is { ∂

∂zk ,
∂

∂ηk }, and it changes according to the rules below:

(2.1)
∂

∂zk
=

∂z′k

∂zh
∂

∂z′k
+

∂2z′k

∂zj∂zh
ηj

∂

∂η′k
;

∂

∂ηk
=

∂z′k

∂zh
∂

∂η′k
.

Let V (T ′M) = Ker(π∗) ⊂ T ′(T ′M) be the vertical bundle, spanned locally by
∂

∂ηk . A complex non-linear connection, briefly (c.n.c.), determines a supplementary

complex sub-bundle to V (T ′M), i.e. T ′(T ′M) = V (T ′M) ⊕H(T ′M). It determines
an adapted frame { δ

δzk = ∂
∂zk − N j

k
∂

∂ηj }, where N j
k(z, η) are the coefficients of the

(c.n.c.). These functions have a special rule of change obtained by (2.1). Then {δk :=
δ

δzk , ∂̇k := ∂
∂ηk } is an adapted basis of H(T ′M). For more details you can see [16, 1].

Moreover, the pair (M,F ) is called a complex Finsler space, where F : T ′M → R+ is
a continuous function which satisfies:

i) L := F 2 is smooth on T̃ ′M := T ′M \ {0};

ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;

iii) F (z, λη) = |λ|F (z, η) for λ ∈ C;

iv) the following Hermitian matrix (gi,ȷ̄(z, η)), with giȷ̄ =
∂2L

∂ηi∂η̄j , is positive definite

on T̃ ′M, and it is called the fundamental metric tensor.
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If the iv)-th assumption is satisfied, then the Finsler metric F is strongly pseudo-
convex, this means that the complex indicatrix IF,z = {η ∈ T ′

zM | F (z, η) < 1} is
strongly pseudo-convex.

A main problem in this geometry is to determine a (c.n.c.) related only to the
fundamental metric tensor giȷ̄ of the complex Finsler space (M,F ), (for more details
see [16]).

A Hermitian connection D on the sections of TC(T
′M), of (1, 0)−type, which

satisfies in addition DJXY = JDXY, for X horizontal vectors and J the natural
complex structure of the manifold, is the Chern-Finsler connection (see [16]). This
connection is locally given by the following coefficients:

(2.2) N i
j = gm̄i ∂glm̄

∂zj
ηl; Li

jk = gm̄iδkgjm̄ = ∂̇jN
i
k; Ci

jk = gm̄i∂̇kgjm̄,

and Li
jk̄

= Ci
jk̄

= 0, where δk, here and subsequently, is the adapted frame of the

Chern-Finsler (c.n.c.) and Dδkδj = Li
jkδi, D∂̇k

∂̇j = Ci
jk∂̇i, etc. The h−, v−, h̄−, v̄−

covariant derivatives with respect to Chern-Finsler connection is noted by ”|”,”|”,”̄|”
and ”̄|”, respectively.

The complex Cartan tensors are the following Ciȷ̄k = ∂̇kgiȷ̄ and Ciȷ̄k̄ = ∂̇k̄giȷ̄.

In [1] a complex Finsler space (M,F ) is weakly Kähler if gil̄T
i
jkη

j η̄l = 0, Kähler if

T i
jkη

j = 0, and strongly Kähler if T i
jk = 0, where T i

jk = Li
jk −Li

kj . In [12] it is proved
that the strongly Kähler and the Kähler notions coincide. In the particular case when
the complex Finsler space is purely Hermitian, i.e. gil̄ = gil̄(z), all those nuances of
Kähler are the same.

According to [1, 16, 2], the holomorphic curvature of the complex Finsler space
(M,F ) in direction η is KF (z, η) =

2
L2G(R(χ, χ)χ, χ), where χ := ηkδk is the hori-

zontal lift. Locally it has the following expression (see [2])

(2.3) KF (z, η) =
2

L2
Rjk̄η̄

jηk, where Rȷ̄k = −gmȷ̄(δh̄N
m
k )η̄h.

Generally the Chern-Finsler (c.n.c.), does not derive from a spray, but it always
determines a complex spray, with local coefficients Gi = 1

2N
i
jη

j .
In [5] it is proved, that the complex Finsler space (M,F ) is generalized Berwald

if and only if ∂̇h̄G
i = 0, and (M,F ) is a complex Berwald space if and only if it is

Kähler and generalized Berwald.
In [1] a complex geodesic curve is given by D

Th+ThT
h = θ∗(Th, Th), where θ∗ =

gm̄kgip̄(L
p̄
ȷ̄m̄ − Lp̄

m̄ȷ̄)dz
i ∧ dz̄j . Locally, the equations of a complex geodesic z = z(t)

of (M,L), with t as a real parameter, in [1]’s sense can be rewritten as

d2zi

dt2
+ 2Gk(z(t),

dz

dt
) = θ∗i(z(t),

dz

dt
); i = 1, . . . , n,

where by zi(t), i = 1, . . . , n, are denoted the coordinates along the curve z = z(t).
Let L̃ be another complex Finsler metric on the underlying manifold M.

Definition 2.1. [4] The complex Finsler metrics L and L̃ on the manifold M, are
called projectively related if they have the same complex geodesics as point sets.
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In [4] several necessary and sufficient conditions are given for when two complex
Finsler metrics are projectively related:

Theorem 2.1. [4] Let L and L̃ be complex Finsler metrics on the manifold M. Then
L and L̃ are projectively related if and only if there is a smooth function P in T ′M
with complex values, such as G̃i = Gi +Qi + Pηi, i = 1, . . . , n.

Theorem 2.2. [4] Let L and L̃ be the complex Finsler metrics on the same manifold
M. Then, L and L̃ are projectively related if and only if

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) =
1

L̃
(δkL̃)η

k(∂̇r̄L̃);(2.4)

Qr = − 1

2L̃
θ∗l(∂̇lL̃)η

r; P =
1

2L̃
[(δkL̃)η

k + θ∗i(∂̇iL̃)].(2.5)

(r = 1, . . . , n) Moreover, the projective change is G̃i = Gi + 1
2L̃

(δkL̃)η
kηi.

3 The complex Beil metric on a complex Finsler
space

Following the ideas from real cases, [7, 8, 11], we shall introduce a new class of
complex metrics. Let (M,F ) be an n−dimensional complex Finsler space, and gjk̄ its
fundamental metric tensor. Assume that (M,F ) is endowed with a complex Finsler
vector field B = Bk(z, η)∂̇k and let Bk(z, η)dz

k be a differential (1, 0)−form with
Bk = gkm̄Bm̄, where Bm̄ := Bm. The lowering and rising of indices will be done with
(giȷ̄) and (gȷ̄k), where giȷ̄g

ȷ̄k = δik, respectively.
Also, we consider σ : T ′M → R, a real valued function, on T ′M . By these objects

we set

(3.1) ∗giȷ̄(z, η) = giȷ̄(z, η) + σ(z, η)Bi(z, η)Bȷ̄(z, η).

We have proved in [18] that

Proposition 3.1. For the d−tensor ∗giȷ̄ from (3.1) we have,

i) det(∗giȷ̄) = (1 + σB2)det(giȷ̄);

ii) If 1 + σB2 ̸= 0, the d−tensor giȷ̄ is non-degenerate, and its inverse has the
following expression ∗gȷ̄i = gȷ̄i − ∗σBiB ȷ̄, with ∗σ = σ

1+σB2 ,

where B2 = BiB
i = giȷ̄B

iB ȷ̄ (the length of B with respect to giȷ̄).

Under the assumption 1 + σB2 ̸= 0 the functions (∗giȷ̄) from (3.1) are called the
complex Beil metric.

From [16] we know that ∗giȷ̄ is reducible to a complex Finsler metric, if and only

if the complex Cartan tensor fields associated to this metric ∗Ciȷ̄k = ∂̇k
∗giȷ̄ and

∗Ciȷ̄k̄ = ∂̇k̄
∗giȷ̄ satisfy the following conditions:

(i) ∗Cij̄k = ∗Ckj̄i,
∗Cij̄k̄ = ∗Cik̄j̄ ;
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(ii) ∗Cij̄k = ∗Cjīk̄;

(iii) ∗Cij̄kη
k = ∗Ckj̄iη

i = ∗Cij̄k̄η̄
j = ∗Cik̄j̄ η̄

k = 0.

Using (3.1) we can prove

Theorem 3.2. The complex Beil metric defined in (3.1) is the fundamental metric
tensor of a complex Finsler space (M, ∗F ) if and only if the following system of
equations is satisfied

(∂̇kσ)BiBj̄ + σ(∂̇kBi ·Bj̄ + ∂̇kBj̄ ·Bi) = (∂̇iσ)BkBj̄ + σ(∂̇iBk ·Bj̄ + ∂̇iBj̄ ·Bk);

(∂̇kσ)BiBj̄η
k + σ(∂̇kBi ·Bj̄ + ∂̇kBj̄ ·Bi)η

k = 0.(3.2)

In general ∗giȷ̄(z, η) is not reducible to a complex Finsler metric. We found a case
when ∗giȷ̄ is a complex Finsler metric as follows.

Proposition 3.3. If Bi = Bi(z) and σ = σ(z) ≥ − F 2

|β|2 , then (M,∗ giȷ̄) becames a

complex Finsler space, with

(3.3) ∗F 2 = F 2 + σ(z)|β|2, where β = Bi(z)η
i.

Remark 3.1. The condition β = 0 and Bi = Bi(z) are incompatible, because they
imply that B = 0.

Further on, we work under the assumptions thatBi = Bi(z) and σ = σ(z) ≥ − F 2

|β|2 .

Then the complex Beil metric will take the following form:

(3.4) ∗giȷ̄(z, η) = giȷ̄(z, η) + σ(z)Bi(z)Bȷ̄(z).

Example 3.2. We set an example of complex Beil metric of complex dimension two.
To avoid confusions, we rename the local coordinates z1, z2, η1, η2 as z, w, η, θ,
respectively. On the a complex domain D =

{
(z, w) ∈ C2| |w| < |z|

}
, let us define

the purely Hermitian metric

giȷ̄ =
∂2

∂ziz̄j

(
log

1

|z|2 − |w2|

)
, L(z, w, η, θ) = giȷ̄η

iη̄j ,

where |zi|2 := ziz̄i, zi ∈ {z, w} , ηi ∈ {η, θ} . After a direct computation, we obtain

gzz̄ = 2|z|2 − |w|2; gzw̄ = −z̄w; gww̄ = 2|w|2 − |z|2;

gz̄z = − 2|w|2 − |z|2

2(|z|2 − |w|2)2
; gz̄w = − z̄w

2(|z|2 − |w|2)2
; gw̄w = − 2|z|2 − |w|2

2(|z|2 − |w|2)2
.

ChoosingBz = w, Bw = z and σ = 1, we haveBz = − w̄|w|2
(|z|2−|w|2)2 , B

w = − z̄|z|2
(|z|2−|w|2)2 .

As a result of the above, we obtain a complex Finsler metric ∗giȷ̄ = giȷ̄ + σBiBȷ̄,
and the Lagrangian of the complex Beil metric ∗L = 2(|z|2|η|2 + |w|2|θ|2), which, in
turn, is the double of the complex Euclidean metric.
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The non-linear connections play an important role in Finsler geometry. These
connections allow us to work with d−tensors. It is very useful when the (c.n.c.)
derives from the fundamental metric tensor of the space. This is an argument for
which we try to express the Chern-Finsler (c.n.c.) of (M,∗ F ).

The local coefficients of the Chern-Finsler (c.n.c.) associated the to complex Finsler

space (M,∗ F ), ∗N i
j = ∗gm̄i ∂

∗gpm̄
∂zj ηp, can be rewritten as

(3.5) ∗N i
j = N i

j +Ai
j , where Ai

j =
∗gm̄i(σBpBm̄)|jη

p.

Note that Ai
j defined in (3.5) is a d−tensor, (1, 0)−homogeneous in η.

In the complex Finsler space (M,∗ F ) the adapted horizontal frame will be notated
by ∗δk := ∂k − ∗Nm

k ∂̇m = δk −Am
k ∂̇m.

Now we are able to give the expressions of the Chern-Finsler (c.l.c.) ∗CΓ =
(∗N i

j ,
∗ Li

jk,
∗ Ci

jk, 0, 0).

Proposition 3.4. In the complex Finsler space (M,∗ F ), with ∗F given in (3.3), the
local coefficients of the Chern-Finsler (c.l.c.) ∗CΓ are

(3.6) ∗Li
jk = Li

jk + ∂̇jA
i
k;

∗Ci
jk = Ci

jk −∗ σBiBm̄Cjm̄k.

The non-vanishing components of the torsions of the N − (c.l.c.) ∗CΓ are the
following

∗T i
jk = T i

jk + ∂̇jA
i
k − ∂̇jA

i
k;

∗Qi
jk̄ = Ci

jk̄ −∗ σBm̄BiCjm̄k,(3.7)

∗Θi
jk̄ = Θi

jk̄ − ρijp̄N
p̄

k̄
+∗ δk̄A

i
j ;

∗ρijk̄ = ρijk̄ + ∂̇k̄A
i
j ,

where T i
jk, Θi

jk̄
and ρi

jk̄
are the local torsion expressions of the Chern-Finsler (c.l.c.)

on (M,F ), [16].
In the following we compute the holomorphic curvature in direction of η with

respect to ∗CΓ. Transcribing (2.3), we obtain K∗F (z, η) =
2

∗L2
∗Rȷ̄kη̄

jηk, with ∗Rȷ̄k =
−∗glȷ̄(

∗δp̄
∗N l

k)η̄
p :

K∗F (z, η) =

(
1− σ|β|2

∗L2

)
KF +

+
2

L2

(
1− σ|β|2

∗L2

)[
(∂̇p̄

∗N l
0)A

p̄
0ηl − (δ0̄A

l
p)η

pηl − σβ̄Bl(
∗δ∗0̄N

l
p)η̄

p
]
.

Subsequently, we emphasize other geometrical properties of the complex Finsler
space with the complex Beil metric (3.4).

It is known that a complex Finsler metric is purely Hermitian if and only if the
associated complex Cartan tensors are vanishing. For the complex Finsler metric
given in (3.4), the conditions ∗Ciȷ̄k = 0 and ∗Ciȷ̄k̄ = 0 lead to:

Proposition 3.5. The complex Finsler space (M,∗ F ) with complex Beil metric is
purely Hermitian if and only if (M,F ) is purely Hermitian.

Taking into account the first relation from (3.7), the weakly Kähler condition
associated to (3.3) is

∗gil̄
∗T i

jkη
kη̄l = T i

jkη
k(ηi + σβ̄Bi) + [∂k(σBjBl̄)− σBl̄BpL

p
jk]η

kη̄l − ∗gil̄A
i
j η̄

l = 0

Then, we have the following assertion:
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Proposition 3.6. Let (M,F ) be a Kähler complex Finsler space. The complex Finsler
space (M,∗ F ), with ∗F from (3.3), is weakly Kähler if and only if

∂j(σ|β|2)− ∂0(σBjB0̄)− ∗Cp0̄jA
p
0 = 0, j = 1, . . . , n.

A similar calculus leads us to determine the Kähler condition corresponding to
the metric (3.3):

Proposition 3.7. Let (M,F ) a Kähler complex Finsler space. The complex Finsler
space (M,∗ F ), with ∗F from (3.3), is Kähler if and only if

∗gm̄i[∂0(σBjBm̄)− ∂j(σB0Bm̄)− ∗Cpm̄jA
p
0] = 0, j = 1, . . . , n.

Further on, by direct computations, we establish the necessary and sufficient con-
ditions by which the metric (3.3) can be generalized Berwald and Berwald.

Proposition 3.8. Let (M,F ) be a generalized Berwald space. The complex Finsler
space (M,∗ F ) with ∗F from (3.3) is generalized Berwald if and only if

(3.8) ∂̇h̄
∗gm̄i(σBpBm̄)|0η

p = 0,

Corollary 3.9. Let (M,F ) be a complex Berwald space. (M,∗ F ) with ∗F from (3.3)
is a complex Berwald space if an only if the following conditions are satisfied

i) ∗gm̄i[∂0(σBkBm̄)− ∂k(σB0Bm̄)− ∗Cpm̄kA
p
0] = 0;

ii) ∗Cim̄p̄A
i
0 = 0.

The next step in our study is centered on finding when the complex Finsler metrics
L and ∗L are projectively related. The link between the complex spray Gi and
∗Gi = 1

2
∗N i

jη
j , corresponding to N i

j and ∗N i
j is below

(3.9) ∗Gi =
1

2
∗N i

jη
j = Gi +

1

2
Ai

jη
j , i = 1, . . . , n.

Based on this, we prove the following main result of this section:

Theorem 3.10. The complex Finsler metrics L and ∗L = L+σ|β|2, both defined on
M, are projectively related, i.e.

∗Gr = Gr +Qr + Pηr,(3.10)

Qr = − 1

2∗L
gȷ̄lT k̄

p̄ȷ̄(∂̇l
∗L)η̄pη̄kη

r, P =
1

2∗L

(
Ai

jη
j + gȷ̄iT k̄

p̄ȷ̄η̄
pη̄k

)
(∂̇i

∗L),

(r = 1, . . . , n), and the projective change is ∗Gr = Gr + 1
2A

r
jη

j .

Proof. A simple calculation shows that, θ∗i = gȷ̄iT k̄
p̄ȷ̄η̄

pη̄k. By replacing this relation
in (2.5), (3.10) becomes true. As a result, by using Theorem 2.1, the complex Finsler
metrics are projectively related. �
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Example 3.3. The complex version of the Antonelli-Shimada metric

LAS(z, w, η, θ) := e2f
(
|η|4 + |θ|4

) 1
2 , with η, θ ̸= 0,

is a generalized Berwald metric, defined on a domain D from T̃ ′M, dimCM = 2,
such that its metric tensor is non-degenerated, (for more details see [5]). The local
coordinates z1, z2, η1, η2 are denoted by z, w, η, θ, respectively, and f(z) is a real-
valued function. Our aim is to find proper expressions for σ(z) and Bi(z), such that
the complex Finsler space (M,∗ L) to be generalized Berwald. For this, we choose
σ(z) = e2f , and β = η. With these objects, we obtain a complex Beil metric

∗L(z, w, η, θ) := e2f
[(
|η|4 + |θ|4

) 1
2 + |η|2

]
,

which is generalized Berwald.

4 The variational problem in a perturbed weakly
gravitational space

Let (M,L) be a 2−dimensional complex Finsler space with

(4.1) L =

(
1 +

2Φ

c2

)
|η1|2 − i

(
1− 2Φ

c2

)
η1η̄2 + i

(
1− 2Φ

c2

)
η2η̄1 −

(
1− 2Φ

c2

)
|η2|2

the weakly gravitational metric, studied in [17, 6]. It is a purely Hermitian metric
with the fundamental metric tensor:

(4.2) (gjk̄) :=

(
1 + 2Φ

c2 −i
(
1− 2Φ

c2

)
i
(
1− 2Φ

c2

)
−
(
1− 2Φ

c2

)) ,

i :=
√
−1, j, k = 1, 2, where Φ is a real valued smooth function on T ′M, Φ > c2

2 ,

where c ∈ R∗. The inverse matrix of (gjk̄) is
(
gk̄j(z, η)

)
jk̄=1,2

=

( 1
2

−i
2

i
2 − 1+ 2Φ

c2

2(1− 2Φ
c2
)

)
.

Also, from [6] we have the coefficients of the Chern-Finsler (c.n.c.) corresponding
to (4.1): N1

k = 0; N2
k = −2i

c2(1− 2Φ
c2
)
(η1 − iη2)Φk, where Φk := ∂Φ

∂zk , k = 1, 2.

In this section, we perturb the weakly gravitational metric (4.1) to a complex Beil
metric with an electromagnetic potential, a|β|2 = aBj(z)Bk̄(z)η

j η̄k, where a > 0.
And so, we obtain a complex Finsler metric which arises from the weakly gravitational
metric ∗L = L+ a|β|2, with the fundamental metric tensor

(4.3) (∗gjk̄) :=

(
1 + 2Φ

c2 + aB1B1̄ −i
(
1− 2Φ

c2

)
+ aB1B2̄

i
(
1− 2Φ

c2

)
+ aB2B1̄ −

(
1− 2Φ

c2

)
+ aB2B2̄

)
,

and its inverse ∗gk̄j = gk̄j − ∗aBk̄Bj , where ∗a = a
aB2+1 . This metric is called by us

weakly gravitational Beil metric.
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Using the general results form the previous sections we get the local coefficients
of the Chern-Finsler (c.n.c.) of (M,∗ L):

(4.4) ∗N j
k = N j

k + a∗gm̄j

[
∂k(BpBm̄)ηp +

2i

c2
(
1− 2Φ

c2

) (η1 − iη2)ΦkBm̄B2

]
.

Subsequently, we study the variational problem for the weakly gravitational Beil
metric ∗L = L + a|β|2 in the canonical parametrization of a curve on the complex
manifold M with respect to the purely Hermitian weakly gravitational metric (4.1).

Let us consider c(t), c ∈ R a C∞ curve on complex manifold M, and (zk(t), ηk =
dzk

dt ) its extension to T ′M. The Euler-Lagrange equations with respect to a complex
Lagrangian ∗L are

(4.5) Ek(
∗L) :=

∂∗L

∂zk
− d

dt

(
∂∗L

∂ηk

)
= 0, k = 1, 2,

where ∗L is considered along the curve c on T ′M. Generally, the solutions of the
Euler-Lagrange equations are extremal curves with respect to arc length.

After we develop the calculus in (4.5), for ∗L = L+ a|β|2, where a > 0, along the
extremal curve c on T ′M, we have achieved

Proposition 4.1. The Euler-Lagrange equations with respect to ∗L = L+ a|β|2 are

(4.6) Ek(
∗L) = Ek(L) + aEk(|β|2) = 0, k = 1, 2.

Now, we choose s(t) the arc length of the curve c on T ′M with respect to the
weakly gravitational metric F as a parametrization of the curve c on T ′M . Since
ds2 = L(z, dz

dt )dt
2 it yields L(z, dz

ds ) = 1. In the following steps, we calculate Ek(L)
and Ek(|β|2), k = 1, 2, in the canonical parametrization.

E1(L) =
2

c2
(η̄1 + iη̄2)[−i(Φ1 − iΦ2)η

2 − Φȷ̄η̄
j ]−

−L

[(
1 +

2Φ

c2

)
d2z̄1

ds2
− i

(
1− 2Φ

c2

)
d2z̄2

ds2

]
;

E2(L) =
2

c2
(η̄1 + iη̄2)[i(Φ1 − iΦ2)η

1 + iΦȷ̄η̄
j ]− L

(
1− 2Φ

c2

)(
i
d2z̄1

ds2
− d2z̄2

ds2

)
;

Ek(|β|2) = [∂k(BpBq̄)− ∂p(BkBq̄)]η
pη̄q − ∂p̄(BkBq̄)η̄

pη̄q − LBkBq̄
d2z̄q

ds2
, k = 1, 2.

Substituting the formulas of Ek(L) and Ek(|β|2) in (4.6), we obtain the Euler-
Lagrange equations of (M,∗ L) in the canonical parametrization.

Following the same arguments as in [16, 3], the equations of a complex geodesics
for (M,∗ L) are:

(4.7)
2i

c2
(δik − δ2k)(η̄

1 + iη̄2)(Φ1 − iΦ2)η
k + a[∂k(BpBq̄)− ∂p(BkBq̄)]η

pη̄q = 0,

(4.8)
2

c2
(δik−iδ2k)(η̄

1+iη̄2)Φȷ̄η̄
j+Lgkq̄

d2z̄q

ds2
+a

[
∂p̄(BkBq̄)η̄

pη̄q + LBkBq̄
d2z̄q

ds2

]
= 0,
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for k = 1, 2. The conjugate of (4.8) contracted with ∗gk̄m, it leads to:

(4.9)
d2zm

ds2
+

2

c2
(∗g1̄m+i∗g2̄m)

(
dz1

ds
− i

dz2

ds

)
Φj

dzj

ds
+a∗gk̄m∂p(Bk̄Bq)

dzp

ds

dzq

ds
= 0,

m = 1, 2.

We note that (4.9) can be rewritten in the form d2zm

dt2 +2G̃m(z(t), η(t)) = 0, where

G̃m = 1
c2 (

∗g1̄m + i∗g2̄m)
(
η1 − iη2

)
Φjη

j + a
2
∗gk̄m∂j(Bk̄Bq)η

qηj . Using the changes
of complex coordinates on T ′M, we can prove by direct computation, that the func-
tions G̃m are the coefficients of a complex spray on T ′M. Keeping that a (c.n.c.) by
contraction with η determines a complex spray, i.e. N i

jη
j = 2Gi, from (4.9) we can

conclude that the functions

(4.10) Ñm
j (z, η) :=

2

c2
(∗g1̄m + i∗g2̄m)

(
η1 − iη2

)
Φj + a∗gk̄m∂j(Bk̄Bq)η

q

are coefficients of a (c.n.c.). Upon closer inspection of (4.10), we can point out that:

Theorem 4.2. The (c.n.c.) Ñ j
k and the Chern-Finsler (c.n.c.) associated to the com-

plex Finsler space (M,L+ a|β|2) coincide.

Proof. Using the formulas (4.3) and (4.4), we obtain a relation between the local

coefficients of the (c.n.c.) Ñ j
k and the Chern-Finsler (c.n.c.) ∗N j

k :

(4.11) ∗N j
k = Ñ j

k − 2

c2
∗aBjΦk(η

1 − iη2)

(
B1̄ + iB2̄ −B2

i

1− 2Φ
c2

)
.

In explicit form we have B2 = g2p̄B
p̄ = g21̄B

1̄ + g22̄B
2̄ = i

(
1− 2Φ

c2

)
(B1̄ + iB2̄).

Replacing this result in (4.11), the statement is proven. �

To find the geodesics of the complex Finsler space with weakly gravitational Beil
metric we must analyse the equation (4.7), related to the weakly Kähler condition,
according to [16]. Indeed, the relation (4.7)

2i

c2
(δik − δ2k)(η̄

1 + iη̄2)(Φ1 − iΦ2)η
k + a[∂k(BpBq̄)− ∂p(BkBq̄)]η

pη̄q = 0,

becomes true for the weakly Kähler conditions of the Chern-Finsler (c.n.c.) associated
to the complex Beil metric, formulated in Proposition 3.6. But we have proved in
Theorem 3.2 that the complex Finsler metrics L and ∗L are projectively related. This
means that, as point sets, they have the same complex geodesics. So, if we find the
geodesics of (M,L) with weakly gravitational metric, our goal will be achieved. For
this we use an important result, namely, Theorem 3.6 from [6].

Using the arguments presented above, we can formulate the following result:

Theorem 4.3. Let F be the purely Hermitian metric (4.1) on the manifold M. If
∗F =

√
F + a|β|2 is Kähler, then the geodesic curves of (M,∗ F ) are the following:

γ(s) = (λ1s+ µ1, λ2s+ µ2), λk, µk ∈ , λk ̸= 0, k = 1, 2.
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Example 4.1. Consider a charged particle moving along a weakly gravitational field.
The path parameter is taken to be the proper time t. The position of the particle

is given by zk(t), and the velocity and acceleration are ηk = dzk

dt and ak = dηk

dt ,
respectively.

Now we assume that Bj is the electromagnetic potential Aj(z). Then we obtain
a model, when the particle is acted upon only by an electromagnetic field from the
potential Aj . As a result, if the condition a|β|2 = constant is satisfied, then the
equation of motion in a weakly gravitational field, which is given by the metric (4.2),
is

ak +
−2i

c2
(
1− 2Φ

c2

) [δk2 − ∗aAkA2

]
(η1 − iη2)∗aΦjη

j = 0, k = 1, 2.

Example 4.2. Let Φ(z) = c2

2 e
z2+z̄2+i(z1−z̄1) a real valued function on C2. Given the

condition Φ > c2

2 , we obtain the Hermitian complex Finsler metric

L = (1 + eZ)|η1|2 − i(1− eZ)η1η̄2 + i(1− eZ)η2η̄1 − (1− eZ)|η2|2,

where Z := z2 + z̄2 + i(z1 − z̄1), defined on D :=
{
z ∈ C2 | Rez2 − Imz1 > 0

}
, (see

[6]). For the function Φ, the relation iΦ2 = Φ1 is satisfied, and so the metric L is
Kähler. If we add a|β|2 = a|z1|2|η1|2 to this metric, we obtain a weakly gravitational
Beil metric:

(4.12) ∗L = (1 + eZ + a|z1|2)|η1|2 − i(1− eZ)η1η̄2 + i(1− eZ)η2η̄1 − (1− eZ)|η2|2.

The associated Chern-Finsler (c.n.c.) has the following local expression:

(4.13) ∗N j
k = N j

k +
az̄1

a|z1|2 + 2
η1(δj1 − iδj2)δ

1
k

Due to the fact that the spray coefficients of the (c.n.c.) (4.13) are holomorphic
in η, we deduce that (4.12) is a generalized Berwald metric. Moreover, because ∗L
satisfies the conditions from Proposition 3.6, we deduce that it is weakly Kähler. In
conclusion, from the above, we obtain that the (4.12) metric is a complex Berwald
one.

The holomorphic curvature of the metric (4.12) is KL = − eZ

L2 |η1− iη2|2[2+ c2(1−
eZ)], and the holomorphic curvature of the weakly gravitational Beil metrics (4.12) is

K∗L = L2

∗L2KL − 8a
∗L2(a|z1|2+2) |η

1|4. Moreover, if Z < ln
(
1 + 2

c2

)
then the holomorphic

curvature of ∗L is negative for any a ≥ 0.
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[11] V. Bălan, P. Stavrinos, K. Trenc̆evski, Weak Gravitational Models Based on Beil
Metrics, Applied Differential Geometry - General Relativity and The Workshop
on Global Analysis, Differential Geometry and Lie Algebras (2000), 7-22.

[12] B. Chen, Y. Shen, Kähler Finsler Metrics are Actually Strongly Kähler Chin.
Ann. Math. Ser. B 30,2 (2009), 173-178.

[13] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Appli-
cations, Fundamental Theories of Physics, Vol. 59, Kluwer Academic Publishers
1994.

[14] R. Miron, The Geometry of Higher Order Lagrange Spaces. Applications to Me-
chanics and Physics, Kluwer Academic Publishers, Dordrecht 1997.

[15] R. Miron, The Geometry of Ingarden Spaces, Reports on Mathematical Physics
5, 2 (2004), 131-147.

[16] G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries,
Kluwer Acad. Publ. 2004.

[17] G. Munteanu, N. Aldea, A Complex Finsler Approach of Gravity, Int. J. Geom.
Methods. Phys. 9, 7 (2012).

[18] A. Szász, Generalized Complex Lagrange Spaces with Beil Metric, Bull. of the
Transilvania Univ. Braşov 56, 2 (2014).
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