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Abstract. We study the boundedness of the Dirichlet energy of moving
frames associated to immersions of torus in the Poincaré upper half-space.
The frame energy functional is closely related to the Willmore energy and
also to the conformal structure on the underlying torus. A lower bound
for the frame energy is established.
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1 Introduction

Our aim in this paper is to study the boundedness of the Dirichlet energy of moving
frames on torus immersed in Hn, n ≥ 3, where Hn is the upper half−space endowed
with the Poincaré metric (this space is maximally symmetric, simply connected, Rie-
mannian manifold with constant sectional curvature −1.) Bounds on analogous en-
ergies were established for immersed tori in Rn [10], and in Sn [12] respectively. The
theory of moving frames is a powerful and elegant tool of classical differential geom-
etry, which is particularly useful in the study of immersed surfaces (see for instance
Cartan [2], Chern [3], Darboux [5], Willmore [17], etc.). More recently, moving frames
were successfully employed in the study of harmonic maps (see for instance Hélein [8]).
There is a close relation between moving frames on the immersed surface (the image)
and conformal structures of its underlying abstract surface (the domain) [7, Chapter
5]. The question of selecting the best moving frame in surface theory is similar to the
question of selecting an optimal gauge in physical problems.

2 Poincaré metric and frame energy

Let Hn denote the upper half-space {(x1, · · · , xn) ∈ Rn|xn > 0} together with the
Poincaré metric

gHn =
1

(xn)2
δijdx

idxj , i, j = 1, · · · , n
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defined with respect to the coordinate functions (we adopt the Einstein’s summa-
tion convention). Let T2 be an abstract torus (i.e. the unique smooth orientable
2-dimensional manifold of genus one) and let ϕ : T2 ↪→ Hn, n ≥ 3 be a smooth
immersion.

Definition 2.1. A moving frame on the immersed torus M := ϕ(T2) is a pair e =
(e1, e2) ∈ Γ(TM)× Γ(TM), where TM is the tangent bundle of M , such that ∀u =
(u1, u2) ∈ T2, {e1(u), e2(u)} is a positively oriented orthonormal (with respect to
gHn) basis of the tangent space Tϕ(u)M .

By positive orientation we mean that the orientation of the above basis and that
of the immersed torus (which is fixed beforehand) do agree.

Definition 2.2. Let h := ϕ∗gHn be the pullback metric induced by the smooth
immersion ϕ. With the above notations and hypotheses, we define the frame energy
of the couple (ϕ, e), to be the functional

(2.1) F(ϕ, e) =
1

4

∫
T2

|de|2dµh,

where d is the differential of the frame, |de|2 is the square length of the differential of
the frame, and dµh is the volume form associated to the pullback metric.

Observe that

|de|2 =
2∑

γ=1

|deγ |2 =
2∑

γ=1

hαβ⟨∂uαeγ , ∂uβeγ⟩, α, β ∈ {1, 2},

where the scalar product ”⟨., .⟩” is realized by the metric g.

Denote by πT : Hn → TM and πN : Hn → NM the orthogonal projections on the
tangent and on the normal space respectively. Notice that we can make the following
decomposition

de1 = πT (de1) + πN (de1) = ⟨de1, e2⟩e2 + πN (de1),

de2 = πT (de2) + πN (de2) = ⟨de2, e1⟩e1 + πN (de2).

Using the fact that ⟨de1, e2⟩ + ⟨e1, de2⟩ = 0, we can split the frame energy into its
tangential and normal part respectively

(2.2) F(ϕ, e) =
1

2

∫
T2

|⟨e1, de2⟩|2dµh +
1

4

∫
T2

|A|2dµh = FT (ϕ, e) +WH(ϕ),

where FT (ϕ, e) is the tangential part of the frame energy, whereas WH(ϕ) can be seen
as the Willmore functional (A is the second fundamental form) with respect to the
Poincaré metric (after applying the Gauss-Bonnet theorem).

3 A lower bound of the frame energy

In this section we state and prove our main result concerning the lower bound of the
frame energy (2.1). But first, let us make some remarks which will enable us, without
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any loss of generality, to reduce the problem to the case of coordinate moving frames
associated to smooth conformal immersions of tori belonging to the moduli space of
conformal structures.

Remark 3.1. There exists ([7, Lemma 4.1.3]) a moving frame which minimizes the
tangential part of the frame energy

FT (e, ϕ) :=

∫
T2

|⟨e1, de2⟩|2dµh

or, equivalently, which satisfies the Coulomb condition

(3.1) d∗g⟨e1, de2⟩ = 0,

written in isothermal coordinates as div⟨e1,∇e2⟩ = 0. Since we are interested in min-
imizing the frame energy, we may assume further that the moving frame is Coulomb
(i.e. satisfies (3.1)).

Remark 3.2. It is well known that any isothermal (conformal) chart generates a
Coulomb frame and, according to S. S. Chern [4], the converse is also true. Indeed,
given a Coulomb frame, using Chern’s moving frame method, we can cover the torus
T2 by finitely many balls {Bk} such that ∀k = 1, · · · , N there is a difeomorphism
fk : Bk → Bk, and such that ϕ ◦ fk is a smooth conformal immersion of Bk in Rn

(and hence in Hn) and

eα =
∂uα(ϕ ◦ fk)
|∂uα(ϕ ◦ fk)|

, α = 1, 2.

Hence, we may assume that the frame e is the coordinate moving frame asociated
to the smooth conformal immersion ϕ.

Remark 3.3. We have a conformal smooth structure on T2 induced by the local
conformal coordinates. By the Uniformization Theorem (see for instance [8, Section
4.4]), T2 is conformally equivalent to a flat torus Σ (i.e. the quotient of R2 modulo a
Z2 lattice) via a diffeomorphism ψ. Thus, we may assume that f−1

k ◦ψ is a conformal
diffeomorphism. This implies that ϕ ◦ ψ = ϕ ◦ fk ◦ f−1

k ◦ ψ is a smooth conformal
immersion in Hn, to which we can associate a natural Coulomb moving frame f =
(f1, f2) i.e.

(3.2) fα =
∂vα(ϕ ◦ ψ)
|∂vα(ϕ ◦ ψ)|

, α = 1, 2, ⟨f1, df2⟩ = ∗dλ,

where (v1, v2) are the flat coordinates on Σ and λ = log |∂vα(ϕ ◦ ψ)|, α = 1, 2 is
the conformal factor (the last equality in (3.2) expresses the connection between the
moving frame on the image and the conformal structure on the domain).

Notice that e ◦ψ is a Coulomb moving frame on the immersed flat torus. We can
relate the frames f and e locally by a rotation φ in the tangent space

e1 + ie2 = eiφ(f1 + if2),

where φ : Σ → S1 is a smooth function. Also notice (see for instance [10]) that

(3.3) FT (ϕ ◦ ψ, e) ≥ FT (ϕ ◦ ψ, f),

for the flat torus Σ.
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Thus, we may also assume that the given torus is flat.

Remark 3.4. We also need to make some compactness assumption in order to avoid
the situation in which the conformal classes of Σ degenerate (this leads to a irreversible
loss of energy as well as topology). We know (see for instance [8, Section 2.7]) that
up to composition with a linear transformation which preserves the orientation, the
conformal structure of Σ is equivalent to that of a flat torus described by the lattice
generated by {(1, 0), (a, b)}, with (a, b) ∈M , where

M = {(a, b) ∈ R2| − 1

2
≤ a ≤ 1

2
,
√
1− a2 ≤ b}.

Hence we assume that Σ = R2/(Z×Z(a, b)) belongs to the moduli space of conformal

structures and will denote θ := arccos a ∈
[
π

3
,
2π

3

]
.

Now we are ready to state and prove the main result of this paper. By the above
remarks it is enough to consider just moving frames associated to smooth conformal
immersions of flat tori lying in the moduli space of conformal structures.

Theorem 3.1. Let ϕ : Σ ↪→ Hn, n ≥ 3 be a smooth conformal immersion, let e be the
coordinate frame associated to the immersion ϕ. Then the following inequality holds
true

(3.4) F(ϕ, e) =
1

4

∫
Σ

|de|2dµh > π2

(
b+

1

b

)
sin2 θ

sin2 θ + cos4 θ
.

Proof. The main ingredient we are going to use in this proof is an analogue of the
classical Fenchel Theorem ([6], [1]), due to Kuiper [13], which states that the the
total absolute curvature of a closed curve immersed in a complete, simply connected,
Riemannian manifold with negative sectional curvature is greater than 2π. Denote by
(x, y) the flat coordinates on Σ. Let cx : [0, b] → Σ and cy : [0, 1] → Σ be the curves
(which are in fact straight lines) along the vectors generating the lattice of Σ given,
for every x ∈ [0, 1], y ∈ [0, b], by

(3.5) cx(t) = (x+ t cot θ, t), cy(t) = (y cot θ + t, y)

and consider the curves γx = ϕ(cx(·)), γy = ϕ(cy(·)). The immersion ϕ being con-
formal, we denote the conformal factor with λ = log |∂xϕ| = log |∂yϕ|, and we have
∂xϕ = eλe1, ∂yϕ = eλe2. By Kuiper’s theorem and taking into account that ϕ is
conformal, we obtain

2π <

∫
γy

|k|ds =
∫ l(γy)

0

|γ′′y |ds =
∫ l(γy)

0

|de1e1|ds =
∫ 1

0

|de1e1|
1

xn
eλdx,

where k is the curvature of γy, s is the natural parameter and l(γy) is the length of
the curve γy. By squaring the above inequality, using Cauchy- Schwarz inequality
and integrating with respect to y ∈ [0, b], we find

(3.6) 4π2b <

∫ b

0

∫ 1

0

|de1e1|2
1

(xn)2
e2λdxdy =

∫
Σ

|de1e1|2dµh.
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Now we do the same for the curve γx. We have

γ′′x
|γ′′x |

= cos θe1 + sin θe2 =: eθ2,

and similar arguments as above yield

(3.7) 2π <

∫
γx

|k|ds =
∫ l(γx)

0

|γ′′x |ds =
∫ l(γx)

0

|deθ
2
eθ2|ds =

1

sin θ

∫ b

0

|deθ
2
eθ2|

1

xn
eλdy.

Again, by squaring the inequality, using Cauchy-Schwarz inequality and integrating
with respect to x ∈ [0, 1], we get

(3.8)
4π2

b
<

1

sin2 θ

∫ 1

0

∫ b

0

|deθ
2
eθ2|2

1

(xn)2
e2λdxdy =

1

sin2 θ

∫
Σ

|deθ
2
eθ2|2dµh.

Using the definition of eθ2, and decomposing into normal and tangential parts respec-
tively, we obtain

(3.9)

|deθ
2
eθ2|2 = |πN (deθ

2
eθ2)|2 + ⟨deθ

2
eθ2, e1⟩2 + ⟨deθ

2
eθ2, e2⟩2 =

= e−4λ
[
cos4 θA2

11 + 4 sin2 θ cos2 θA2
12 + sin4 θA2

22

]
+

+cos2 θ⟨de1
e1, e2⟩2 + sin2 θ⟨de2

e2, e1⟩2,

where (Aij) is the second fundamental form (with respect to the Poincaré metric).
By substituting the equality (3.9) in the inequality (3.8), we find

(3.10)

∫
Σ

e−4λ

[
cos4 θ

sin2 θ
A2

11 + 4 cos2 θA2
12 + sin2 θA2

22

]
+

+
[
cot2 θ⟨de1e1, e2⟩2 + ⟨de2e2, e1⟩2

]
dµh >

4π2

b
.

Computing as above |de1e1|2 = e−4λA2
11 + ⟨de1e1, e2⟩2, adding (3.6) and (3.10),

yields

(3.11)

∫
Σ

e−4λ

[(
1 +

cos4 θ

sin2 θ

)
A2

11 + 4 cos2 θA2
12 + sin2 θA2

22

]
+

+
[(
1 + cot2 θ

)
⟨de1e1, e2⟩2 + ⟨de2e2, e1⟩2

]
dµh > 4π2

(
b+

1

b

)
.

Multiplying both sides of the last inequality by
sin2 θ

sin2 θ + cos4 θ
, we obtain

(3.12)

∫
Σ

e−4λ

[
A2

11 +
4 cos2 θ sin2 θ

sin2 θ + cos4 θ
A2

12 +
sin4 θ

sin2 θ + cos4 θ
A2

22

]
+

+

[
1

sin2 θ + cos4 θ
⟨de1e1, e2⟩2 +

sin2 θ

sin2 θ + cos4 θ
⟨de2e2, e1⟩2

]
dµh >

> 4π2

(
b+

1

b

)
sin2 θ

sin2 θ + cos4 θ
.
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Now, notice that

(3.13)
|de|2 =

2∑
i,j=1

|dei
ej

2 = e−4λ
[
A2

11 + 2A2
12 +A2

22

]
+

+⟨de1e1, e2⟩2 + ⟨de2e2, e1⟩2.

We easily get the following estimates

2 >
1

sin2 θ + cos4 θ
≥ sin2 θ

sin2 θ + cos4 θ
,

2 ≥ 4 cos2 θ sin2 θ

sin4 θ + cos4 θ
≥ 4 cos2 θ sin2 θ

sin2 θ + cos4 θ
, 1 ≥ sin4 θ

sin2 θ + cos4 θ
,

which imply (3.4). �

Our next goal is to prove, using the result we just obtained, that the frame energy
is bounded below (strictly) by 2π2, namely, we have the following

Corollary 3.2. For the frame energy defined as above, the following lower bound
holds:

(3.14) F(ϕ, e) =
1

4

∫
Σ

|de|2dµh > 2π2.

Proof. First of all, notice that (6) is symmetric with respect to a, so we may consider
only the case when (a, b) ∈M+ =M ∩ {a > 0}.

Now, consider the function

(3.15) f :M+ → R, f(b, θ) =

(
b+

1

b

)
sin2 θ

sin2 θ + cos4 θ
.

Observe that the function is not bounded below by 2, for example we have f(sin θ, θ) <

2, ∀θ ∈
[
π

3
,
2π

3

]
\{π

2
}. Consider the set

Ω = {(a, b)|
(
a− 1

2

)2

+ (b− 1)
2 ≤ 4} ∩M+

and observe that f |∂Ω ≥ 2, with equality if and only if b = 1 and θ =
π

2
. Also notice

that the function b 7→ f(b, θ) is monotone strictly increasing, which implies that

(3.16) f |M+\Ω ≥ 2.

Now, let us prove our claim for (a, b) ∈ Ω. By the results of [9] and [11] we know
that the Willmore conjecture holds true for (a, b) ∈ Ω i.e. W(ϕ) ≥ 2π2 for (a, b) ∈ Ω,
where W(ϕ) is the standard Willmore energy. By a result of Weiner [16] the integral∫

Σ

(H2 +K)dµh,
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is a conformal invariant (i.e. is invariant under any conformal change of the metric in
the ambient space), K being the constant sectional curvature (in our case K = −1)
and H being the mean curvature.

Thus, observing that FT (ϕ, e) in (2.2) is nonnegative, we find

(3.17) 2π2 ≤ W(ϕ) =

∫
Σ

(H2 − 1)dµh <

∫
Σ

H2dµh =
1

4

∫
Σ

|A|2dµh ≤ F(ϕ, e),

where we have used again the Gauss-Bonnet theorem. So we conclude that (3.14)
holds true. �
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[6] W. Fenchel, Über Krüummung und Windung geschlossener Raumskurven, Math.
Ann. 101 (1929), 238-252.

[7] J. Jost, Compact Riemann Surfaces. An introduction to contemporary mathemat-
ics, Third edition, Universitext, Springer-Verlag, Berlin 2006.
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