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Abstract. We study extrinsic geometry of a codimension-one foliation F
of a Finsler space (M,F ), in particular, of a Randers space (M,α + β).
Using a unit vector field ν orthogonal (in the Finsler sense) to the leaves
of F , we define a new Riemannian metric g on M , which for Randers case
depends nicely on (α, β). For that g we derive several geometric invari-
ants of F (e.g. the Riemann curvature and the shape operator) in terms
of F ; then under natural assumptions on β which simplify derivations,
we express them in terms of invariants arising from α and β. Using our
approach of [13], we produce the integral formulae for F of closed (M,F )
and (M,α + β), which relate integrals of mean curvatures with those in-
volving algebraic invariants obtained from the shape operator of F and
the Riemann curvature in the direction ν. They generalize formulae by
Brito-Langevin-Rosenberg (that total mean curvatures of any order for a
foliated closed Riemannian space of constant curvature don’t depend on
a choice of F).
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1 Introduction

Two recent decades brought increasing interest in Finsler geometry (see [2, 4, 15]
and the bibliographies therein), in particular, in extrinsic geometry of hypersurfaces
of Finsler manifolds (see the items above and, for example, [14]). Among all the
Finsler structures, Randers metrics (introduced in [9] and being the closest relatives
of Riemannian ones) play an important role.

Extrinsic geometry of foliated Riemannian manifolds is also of definite interest
since some time (see [11, 12] and, again, the bibliographies therein). Among other
topics of interest, one can find a number of papers devoted to so called integral for-
mulae (see surveys in [12, 1]), which provide obstructions for existence of foliations
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(or compact leaves of them) with given geometric properties. A series of integral
formulae has been provided in [13]. They include the formulae in [10] that the total
mean curvature of the leaves is zero, and generalize the formulae in [3], which show
that total mean curvatures (of arbitrary order k) for codimension-one foliations on a
closed (m+1)-dimensional manifold of constant sectional curvature K depend only on
K, k, m and the volume of the manifold, not on a foliation. One of such formulae was
used in [7] to prove that codimension-one foliations of a closed Riemannian manifold
of negative Ricci curvature are far (in a sense defined there) from being umbilical.

In this paper we study extrinsic geometry of a codimension-one transversely ori-
ented foliation F of a closed Finsler space (M,F ), in particular, of a Randers space
(M,α+ β), α being the norm of a Riemannian structure a and β a 1-form of α-norm
smaller than 1 everywhere on M . Using a unit normal ν (in the Finsler sense) to the
leaves of F we define a new Riemannian structure g on M , which in Randers case
depends nicely on α and β. For that g, we derive several geometric invariants of F
(e.g. the Riemann curvature and the shape operator) in terms of F ; under natural as-
sumptions on β which simplify derivations, we express them in terms of corresponding
invariants arising from α and some quantities related to β. Then, using the approach
of [13], we produce the integral formulae for F on (M,F ) and (M,α + β); some of
them generalize the formulae in [3].

Our formulae relate integrals of σi’s with those involving algebraic invariants (see
Appendix) obtained from Ap (p ∈ M) – the shape operator of a foliation F , Rp – the
Riemann curvature in the direction ν normal to F , and their products of the form
(Rp)jAp, j = 1, 2, . . . In fact, we get a bit more: we produce an infinite sequence
of such formulae for a smooth unit vector field ν on M involving these algebraic
invariants. To simplify calculations, we work on locally symmetric (∇R = 0 with
respect to g) Finsler manifolds, where our approach can be applied with the full force
(Section 3). We show that our formulae reduce to these in [3] in the case of constant
curvature and to those in [13] in the Riemannian case. Using Finsler geometry of
Randers spaces we produce also (Section 4) integral formulae on codimension-one
foliated Riemannian manifolds which involve not only Ap’s and Rp’s but also an
auxiliary 1-form β.

We discuss a number of particular cases and provide consequences of our new
formulae.

2 Preliminaries

Recall Euler’s Theorem: If a function f on Rm+1 is smooth away from the origin of
Rm+1 then the following two statements are equivalent:

– f is positively homogeneous of degree r, that is f(λ y) = λrf(y) for all λ > 0;

– the radial derivative of f is r times f , namely, fyi(y) yi = rf(y).

The obvious consequence of Euler’s Theorem helps us to represent several formulae
in what follows:

Corollary 2.1. If a smooth function f on Rm+1 \ {0} obeys the 2-homogeneity con-
dition f(λ y) = λ2f(y) for λ > 0 then f(y) = 1

2 fyiyj (y) yiyj for smooth functions
fyiyj on Rm+1 \ {0}.
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Proof. By Euler’s Theorem, fyi(y) yi = 2f(y). Since fyi(λ y) = λfyi(y), by Euler’s
Theorem, we have fyi(y) = fyiyj (y)yj . �

2.1 The Minkowski and Randers norms

Definition 2.1 (see [15]). A Minkowski norm on a vector space Rm+1 is a function
F : Rm+1 → [0,∞) with the following properties (of regularity, positive 1-homogeneity
and strong convexity):

M1 : F ∈ C∞(Rm+1 \ {0}), M2 : F (λ y) = λF (y) for all λ > 0 and y ∈ Rm+1,
M3 : For any y ∈ Rm+1 \ {0}, the following symmetric bilinear form is positive

definite on Rm+1 :

(2.1) gy(u, v) =
1

2

∂2

∂s ∂t

[
F 2(y + su + tv)

]
| s=t=0

.

By (M2), gλy = gy for all λ > 0. By (M3), {y ∈ Rm+1 : F (y) ≤ 1} is a strictly convex
set. Note that

(2.2) gy(y, v) =
1

2

∂

∂t

[
F 2(y + tv)

]
| t=0

, gy(y, y) = F 2(y).

One can check that F (u+ v) ≤ F (u) +F (v) (the triangle inequality) and Fyi(y)ui ≤
F (u) (the fundamental inequality) for all y ∈ Rm+1 \ {0} and u, v ∈ Rm+1. By
Corollary 2.1, we have F 2(y) = gij(y) yiyj , where gij = 1

2 [F 2]yiyj = FFyiyj +FyiFyj

are smooth functions in Rm+1\{0} which, in general, cannot be extended continuously
to all of Rm+1. The following symmetric trilinear form C for Minkowski norms is
called the Cartan torsion:
(2.3)

Cy(u, v, w) =
1

2

∂

∂t

[
gy+tw(u, v)

]
| t=0

where y ∈ Rm+1 \ {0}, u, v, w ∈ Rm+1 .

The homogeneity of F implies the following:

Cy(u, v, w) =
1

4

∂3

∂r ∂s ∂t

[
F 2(y + ru + sv + tw)

]
| r=s=t=0

, Cλy = λ−1Cy (λ > 0).

We have Cy(y, · , · ) = 0. The mean Cartan torsion is given by Iy(u) := TrCy(· , · , u).
Observe that

Cijk := C(∂yi , ∂yj , ∂yk) =
1

2

∂

∂yk
gij =

1

4
[F 2]yiyjyk , Ik = gijCijk.

Let (bi) be a basis for Rm+1 and (θi) the dual basis in (Rm+1)∗. The Busemann-

Hausdorff volume form is defined by dVF = σF (x) θ1∧· · ·∧θm+1, where σF = volBm+1

volBm+1 .
Here Bm+1 := {y ∈ Rm+1 : ∥y∥ < 1} is a Euclidean unit ball, and volBm+1 is the
Euclidean volume of a strongly convex subset Bm+1 := {y ∈ Rm+1 : F (yibi) < 1} (so
that for the unit cubic U = [0, 1]m+1, vol U = 1).

The distortion of F is defined by τ(y) = log(
√

det gij(y)/σF ). It has the 0-
homogeneity property: τ(λy) = τ(y) (λ > 0), and τ = 0 for Riemannian spaces.

The angular form is defined by hy(u, v) = gy(u, v) − F (y)−2gy(y, u) gy(y, v). Ob-
serve that hy(u, u) ≥ gy(u, u) − F (y)−2gy(y, y) gy(u, u) = 0 and equality holds if and
only if u|| y.
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A vector n ∈ Rm+1 is called a normal to a hyperplane W ⊂ Rm+1 if gn(n,w) =
0 (w ∈ W ). There are exactly two normal directions to W , see [15], which are opposite
when F is reversible (i.e., F (−y) = F (y) for all y ∈ Rm+1).

Definition 2.2. Let a(· , ·) = ⟨· , ·⟩ be a scalar product and α(y) = ∥y∥α =
√

⟨y, y⟩
for y ∈ Rm+1 the corresponding Euclidean norm on Rm+1. If β is a linear form on
Rm+1 with ∥β ∥α < 1 then the following function F is called the Randers norm:

(2.4) F (y) = α(y) + β(y) =
√

⟨y, y⟩ + β(y).

For Randers norm (2.4) on Rm+1, the bilinear form gy obeys, see [15],

gy(u, v) = α−2(y)(1 + β(y)) ⟨u, v⟩ + β(u)β(v)

− α−3(y)β(y) ⟨y, u⟩ ⟨y, v⟩ + α−1(y)
(
β(u) ⟨y, v⟩ + β(v) ⟨y, u⟩

)
,(2.5)

det gy = (F (y)/α(y))m+2 det a.(2.6)

Let N ∈ Rm+1 be a unit normal to a hyperplane W in Rm+1 with respect to ⟨· , ·⟩,
i.e.,

⟨N,w⟩ = 0 (w ∈ W ), α(N) = ∥N∥α =
√
⟨N,N⟩ = 1.

Let n be a vector F -normal to W , lying in the same half-space with N and such that
∥n∥α = 1. Set

g(u, v) := gn(u, v), u, v ∈ Rm+1.

Then g(n, n) = F 2(n), see (2.2), and F (n) = 1 + β(n).
The ’musical isomorphisms’ ♯ and ♭ will be used for rank one tensors and symmetric

rank 2 tensors on (Rm+1, a) and Riemannian manifolds. For example, if β is a 1-form
on Rm+1 and v ∈ Rm+1 then ⟨β♯, u⟩ = β(u) and v♭(u) = ⟨v, u⟩ for any u ∈ Rm+1.

Lemma 2.2. If the Randers norm obeys β(N) = 0 (i.e., β♯ ∈ W ) then

n = cN − β♯,(2.7)

g(u, v) = c2
(
⟨u, v⟩ − β(u)β(v)

)
, u, v ∈ W ,(2.8)

g(n, n) = c4, g(n, v) = 0,(2.9)

where c := (1 − ∥β ∥2α)1/2 > 0. The vector ν = c−2n is an F -unit normal to W .

Proof. For arbitrary β and y = n and α(n) = 1, the formula (2.5) reads
(2.10)
g(u, v) = (1 + β(n))⟨u, v⟩ + β(u)β(v) − β(n) ⟨n, u⟩ ⟨n, v⟩ + β(u) ⟨n, v⟩ + β(v) ⟨n, u⟩.

Assuming u = n, from (2.10) we find

(2.11) g(n, v) = (1 + β(n)) ⟨n + β♯, v⟩.

Note that |β(n)| = |⟨β♯, n⟩| ≤ α(β♯)α(n) < 1; hence, 1 + β(n) > 0. We find from
(2.11) with v ∈ W that n + β♯ = ĉ N for some ĉ > 0. Using 1 = ⟨n, n⟩ = ĉ 2 −
2 ĉ β(N) + ∥β ∥2α, we get two values

ĉ = β(N) ± (β(N)2 + c2)1/2.
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By condition β(N) = 0 we have β♯ ∈ W , this yields ĉ = c and (2.7). Thus,

β(n) = β(cN − β♯) = −∥β∥2α, 1 + β(n) = c2.

Finally, (2.8) follows from (2.10). �
Lemma 2.3. Let the Randers norm obeys β(N) = 0 (i.e., β♯ ∈ W ). If u,U ∈ W
and

(2.12) g(u, v) = ⟨U, v⟩ for all v ∈ W

then β(u) = c−4β(U) and

(2.13) c2 u = U + c−2β(U)β♯.

Proof. By (2.8), we have

g(u, v) = c2⟨u− β(u)β♯, v⟩.

Then from (2.12), since u, U and β♯ belong to W , we obtain

u− β(u)β♯ = c−2U.

Applying β we get β(u)−β(u) ∥β ∥2α = c−2β(U), β(u) = c−4β(U) and then (2.13). �

2.2 Finsler spaces

Let Mm+1 be a connected smooth manifold and TM its tangent bundle. The natural
projection π : TM0 → M , where TM0 := TM \ {0} is called the slit tangent bundle.
A Finsler structure on M is a Minkowski norm F in tangent spaces TpM , which
smoothly depends on a point p ∈ M . Note that π∗ maps the double tangent bundle
T 2M into TM itself.

A spray on a manifold M is a smooth vector field G on TM0 such that

(2.14) π∗(Gv) = v, Gλv = λ (hλ)∗(Gv) (v ∈ TM0, λ > 0),

where hλ : v 7→ λ v is the homothety of TM . The meaning of (2.14)1 is that G is a
second-order vector field over M , and (2.14)2 is the homogeneous quadratic condition.
In local coordinates (xi), G is expressed as G(y) = yi∂xi − 2Gi∂yi , where Gi(λ y) =
λ2Gi(y) (λ > 0).

Using G we define the following notions: covariant derivative, parallel translation
(and parallel vectors) along a curve, geodesics and curvature. A curve γ(t) in TM0

satisfying γ̇ = Gγ is an integral curve of G; it is equal to the canonical lift of c :=
π ◦ γ. The covariant derivative of a vector field u(t) along a curve c(t) in M is
given by Dċ u = {u̇i + Γi

kj(ċ) ċ
k uj} ∂xi | c . Here Gi = 1

2 Γi
kj y

kyj for smooth functions

Γi
kj = (Gi)ykyj on TM0, see Corollary 2.1. The following properties are obvious:

Dċ (u + v) = Dċ u + Dċ v, Dċ (fu) = ċ(f)u + fDċ u, Dλċ u = λDċ u

for any f ∈ C∞(M) and λ > 0, see [15]. A vector field u(t) along c is parallel if
Dċ u(t) ≡ 0, i.e.,

u̇i + Γi
kj(ċ) ċ

k uj = 0 (i ≥ 1).
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A curve c(t) in M is called a geodesic of G if it is a projection of an integral curve
of G; hence, c̈ = Gċ. A curve c(t) is a geodesic if and only if the tangent vector u = ċ
is parallel along itself: Dċ ċ = 0. For a geodesic c(t) we have the following quasilinear
system of second order ODEs

c̈ i + 2G i(ċ) = 0, i = 1, . . . ,m + 1 .

A Finsler metric F on M induces a Finsler spray G on TM0, whose geodesics
are locally shortest paths connecting endpoints and have constant speed. Its geodesic
coefficients are given by

G i =
1

4
gil

(
[F 2]xkyl yk − [F 2]xl

)
=

1

4
gil

(
2
∂gjl
∂xk

− ∂gjk
∂xl

)
yjyk ,

see [15]. Here gij(y) = 1
2 [F 2]yiyj (y), compare (2.1). Then Γi

kj(y) = 1
2 g

il
(∂gjl
∂xk + ∂gkl

∂xj −
∂gjk
∂xl

)
are homogeneous of 0-degree functions on TM0.

Remark 2.3. A Finsler metric on a manifold M is called a Berwald metric if in any
local coordinate system (x, y) in TM0, the Christoffel symbols Γi

jk are functions on

M only, in which case the geodesic coefficients Gi = 1
2 Γi

kj(x) ykyj are quadratic in

y = yi∂xi . On a Berwald space, the parallel translation along any geodesic preserves
the Minkowski functionals; thus, such spaces can be viewed as Finsler spaces modeled
on a single Minkowski space. Berwald metrics are characterized among Randers
ones, F = α + β, by the following criterion: β is parallel with respect to α, see [15,
Theorem 2.4.1]. If β is a closed 1-form, then Finslerian geodesics are the same (as
sets) as the geodesics of the metric a.

A Finsler manifold is positively (resp. negatively) complete if every geodesic c(t)
on (0, t0) can be extended for (0,∞) (resp. (−∞, 0)), and F is complete if it is both
positively and negatively complete. This property is satisfied by all closed Finsler
manifolds. Let (M,F ) be positively complete; hence, for any p, q ∈ M there exists a
globally minimizing geodesic from p to q, see also Hopf-Rinov theorem [15, p. 178].
Let cy be a geodesic with cy(0) = p and ċy(0) = y ∈ TpM . The exponential map is
defined by expp(y) = cy(1). By homogeneity of G one has cy(t) = c ty(1) for t > 0;
hence, expp(ty) = cy(t). Recall [14] that expp is smooth on TM0 and C1 at the origin
with d(expp)| 0 = idTpM .

Consider a geodesic c(t), 0 ≤ t ≤ 1. A C∞ map H : (−ε, ε) × [0, 1] → M is
called a geodesic variation of c if H(0, t) = c(t) and for each s ∈ (−ε, ε), the curve
cs(t) := H(s, t) is a geodesic. For a geodesic variation H of c, the variation field
Y (t) := ∂H

∂s (0, t) along c satisfies the Jacobi equation:

(2.15) DċDċ Y + Rċ(Y ) = 0

for some (y ∈ TM)-dependent (1,1)-tensor Ry. Jacobi equation (2.15) serves as the
definition of curvature. A vector field Y (t) satisfying (2.15) along a geodesic c(t) is
called Jacobi field. We have gċ(Y (t), ċ(t)) = λ2(a + bt) and gċ(Dċ Y (t), ċ(t)) = λ2b
for some constants a, b and λ=F (ċ). The orthogonal component Y ⊥(t) = Y (t)− (a+
bt)ċ(t) of the Jacobi field Y (t) along c(t) is also a Jacobi field such that Y ⊥(t) and

Dċ Y
⊥(t) are gċ-orthogonal to ċ(t). Define R

(1)
ċ(t) : Tc(t)M → Tc(t)M by R

(1)
ċ(t) (u(t)) =
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Dċ(t)[Rċ(t) (u(t))], where u(t) is a parallel vector field along c. Similarly, we define

R
(2)
ċ(t), R

(3)
ċ(t) etc. Thus, by (2.15), a spray defines transformations Ry : TpM → TpM

called the Riemann curvature in a direction y ∈ TpM \ {0}, and we have Ry(y) = 0
and Rλy = λ2Ry (λ > 0). In coordinates, Ry = Ri

kdx
k∂xi and Ri

k(y) yk = 0, where
Ri

k’s depend on the Finsler spray only [14]:

Ri
k = 2 (Gi)xk − yj (Gi)xj yk + 2Gj (Gi)yj yk − (Gi)yj (Gj)yk .

Moreover, Ri
k = R i

j kl y
j yl for local functions {R i

j kl} = 1
2 (Ri

k)yjyl on TM0 (see
Corollary 2.1) and

R i
j kl = (Γi

jl)xk − (Γi
jk)xl + Γm

jl Γi
mk − Γm

jk Γi
ml .

For the Finsler spray, Ry is gy-self-adjoint: gy(Ry(u), v) = gy(u,Ry(v)), u, v ∈ TpM .
For a plane P ⊂ TpM tangent to M and a vector y ∈ P \ {0}, the flag curvature

K(P, y) is given by

K(P, y) =
gy(Ry(u), u)

gy(y, y)gy(u, u) − gy(y, u)gy(y, u)
,

where u ∈ P is such that P = span{y, u}; certainly, the value of K(P, y) is in-
dependent of the choice of u ∈ P . If K(P, y) is a scalar function on TM0 (that
holds in dimension two) then F is said to be of scalar (flag) curvature, in this case,
Ry(u) = K(π(y)){gy(y, y)u− gy(y, y)y} (y, u ∈ TM0). If K = K(π(y)) (i.e., the flag
curvature is isotropic) and m ≥ 2 then K = const, see [5, Lemma 7.1.1]. For each
K ∈ R there exist many non-isometric Finsler metrics of constant scalar curvature K.

Let {ei}1≤i≤m+1 be a gy-orthonormal basis for TpM such that em+1 = y/F (y), and
let Pi = span{ei, y} for some y ∈ TpM . Then K(Pi, y) = F−2(y) gy(Ry(ei), ei). The
Ricci curvature is a function on TM0 defined as the trace of the Riemann curvature,

Ric(y) =
∑m

i=1
gy(Ry(ei), ei) = F 2(y)

∑m

i=1
K(Pi, y)

with the homogeneity property Ric(λy) = λ2 Ric(y) (λ > 0). In a coordinate sys-
tem, by Corollary 2.1 we have Ric(y) = R i

j ik y
j yk = Ricjk yj yk. A Finsler space

(Mm+1, F ) is said to be of constant Ricci curvature λ (or, Einstein) if Ric(y) =
mλF 2(y) (y ∈ TM0), or Ricjk = mλgjk in coordinates.

3 Codimension-one foliated Finsler spaces

Given a transversally oriented codimension-one foliation F of a Finsler manifold
(Mm+1, F ), there exists a globally defined F -normal (to the leaves) smooth vector
field n which defines a Riemannian metric g := gn with the Levi-Civita connection ∇.
We have g(n, u) = 0 (u ∈ TF) and g(n, n) = F 2(n), see (2.9). Then ν = n/F (n) is
an F -unit normal.

3.1 The Riemann curvature and the shape operator

In this section we apply the variational approach to find a relationship between the
Riemann curvature of F and g. It generalizes the following.
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Proposition 3.1 (see [15]). Let Y be a geodesic field on an open subset U in a Finsler
space (M,F ) and ĝ := gY the induced metric on U . Then the Riemann curvature of
F and F̂ :=

√
ĝ obey RY = R̂Y . Moreover, Y is a geodesic field of F̂ and for the

Levi-Civita connection we have DY X = D̂Y X.

For a codimension-one Riemannian foliation, a unit normal ν is a geodesic vector
field; hence, by Proposition 3.1, transformations Rν defined for F by (2.15) coincide
with the Jacobi operator R(·, ν)ν of the metric g. Recall that the second differential
is defined by ∇2

u,v = ∇u∇v −∇∇uv for any u, v.

Let Yt (|t| ≤ ε) be a smooth family of F -unit vector fields on an open subset U in
(M,F ). Put Ẏt = ∂tYt and ġt = ∂tgt, where gt := gYt is a family of metrics on U . By
definition (2.3) of the Cartan torsion, we have

(3.1) ġt = 2CYt( · , · , Ẏt).

Note that ġt(Yt, ·) = 2CYt(Yt, · , Ẏt) = 0.

Proposition 3.2. Let Yt (|t| ≤ ε) doesn’t depend on t at a point p ∈ U and u, v ∈
TpM . Then

−∂tRt(u, Yt, Yt, v) = CY (u,∇t
vYt,∇t

Y Ẏt) + CY (∇t
uYt, v,∇t

Y Ẏt)

+ CY (∇t
Y Yt, v,∇t

uẎt) + CY (u,∇t
Y Yt,∇t

vẎt)

+ CY (u, v, (∇t)2Y,Y Ẏt) + 2(∇t
Y CYt)(u, v,∇t

Y Ẏt).(3.2)

The shape operators At (when Yp = νp) of F with respect to gt and the volume forms
dVt at p obey

gt(∂tAt(u), v) = −C ν(u, v,∇t
ν Ẏt), ∂t(dVt) = 0.(3.3)

Proof. Put Π(u, v) = ∂t∇t
u v for t-independent vector fields u, v. Then, see [16],

(3.4) 2 gt(Π(u, v), w) = (∇t
v ġt)(u,w) + (∇t

u ġt)(v, w) − (∇t
w ġt)(u, v),

and for arbitrary t-dependent vector fields Xt and Zt we obtain

∂t∇t
Xt

Zt = Π(Xt, Zt) + ∇t
Xt

(∂tZt) + ∇t
∂tXt

Zt.

By definition,

Rt(u,Zt)Yt = ∇t
u(∇t

Zt
Yt) −∇t

Zt
(∇t

uYt) −∇t
[u,Zt]

Yt.

So,
∂tRt(u,Zt)Yt = ∂t(∇t

u(∇t
Zt

Yt)) − ∂t(∇t
Zt

(∇t
u Yt)) − ∂t(∇t

[u,Zt]
Yt).

Deriving the terms of the above,

∂t(∇t
Zt

(∇t
u Yt)) = Π(Zt,∇t

u Yt) + ∇t
Zt

(Π(u, Yt)) + ∇t
Zt

(∇t
u Ẏt) + ∇t

Żt
(∇t

u Yt),

∂t(∇t
u(∇t

Zt
Yt)) = Π(u,∇t

Zt
Yt) + ∇t

u(Π(Zt, Yt)) + ∇t
u(∇t

Żt
Yt) + ∇t

u(∇t
Zt

Ẏt),

∂t(∇t
[u,Zt]

Yt) = Π([u,Zt], Yt) + ∇t
[u,Zt]

Ẏt + ∇t
[u,Żt]

Yt
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with Żt = ∂tZt, we obtain a ‘time-dependent’ version of [16, Proposition 2.3.4],

∂tRt(u,Zt)Yt = (∇t
u Π)(Zt, Yt) − (∇t

Zt
Π)(u, Yt) + Rt(u,Zt)Ẏt + Rt(u, Żt)Yt.

We shall compute ∂tRt(u, Yt, Yt, v) := ∂tgt(Rt(u, Yt)Yt, v) at p ; thus, terms with Ẏ
will be canceled at the final stage. Assume at a ‘time’ t of our choice, ∇ = ∇t and
∇u = ∇v = 0 at p. Then perform the following preparatory calculations at p :

1

2
Y
(
(∇t

u ġt)(Yt, v)
)

= Y
(
u (CYt(Yt, v, Ẏt)) − CYt(∇t

u Yt, v, Ẏt)
)

= −CY (∇uYt, v,∇Y Ẏt),

1

2
Y
(
(∇t

Yt
ġt)(u, v)

)
= Y

(
Yt (CYt(u, v, Ẏt))

)
− Y (CYt(∇t

Yt
u, v, Ẏt))

−Y (CYt(u,∇t
Yt

v, Ẏt))

= CY (u, v,∇Y ∇Yt Ẏt) + 2(∇Y CY )(u, v,∇Y Ẏt),

1

2
Y
(
(∇t

v ġt)(u, Yt)
)

= Y
(
v (CYt(u, Yt, Ẏt)) − CYt(u,∇vYt, Ẏt)

)
= −CY (u,∇v Yt,∇Y Ẏt),

(∇∇Y Yt ġt)(u, v) = 2CY (u, v,∇∇Y Yt Ẏt),

(∇u ġt)(∇Y Yt, v) = 2CY (∇Y Yt, v,∇uẎt),

(∇v ġt)(u,∇Y Yt) = 2CY (u,∇Y Yt,∇vẎt) .

Using all of that and (3.1) we obtain at p:

⟨(∇Y Π)(u, Yt), v⟩ = ⟨∇Y (Π(u, Yt)) − Π(u,∇Y Yt), v⟩
= Y ⟨Π(u, Yt), v⟩ − ⟨Π(u,∇Y Yt), v⟩

=
1

2
Y
[

(∇t
u ġt)(Yt, v) + (∇t

Yt
ġt)(u, v) − (∇t

v ġt)(u, Yt)
]

− 1

2

[
(∇∇Y Yt ġt)(u, v) + (∇u ġt)(∇Y Yt, v) − (∇v ġt)(u,∇Y Yt)

]
= CY (u,∇vYt,∇Y Ẏt) − CY (∇uYt, v,∇Y Ẏt)

+ 2(∇Y CYt)(u, v,∇Y Ẏt) + CY (u, v,∇Y ∇t
Yt
Ẏt) − CY (u, v,∇∇Y Yt Ẏt)

−CY (∇Y Yt, v,∇uẎt) + CY (u,∇Y Yt,∇vẎt).

Here the terms with CY (Y, · , · ) were canceled on U , and the identity [Yt, v]⊤ =
−(∇t

v Yt)
⊤ at p (where ⊤ is the orthogonal to Y at p component of a vector) was

applied. Similarly, we use at p

u
[
(∇t

Yt
ġt)(Yt, v)

]
= −2CY (∇Y Yt, v,∇uẎt), u

[
(∇t

v ġt)(Yt, Yt)
]

= 0,

(∇∇uYt ġ)(Y, v) = 0, (∇v ġ)(Y,∇uYt) = 0,

(∇Y ġ)(∇uYt, v) = 2CY (∇u Yt, v,∇Y Ẏt)
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to find

⟨(∇u Π)(Yt, Yt), v⟩ = ⟨∇u(Π(Yt, Yt)) − 2Π(Yt,∇uYt), v⟩
= u⟨Π(Yt, Yt), v⟩ − 2 ⟨Π(Yt,∇uYt), v⟩

= u
[
(∇t

Yt
ġt)(Yt, v) − 1

2
(∇t

v ġt)(Yt, Yt)
]

−(∇∇uYt ġ)(Yt, v) − (∇Y ġ)(∇uYt, v) + (∇v ġ)(Y,∇uYt)

= −2CY (∇Y Yt, v,∇uẎt) − 2CY (∇uYt, v,∇Y Ẏt).

Since Ẏ = 0 at p, we have

∂tRt(u, Yt, Yt, v) = (∂tg)(Rt(u, Yt)Yt, v) + g(∂tRt(u, Yt)Yt, v)

= 2CY (Rt(u, Yt)Yt, v, Ẏ ) + g(∂tRt(u, Yt)Yt, v) = g(∂tRt(u, Yt)Yt, v).

Finally, we have (3.2) at p for all t ≥ 0. For the second fundamental form bt of F
(with respect to gt), as in the proof of [12, Lemma 2.9], using (3.1), (3.4), ġ(p) = 0
and Ẏ (p) = 0, we get at a point p:

∂tbt(u, v) = ġ(∇uv, Y ) + g(∂t∇uv, Y ) + g(∇uv, ∂tY )

=
1

2

(
(∇uġ)(v, Y ) + (∇v ġ)(u, Y ) − (∇Y ġ)(u, v)

)
+ g(∇uv, Ẏ )

= −∇Y (CY (u, v, Ẏ )) = −CY (u, v,∇Y Ẏ ).

From this, using bt(u, v) = gt(At(u), v), we get (3.3)1:

gt(At(u), v) = ∂tbt(u, v) − ġ(A(u), v) = −Cν(u, v,∇ν Ẏ ).

By the formula for the volume form of a t-dependent metric, ∂t(dVt) = 1
2 (Tr ġ) dVt,

see [16], and definition of the mean Cartan torsion, we get

(3.5) ∂t(dVt) = IYt(Ẏt) dVt.

Next, (3.3)2 follows from (3.5) and Ẏ (p) = 0. �
Let L be a leaf through a point p ∈ M , and ρ the local distance function to

L in a neighborhood of p. Denote by ∇̂ the Levi-Civita connection of the (local
again) Riemannian metric ĝ := g∇ρ. Note that ∇ρ = ν on L. The shape operator
A : TF → TF (self-adjoint for g) is defined at p ∈ M by (compare [15] with the
opposite sign)

A(u) = −∇̂u ν (u ∈ TpF).

The shape operator Ag : TF → TF with respect to the metric g is defined at p ∈ M by

Ag(u) = −∇u ν (u ∈ TpF).

Note that 2 g(∇u ν, ν) = u(g(ν, ν)) = 0 (u ∈ TF); hence, ∇u ν ∈ TF . The mean
curvature function (of the leaves with respect to g) is defined by Hg = TrAg. Recall
that F is g-totally umbilical if Ag = HgIm, and is g-totally geodesic if Ag ≡ 0.
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Corollary 3.3. Let L be a hypersurface in an open set U ⊂ M . If an F -unit vector
field Yt (0 ≤ t ≤ ε) is given in U and orthogonal to L then for the metric gt := gYt

for all u, v ∈ TpL (p ∈ L) we have

∂tRt(u, Yt, Yt, v) = CY (At(u), v,∇t
Y Ẏt) + CY (u,At(v),∇t

Y Ẏt)

−CY (u, v, (∇t)2Y,Y Ẏt) − 2(∇t
Y CYt)(u, v,∇t

Y Ẏt),(3.6)

g(∂tAt(u), v) = −CY (u, v,∇t
Y Ẏt), ∂t(dVt) = 0.(3.7)

Proof. This follows from Ẏt = 0 on L, the definition of At (for gt) and (3.2)–(3.3). �

Definition 3.1. A vector field Ŷ defined in some neighborhood U ⊂ M of a point
p ∈ U is called a geodesic extension of a vector Yp ∈ TpM if Ŷ (p) = Yp and the

integral curves of Ŷ are geodesics of the Finsler metric. Similarly, we define a geodesic
extension of a (e.g. normal) vector field along a hypersurface L ⊂ U . In both cases,
ĝ := gŶ is called the osculating Riemannian metric of F on U .

We will use osculating metric (given locally) to express the Riemannian curvature
of g = gν (for an unit F -normal ν to F) in terms of Riemannian curvature and the
Cartan torsion of F .

Given a vector field Y , let C♯
Y be a (1, 1)-tensor gY -dual to the symmetric bilinear

form CY (· , · ,∇Y Y ). Note that Cn(· , · ,∇n n) = Cc2ν(· , · , c4∇ν ν) = c2Cν(· , · ,∇ν ν).

Theorem 3.4. Let ν be a unit normal to a codimension-one foliation of a Finsler
space (Mm+1, F ). The Riemann curvatures (in the ν-direction) of F and g = gν are
related by

g((R ν −Rg
ν)(u), v) = −Cν

(
Ag(u) +

1

2
C♯

ν(u), v,∇ν ν
)

−Cν

(
u,Ag(v) +

1

2
C♯

ν(v),∇ν ν
)

+Cν

(
u, v,∇2

ν,ν ν − C♯
ν(∇ν ν)

)
+ 2(∇νCν)(u, v,∇ν ν) (u, v ∈ TpL).(3.8)

The shape operators and volume forms are related by

(3.9) A−Ag = C♯
ν , dVg = eτ(ν) dVF .

In particular, the traces are related by

Ricν −Ricgν = Iν(∇2
ν,ν ν − C♯

ν(∇ν ν)) + 2(∇ν Iν)(∇ν ν)

− Tr
(
C♯

ν(C♯
ν + 2Ag)

)
,(3.10)

TrA− TrAg = Iν(∇ν ν).

Proof. Let U be a “small” neighborhood of p ∈ L such that any two geodesics starting
from L ∩ U in the ν-direction do not intersect in U . Then for any q ∈ U there is a
unique geodesic γ starting from L in the ν-direction such that γ(s) = q for some

s ≥ 0, in other words, q = expγ(0)(s γ̇(0)). Thus, Ŷ : q → γ̇(s) (q ∈ U) is an F -unit

geodesic vector field (∇Ŷ Ŷ = 0) – a geodesic extension of ν |L.

Consider a family of vector fields Yt = t Ŷ + (1 − t) ν (0 ≤ t ≤ 1) on U , define the
Riemannian metrics gt := gYt , g1 being osculating, and denote by Rt their Riemann
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curvatures. Since Ẏt = Ŷ − ν and Yt |L = ν |L = Ŷ |L for all t, we have Ẏt |L = 0 and

gt |L ≡ g |L. By (3.1) and (3.4), we get Πt(ν, ν) = Πt(ν, Ŷ ) = 0 on L; hence, ∇t
ν ν and

∇t
ν Ŷ restricted on L don’t depend on t. Next, we find

g(Π(ν, ν), v) = Cν(u, v,∇ν(Ŷ − ν)) = −Cν(u, v,∇ν ν), u, v ∈ TM |L,

i.e., Π(ν, u) = −C♯
ν(u). We calculate on L:

g(∂t(∇t
ν u), v) = ∇t

ν(CY (u, v, Ŷ − ν)) + ∇t
u(CY (ν, v, Ŷ − ν)) −∇t

v(CY (u, ν, Ŷ − ν))

= (∇t
νCY )(u, v, Ŷ − ν) + CY (u, v,∇t

ν(Ŷ − ν))

+ (∇t
uCν)(n, v, Ŷ − ν) + Cν(∇t

u ν, v, Ŷ − ν) + Cν(ν, v,∇t
u(Ŷ − ν))

− (∇t
vCν)(u, ν, Ŷ − ν) − Cν(u,∇t

v ν, Ŷ − ν) − Cν(u, ν,∇t
v(Ŷ − ν))

= Cν(u, v,∇t
ν(Ŷ − ν)) = −Cν(u, v,∇ν ν).

Since, ∂t(g(∇t
ν u, v)) = g(∂t∇t

ν u, v) and ∂t(g(∇t
u ν, v)) = g(∂t∇t

u ν, v) on L, we obtain

g(∇t
ν u, v) = g(∇ν u, v) − t Cν(u, v,∇ν ν),

g(∇t
u ν, v) = g(∇u ν, v) − t Cν(u, v,∇ν ν).

Recall that ∇2
u,v is tensorial in u, v. We show that (∇t)2ν,ν Ŷ is t-independent on L:

(∇t)2
Ŷ ,Ŷ

Ŷ = ∇t
n(∇t

Ŷ
Ŷ ) = ∇ν(∇t

Ŷ
Ŷ ) − t C♯

ν(∇t
ν Ŷ )

= ∇ν(∇t
Ŷ
Ŷ ) = ∇ν(∇Ŷ Ŷ − t C♯

ν(Ŷ ))

= ∇2
ν,ν Ŷ − t (∇νC

♯
ν)(Ŷ ) − t C♯

ν(∇ν Ŷ ) = ∇2
ν,ν Ŷ .

Thus, (∇2
ν,ν Ŷ ) |L = (∇̂2

ν,ν Ŷ ) |L = 0. Using this and (∇ν Ŷ ) |L = 0, we find on L:

∇t
Yt

Ẏt = −∇ν ν,

(∇t)2Yt,Yt
Ẏt = (∇t)2ν,ν (Ŷ − ν) = ∇t

ν

(
∇ν(Ŷ − ν) − t C♯

ν (Ŷ − ν)
)

= ∇2
ν,ν (Ŷ − ν) − t∇ν (C♯

ν(Ŷ − ν)) − t C♯
ν(∇ν (Ŷ − ν))

= −∇2
ν,ν ν + 2 t C♯

ν(∇ν ν).

Then we obtain on L:

CYt(· , · ,∇Yt Ẏt) = C ν(· , · ,∇ν(Ŷ − ν)) = −C ν(· , · ,∇ν ν),

CYt(· , · ,∇2
Yt,Yt

Ẏt) = C ν(· , · ,∇2
ν,ν(Ŷ − ν)) = −C ν(· , · ,∇2

ν,ν ν).

Next, we calculate on L, using CZ(Z, · , · ) = 0 for Z = ∇ν ν,

(∇YtCYt)(· , · ,∇Yt Ẏt) = (∇νC t Ŷ+(1−t) ν)(· , · ,−∇ν ν)

= (∇νC) ν(· , · ,−∇ν ν) + C (1−t)∇ν ν(· , · ,−∇ν ν) = −(∇νC ν)(· , · ,∇ν ν).

By the above and (3.3)1, we obtain (3.9)1. By Corollary 3.3, for all t ∈ [0, 1], and
using At = Ag + t C♯

ν , see (3.9)1, and (∇t)2ν,ν ν = −∇2
ν,ν ν + 2 t C♯

ν(∇ν ν), we obtain

∂tRt(u, ν, ν, v) = −Cν(At(u), v,∇ν ν) − Cν(u,At(v),∇ν ν)

+Cν(u, v, (∇t)2ν,ν ν) + 2(∇νCν)(u, v,∇ν ν)

= −Cν(Ag(u) + t C♯
ν(u), v,∇ν ν) − Cν(u,Ag(u) + t C♯

ν(v),∇ν ν)

+Cν(u, v,−∇2
ν,ν ν + 2 t C♯

ν(∇ν ν)) + 2(∇νCν)(u, v,∇ν ν)
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for u, v ∈ TpL, where the right hand side becomes linear in t. Integrating this by

t ∈ [0, 1] yields (3.8). Finally, using the equality for volume forms, dV̂ = dVg, and
definition of τ (see Section 2.1), we get (3.9)2. �

Since any geodesic vector field Y satisfies conditions

(3.11) CY (u, v,∇Y Y ) = 0, CY (u, v,∇2
Y,Y Y ) = 0 (∀u, v),

the following corollary generalizes Proposition 3.1.

Corollary 3.5. If Y is a unit vector field on a Finsler space (M,F ) and g := gY a
Riemannian metric on M with the Levi-Civita connection ∇ and conditions (3.11),
then RY = Rg

Y .

Proof. By (3.11), we have C♯
Y = 0 and

(∇Y CY )(u, v,∇Y Y ) = ∇Y (CY (u, v,∇Y Y )) − CY (u, v,∇2
Y,Y Y ) = 0.

If a vector field Ŷ is a local geodesic extension of Y (p) then Rg
Y = R̂Y (and Ag = Â)

at p, see (3.8) and (3.9). Thus, the claim follows from Proposition 3.1. �

3.2 Integral formulae

Let F is a codimension-one foliation of a closed Finsler space (Mm+1, F ) with the
Busemann-Hausdorff volume form dVF . Define a family of diffeomorphisms {ϕt :
M → M, 0 ≤ t < ε} (ε > 0 being small enough) by

ϕt(p) = expp(t ν), where ν ∈ TpM is an F -unit normal to F at p ∈ M.

Let c(t) (t ≥ 0) be an F -geodesic with c(0) = p and ċ(0) = ν(p). Any geodesic variati-
on built of ϕt-trajectories determines an F -Jacobi field Y (t) on c, and Ap(Y (0)) =
−[Dċ(t) Y (t)] |t=0, see [15, p. 225]. Recall that if vectors u(t) and v(t) are D-parallel
along c(t) then gċ(t)(u(t), v(t)) is constant. Choose a positively oriented gν(p)-ortho-
normal frame (e1, . . . , em) of TpF and extend it by parallel translation to the frame
(E1

t , . . . , E
m
t ) of vector fields gċ(t)-orthogonal to ċ(t) along c(t). Denote also by

Em+1
t = ċ(t) the tangent vector field along c(t). Denote by Y i(t) (i ≤ m) the Jacobi

field along c(t) satisfying Y i(0) = ei and Dċ Y
i(0) = Ap(ei). Let R(t) be the matrix

with entries gċ(Rċ(E
i
t), E

j
t ). Denote by Y(t) the m×m matrix consisting of the scalar

products gċ(Y
i(t), Ej

t ) (“F -Jacobi tensor”). Then Y(0) = Im and Y′(0) = Ap. It is
known (see, for instance, [15, Sections 2.1 and 2.2]) that

| dϕt(p)| = detY(t) ,

where | dϕt(p)| is the Jacobian of ϕt at p. Assume that R
(1)
ċ(t) ≡ 0 for any F -geodesic

c(t) (t ≥ 0) (e.g. (M,F ) is locally symmetric with respect to F ). For t = 0, we have

R
(2)
ċ(0) ≡ R

(3)
ċ(t) ≡ . . . ≡ 0. For short, write Rp := R(0). Note that TrRp = Ric(ν(p)).

The F -Jacobi equation Y′′ = −R(t)Y implies that

Y(2k)(0) = (−Rp)k, Y(2k+1)(0) = (−Rp)kAp, k = 0, 1, 2, . . .
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Hence, our Jacobi tensor has the form

Y(t) =
∑∞

k=0
Y(k)(0)

tk

k!
= Im + tAp −

t2

2!
Rp −

t3

3!
RpAp +

t4

4!
R2

p + . . . .

Certainly, the radius of convergence of the series is uniformly bounded from below on
M (by 1/∥R∥F > 0). The volume of M is defined by VolF (M) =

∫
M

dVF . Therefore
– by Dominated Convergence Theorem – its integration together with Change of
Variables Theorem yield the equality for any t ≥ 0 small enough

(3.12) VolF (M) =

∫
M

det
(
Im + tAp −

t2

2!
Rp −

t3

3!
RpAp +

t4

4!
R2

p + . . .
)

dVF ,

where dVF is the volume form of F . Formula (3.12) together with Lemma 5.2 of Ap-
pendix imply our main result (which generalizes that of [13] valid for the Riemannian
case). Note that the invariants σλ(A1, . . . , Ak) of a set of real m×m matrices Ai are
defined and discussed in Appendix.

Theorem 3.6. If F is a codimension-one foliation on a closed Finsler manifold
(Mm+1, F ), which is F -locally symmetric, then for any 0 ≤ k ≤ m one has

(3.13)

∫
M

∑
∥λ∥=k

σλ (B1(p), . . . Bk(p)) dVF = 0,

where B2k(p) = (−1)k

(2k)! (Rp)k, B2k+1(p) = (−1)k

(2k+1)! (Rp)kAp for p ∈ M .

The formulae (3.13) for few initial values of k, k = 1, . . . 3, read as follows:∫
M

σ1(Ap) dVF = 0,(3.14) ∫
M

(
σ2(Ap) − 1

2
TrRp

)
dVF = 0,(3.15) ∫

M

(
σ3(Ap) − 1

2
Tr(Ap) TrRp +

1

3
Tr(RpAp)

)
dVF = 0.(3.16)

The formulae (3.14) and (3.15) are well known for arbitrary foliated Riemannian
manifolds, see the Introduction. For m = 1, (3.15) reduces to the integral of flag
(Gauss) curvature,

∫
M

K dVF = 0.

Remark 3.2. 1. The compactness of M in Theorem 3.6 can be replaced by weaker
conditions: M is positively complete of finite F -volume, and has ‘bounded geometry’
in the following sense:

(3.17) sup p∈M ∥Rp∥F < ∞, sup p∈M ∥Ap∥F < ∞.

2. Similar formulae exist for codimension-one foliations of on arbitrary (non-locally
symmetric with respect to F ) Finsler manifolds. They are more complicated since
they contain terms which depend on covariant derivatives of Rp. More precisely, they

contain just terms of the form R
(k)
p , where R

(1)
p = Dν(p)Rp, R

(2)
p = Dν(p)Dν(p) Rp and

so on. For the F -Jacobi tensor Y(t) we get

Y(t) = Im + tAp −
t2

2!
Rp −

t3

3!
(RpAp + R(1)

p ) +
t4

4!
(R2

p −R(2)
p − 2R(1)

p Ap) + . . .
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The t3 term of (3.12) becomes, compare (3.16),∫
M

(
σ3(Ap) − 1

2
Tr(Rp) Tr(Ap) +

1

3
Tr(Rp Ap) − 1

6
TrR(1)

p

)
dVF = 0.

In general, the tk term in (3.12) contains R
(j)
p ’s with j ≤ k − 2.

Corollary 3.7. Let F be a codimension-one foliation on a F -locally symmetric com-
plete Finsler manifold (M,F ) of finite F -volume and bounded (in the sense of (3.17))
geometry. If rank(Ap) ≤ 1 for all p ∈ M (for example, F is F -totally geodesic) then
the Riemannian curvature Rp vanishes identically provided that M has everywhere
non-negative (or, non-positive) Ricci curvature Ricp = TrRp.

Proof. Since in this case σ2(Ap) = 0, integral formula (3.15) implies the claim. �
Given a unit normal ν to F , denote by QR the symmetric (0, 2)-tensor in the rhs

of (3.8). Then, see (3.10),

TrQR = Iν(∇2
ν,νν + C♯

ν(∇ν ν)) + 2(∇νIν)(∇ν ν) − Tr
(
C♯

ν(C♯
ν + 2Ag)

)
.

Define the 1-form θg by the equality

θg(X) = g([X, ν], ν) (X ∈ TM).

Note that ∇ν ν = θ♯g is the mean curvature of ν-curves with respect to g. Comparing
(3.13) for F and g, we obtain a series of integral formulas, the first two of which are
given in the following.

Theorem 3.8. Let τ(ν) = const on a codimension-one foliated Finsler space (M,F ).
Then ∫

M

Iν(∇ν ν) dVF = 0,(3.18) ∫
M

(
σ2(C♯

ν) + (TrAg)(TrC♯
ν) − Tr(AgC♯

ν) − 1

2
TrQR

)
dVF = 0.(3.19)

Proof. By (3.9)1, A = Ag + C♯
ν , where A = Ap. Thus, (3.18) follows from (3.14),

using (3.9)2 and Theorem 3.4. Note that by (5.4) with k = 1 and (5.6) (of Appendix),
and by (3.10), we have

σ2(Ap) = σ2(Ag) + Tr(Ag) TrC♯
ν − Tr(AgC♯

ν),

Ricν = TrRp = Ricgν + TrQR.

Thus, (3.19) follows from (3.15), using (3.9)2 and (5.6) with k = 2 (of Appendix). �

3.3 Examples

Finsler manifolds of constant flag curvature. We provide examples, these of
(M,F ) with constant flag curvature K(ν, P ) on M , i.e., such that Rp = K Im for
some K ∈ R.

a) For (M,F ) with zero flag curvature, Rp = 0, and we obtain the Jacobi tensor
of a simple form, linear in t: Y(t) = Im + tAp (t ≥ 0). Then (3.12) reduces to
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VolF (M) =
∫
M

det(Im + tAp) dVF . From this we obtain the Finsler generalization of
the case K = 0 of [3, Theorem 1.1], i.e.,

(3.20)

∫
M

σk(Ap) dVF = 0, k > 0.

b) Assume now that the flag curvature K(ν, P ) of (M,F ) is constant and positive,
say K = 1. Then Rp = Im and one can rewrite the Taylor series for Y(t) (t ≥ 0) in
the form Y(t) = cos t

(
Im + (tan t)Ap

)
. Change of Variables Theorem for integration

implies that the equality

VolF (M) = (cos t)m
∫
M

det
(
Im + (tan t)Ap

)
dVF

holds for arbitrary t ≥ 0 small enough. One can use the substitution tan t → t̃ and
the identity cos2 t = (1 + t̃2)−1 for further derivations.

c) The case of negative constant flag curvature K(ν, P ) of M , say K = −1, is
similar to the case (b). One can use the substitution tanh(t) → t̃ and the identity
cosh2 t = (1 − t̃2)−1 for derivations.

The above yields the following extension of Theorem 1.1 in [3].

Corollary 3.9. Let F be a transversally oriented codimension-one foliation on a
Finsler manifold (Mm+1, F ) of finite F -volume and sup p∈M ∥Ap∥F < ∞ (e.g. closed)
with a unit normal ν and condition Rp = KIm. Then, for any 0 ≤ k ≤ m,

(3.21)

∫
M

σk(Ap) dVF =

{
Kk/2

(
m/2
k/2

)
VolF (M), m, k even,

0, m or k odd.

Remark 3.3. By Theorem 8.2.4 in [8], if a Finsler manifold M is closed and has
constant negative curvature then it is Randers.

If (M,F ) is F -locally symmetric and the leaves of F are F -totally geodesic (i.e.,
Ap = 0) then

Y(2k+1)(0) = 0, Y(2k)(0) = (−Rp)k.

Finally we get the F -Jacobi tensor Y(t) = Im− t2

2!Rp + t4

4!R
2
p− t6

6!R
3
p + . . ., and (3.13)

reduces to ∫
M

∑
∥λ∥=k

σλ

(
− 1

2!
Rp,

1

4!
R2

p , . . . ,
(−1)k

(2k)!
Rk

p

)
dVF = 0.

For codimension-one F -totally geodesic foliations on arbitrary positively complete (or
closed) Finsler manifolds of finite F -volume, we get∫

M

TrRp dVF = 0,

∫
M

TrR(1)
p dVF = 0,∫

M

(
σ2(Rp) +

1

6
TrR2

p −
1

6
TrR(2)

p

)
dVF = 0,(3.22)

and so on. Equalities (3.22) imply directly the following statement (see also Corol-
lary 3.7).
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Corollary 3.10. Let F be a codimension-one F -totally geodesic foliation on a F -
locally symmetric positively complete Finsler manifold (M,F ) of finite F -volume and
with condition (3.17)1. Then Rp vanishes identically provided that either M has
everywhere non-negative (or, non-positive) Ricci curvature Ric, or σ2(Rp) is non-
negative.

It has been observed in [7] that codimension-one foliations of compact negatively-
Ricci curved Riemannian spaces are far (in a sense) from being totally umbilical.
In the case of an F -totally umbilical foliation, Ap = H Im, therefore on a locally
symmetric Finsler space (M,F ) the following can be derived from (3.15) – (3.16) etc.
with the use of Lemma 5.1 of Appendix:∫

M

(
(m− 1)(m− 2)H2 − TrRp

)
dVF = 0,(3.23) ∫

M

H
(m(m− 1)(m− 2)

3m− 2
H2 − TrRp

)
dVF = 0.(3.24)

These integrals for k even ((3.23), (3.24), etc.) contain polynomials depending on H2

only. If all the coefficients of such polynomials are positive, then the polynomials are
positive for all values of H and one may easily get obstructions for existence of totally
umbilical foliations on some Finsler manifolds.

4 Codimension-one foliated Randers spaces

Let F be a transversally oriented codimension-one foliation of Mm+1 equipped with
a Randers metric

F (y) =
√
a(y, y) + β(y), ∥β ∥α < 1, β♯ ∈ Γ(TF).

As before, let us write a(·, ·) = ⟨·, ·⟩. Let N be a unit a-normal vector field to F , i.e.,
⟨N,N⟩ = 1 and ⟨N, v⟩ = 0 for v ∈ TF , and n an F -normal vector field to F with
the property ⟨n, n⟩ = 1. Denote by ∇̄ the Levi-Civita connection of the Riemannian
metric a and by ∇ the Levi-Civita connection of the Riemannian metric g = gn on M .
According to [4, (1.15) and (1.19)] we have

τ(y) = (m + 2) log
√

(1 + β(y)/α(y)) c−2 ,(4.1)

Iy(v) =
m + 2

2F (y)

(
β(v) − ⟨v, y⟩β(y)

α2(y)

)
.(4.2)

In particular, τ(n) = 0 and In(v) = m+2
2 c4 ⟨β♯−(c2−1)n, v⟩. Remark that for Randers

spaces

Cn(u, v, w) =
1

m + 2

(
In(u)hn(v, w) + In(v)hn(u,w) + In(w)hn(u, v)

)
,

where the angular form hn is given by

(4.3) hn(u, v) = c2
(
⟨u, v⟩ − ⟨u, n⟩ ⟨v, n⟩

)
,
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see [4, (1.11) and (1.20)]. Since σF = cm+2
√

det aij , see [4, p. 6], and
√

det gij(n) =

cm+2
√

det aij , see (2.6), the volume form of F and canonical volume forms of Rie-
mannian metrics g and a obey

(4.4) dVF = cm+2dVa, dVg = cm+2dVa, dVF = dVg.

Let Z = ∇ν ν (which is dual of θg in Sect. 3.2) and Z̄ = ∇̄N N be the curvature
vectors of ν-curves and N -curves for Riemannian metrics g and a, respectively.

4.1 The shape operators of g and a

The shape operators of F with respect to the metrics a and g are defined as follows:

Ā(u) = −∇̄u N, Ag(u) = −∇u ν ,

where u ∈ TF and ν = c−2n = c−1(N − c−1β♯) with c =
√

1 − ∥β ∥2α > 0 .

The derivative ∇̄u : TM → TM is defined by (∇̄u) (v) = ∇̄v u = ∇̄v u, where
v ∈ TM . The conjugate derivative (∇̄u)t : TM → TM is defined by ⟨(∇̄u)t(v), w⟩ =
⟨v, (∇̄u)(w)⟩ for all v, w ∈ TM . The deformation tensor Def,

2 Defu = ∇̄u + (∇̄u)t,

measures the degree to which the flow of a vector field u ∈ Γ(TM) distorts the metric
a. The same notation Defu will be used for its dual (with respect to a) (1, 1)-tensor.

Set Def
⊤
u (v) = ( Defu(v))⊤. For β ̸= 0, let

Ā(β♯)⊥β = Ā(β♯) − ⟨Ā(β♯), β♯⟩β♯ · ∥β♯∥−2
α

be the projection of Ā(β♯) on (β♯)⊥. Note that lim β→0 Ā(β♯)⊥β = 0.

Proposition 4.1. Let β(N) = 0 on M . Then on TF we have

(4.5) cAg = Ā− c−2(cN − β♯)(c)Im + c−1(Defβ♯)⊤|TF + U ♭
1 ⊗ β♯ + U2 ⊗ β ,

where

U1 = −1

2
c−2

(
(cN − β♯)(c)β♯ − 2 c−1( Defβ♯ β♯)⊤ − ∇̄⊤

N−c−1β♯β
♯

+ c Z̄ + c β(Z̄)β♯ − Ā(β♯)⊥β
)
,

U2 =
1

2

(
∇̄⊤

N−c−1β♯ β
♯ − c Z̄ − Ā(β♯)⊥β

)
.(4.6)

Proof. By the well-known formula for Levi-Civita connection of g, using equalities
g(u, n) = 0 = g(v, n) and g([u, v], n) = 0, we have

(4.7) 2 g(∇u n, v) = n(g(u, v)) + g([u, n], v) + g([v, n], u) (u, v ∈ TF).
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One may assume ∇̄⊤
X u = ∇̄⊤

X v = 0 for all X ∈ TpM at a given point p ∈ M . Using
(2.11) with u = [u, n] and v = v, we obtain

n(g(u, v)) = n(c2(⟨u, v⟩ − β(u)β(v)))

= n(c2)(⟨u, v⟩ − β(u)β(v)) − c2β(u)(∇̄n β)(v) − c2(∇̄n β)(u)β(v),

g([u, n], v) = c2
(
⟨[u, n], v⟩ + β(v)⟨[u, n]), n⟩

)
= −c2⟨c Ā(u) + ∇̄u β

♯, v⟩ + c3⟨Ā(β♯) + cZ̄, u⟩β(v),

g([v, n], u) = c2
(
⟨[v, n], u⟩ + β(u)⟨[v, n]), n⟩

)
= −c2⟨c Ā(v) + ∇̄v β

♯, u⟩ + c3⟨Ā(β♯) + cZ̄, v⟩β(u).

Substituting the above into (4.7), we find

2 g(∇u n, v) = n(c2)
(
⟨u, v⟩ − β(u)β(v)

)
− 2 c3⟨Ā(u), v⟩ − 2 c2⟨Defβ♯(u), v⟩

−c2(∇̄n β)(u)β(v) − c2β(u)(∇̄n β)(v) + c3⟨Ā(β♯) + cZ̄, u⟩β(v)

+ c3β(u)⟨Ā(β♯) + cZ̄, v⟩.(4.8)

From (4.8), assuming g(∇u n, v) = ⟨D(u), v⟩ and using Lemma 2.3, we get

−2 c4Ag(u) = 2D(u) + c−2⟨2D(u), β♯⟩β♯ ,(4.9)

where D : TF → TF is a linear operator, and

2D(u) = n(c2) (u− β(u)β♯) − 2 c3Ā(u) − 2 c2 ( Defβ♯(u))⊤

− c2(∇̄⊤
n β)(u)β♯ − c2β(u)∇̄⊤

n β♯ + c3⟨Ā(β♯) + cZ̄, u⟩β♯

+ c3β(u)(Ā(β♯) + cZ̄).(4.10)

From (4.10) we get

2 ⟨D(u), β♯⟩ = n(c2) c2β(u) − 2 c3⟨Ā(β♯), u⟩ − 2 c2 ⟨Defβ♯(β♯), u⟩
− c2(1 − c2) (∇̄⊤

n β)(u) + c3n(c)β(u) + c3(1 − c2) ⟨Ā(β♯) + cZ̄, u⟩
+ c3⟨Ā(β♯) + cZ̄, β♯⟩β(u).(4.11)

From (4.9) – (4.11) we obtain

cAg = Ā− c−1 (N − c−1 β♯)(c) Imc−1 (Defβ♯)⊤|TF

− 1

2
c−2

(
(cN − β♯)(c)β♯ − 2 c−1( Defβ♯ β♯)⊤− ∇̄⊤

N−c−1β♯ β
♯ + c Z̄ + c ⟨Z̄, β♯⟩β♯

− Ā(β♯) + ⟨Ā(β♯), β♯⟩β♯
)♭ ⊗ β♯ +

1

2

(
∇̄⊤

N−c−1β♯ β
♯ − cZ̄ − Ā(β♯)

)
⊗ β.

From the above the expected (4.5) – (4.6) follow. �
Corollary 4.2. Let β(N) = 0. If ∥β∥α = const then on TF we have

cAg = Ā + c−1 (Defβ♯)⊤|TF +
1

2

(
∇̄⊤

N−c−1β♯ β
♯ − cZ̄ − Ā(β♯)⊥β

)
⊗ β

+
1

2
c−2

(
2 c−1Def ⊤

β♯(β
♯) + ∇̄⊤

N−c−1β♯ β
♯ + Ā(β♯)⊥β

− c Z̄ − c ⟨Z̄, β♯⟩β♯
)♭ ⊗ β♯.(4.12)



Integral formulae for codimension-one foliated Finsler manifolds 95

If, in particular, ∇̄β = 0 (i.e., F is a Berwald structure) then

(4.13) cAg = Ā− 1

2

(
Ā(β♯)⊥β +cZ̄

)
⊗β+

1

2
c−2

(
Ā(β♯)⊥β−c Z̄−c ⟨Z̄, β♯⟩β♯

)♭⊗β♯.

4.2 The Riemann curvature of g and a

In this section we study relationship between Riemann curvature of two metrics, g
and a, on a Randers space.

Proposition 4.3. For a codimension-one foliation of M with Riemannian metrics g
and a we have

Z = c−2Z̄ − c−3 ∇̄⊤c + c−4 β(Z̄ − c−1 ∇̄⊤c)β♯,(4.14)

C♯
n = c−2C̄ + c−4(β ◦ C̄) ⊗ β♯,(4.15)

where

2 C̄ = Sym(β ⊗ Z̄) + c−3
(
c β(Z̄) − 2β♯(c) − n(c)

)(
Im − β ⊗ β♯

)
− c−1Sym(β ⊗ ∇̄⊤c) + c−1(β♯(c) + n(c))

(
Im − 3β ⊗ β♯

)
.

We also have

⟨∇̄uZ̄, v⟩ = ⟨∇̄vZ̄, u⟩, g(∇uZ, v) = g(∇vZ, u) (u, v ∈ TF),(4.16)

R̄N = (DefZ̄)⊤|TF+∇̄N Ā−Ā2−Z̄♭ ⊗ Z̄, Rg
ν = (DefZ)⊤|TF+∇νA−A2−Z♭ ⊗ Z.(4.17)

Proof. Extend X ∈ TpF at a point p ∈ M onto a neighborhood of p with the property
(∇̄Y X)⊤ = 0 for any Y ∈ TpM . By the well known formula for the Levi-Civita
connection, we obtain at p:

g(Z,X) = g([X, ν], ν).

Then, using the equalities ν = c−1N − c−2β♯ and [X, fY ] = X(f)Y + f [X,Y ], we
calculate

g([X, ν], ν) = c−4X(c) g(N, β♯) − c−3X(c) g(N,N)

+ c−2g([X,N ], N) − c−3g([X,N ], β♯).

Note that

[X,N ] = ∇̄XN − ∇̄NX = −Ā(X) − ⟨∇̄NX, N⟩N = −Ā(X) + ⟨Z̄, X⟩N

and N = cν + c−1β♯. Then, by Lemma 2.2 and the equalities

g(β♯, β♯) = c2(⟨β♯, β♯⟩ − β(β♯)2) = c4(1 − c2),

g(N, β♯) = g(cν + c−1β♯, β♯) = c−1g(β♯, β♯) = c3(1 − c2),

g(N,N) = g(cν + c−1β♯, cν + c−1β♯) = c2 + c−2g(β♯, β♯) = c2(2 − c2),

we obtain

g([X,N ], N) = −⟨Ā(β♯), X⟩ + ⟨Z̄,X⟩ g(N,N) = c2⟨(2 − c2)Z̄ − cĀ(β♯), X⟩,
g([X,N ], β♯) = −⟨Ā(β♯), X⟩ + ⟨Z̄,X⟩ g(N, β♯) = c3⟨(1 − c2)Z̄ − cĀ(β♯), X⟩.



96 V.Rovenski, P.Walczak

Hence,

g(Z,X) = −c−1X(c) + ⟨Z̄,X⟩ = ⟨Z̄ − c−1∇̄c, X⟩.

By Lemma 2.3, we get (4.14). From (4.2) – (4.3), (4.14) and a bit of help from Maple
program we find

2Cn(u, v, Z) = ⟨Z̄, u⟩β(v) + ⟨Z̄, v⟩β(u)

+ c−3(c β(Z̄) − 2β♯(c) − n(c))
(
⟨u, v⟩ − β(u)β(v)

)
− c−1(u(c)β(v) + v(c)β(u)) + c−1(β♯(c) + n(c))

(
⟨u, v⟩ − 3β(u)β(v)

)
.

Using g(C♯
n(u), v) = ⟨C̄(u), v⟩, where C♯

n is g-dual to Cn(·, ·,∇n n), and

2 C̄(u) = ⟨Z̄, u⟩β♯ + β(u)Z̄ + c−3(c β(Z̄) − 2β♯(c) − n(c))
(
u− β(u)β♯

)
− c−1(u(c)β♯ + β(u) ∇̄⊤c) + c−1(β♯(c) + n(c))

(
u− 3β(u)β♯

)
,

we apply Lemma 2.3 to get (4.15).
We shall prove (4.16) and (4.17) for a. It is sufficient to show that

(4.18) ⟨R̄(u,N)N, v⟩ = ⟨(∇̄N Ā− Ā2)(u), v⟩− ⟨Z̄, u⟩⟨Z̄, v⟩+ ⟨∇̄u Z̄, v⟩, u, v ∈ TF .

Since the left hand side of (4.18) is symmetric, we obtain ⟨∇̄uZ̄, v⟩ = ⟨∇̄vZ̄, u⟩, see
(4.17)1 and (4.16)1. Indeed,

⟨R̄(u,N)N, v⟩ = ⟨∇̄u∇̄NN, v⟩ − ⟨∇̄N ∇̄uN, v⟩ − ⟨∇̄∇̄uN−∇̄NuN, v⟩
= ⟨∇̄uZ̄, v⟩ + ⟨∇̄N (Ā(u)), v⟩ − ⟨Ā 2(u), v⟩ + ⟨∇̄⟨∇̄N u,N⟩N N, v⟩ − ⟨Ā(∇̄⊤

N u), v⟩
= ⟨(∇̄N Ā− Ā 2)(u), v⟩ − ⟨Z̄, u⟩⟨Z̄, v⟩ + ⟨∇̄u Z̄, v⟩,

that completes the proof of (4.18). The proof of (4.16)2 and (4.17)2 (for the metric
g) is similar. �

By (4.15), the equality C♯
n = 0 is independent of the condition ∇̄β = 0. Moreover,

we have the following.

Corollary 4.4. Let m > 3 and c = const. Then C♯
n = 0 if and only if Z̄ = 0.

Proof. By our assumptions, C̄ = 1
2 Sym(β ⊗ Z̄) + 1

2 c
−2 β(Z̄)

(
Im − β ⊗ β♯

)
. Hence,

C♯
n = 0 reads

β(Z̄)Im = β(Z̄)β ⊗ β♯ − c2 Sym(β ⊗ Z̄) − 2 (β ◦ C̄) ⊗ β♯.

Since the matrix β(Z̄)Im is conformal, while the matrix in the right hand side of
above equality has the form ω ⊗ β♯ − c2Z̄ ⊥β ⊗ β and rank ≤ 3, for m > 3 we obtain

β(Z̄) = 0, Sym(β ⊗ Z̄) + 2 c−2(β ◦ C̄) ⊗ β♯ = 0.

By the first condition, Z̄ ⊥ β♯; thus, the second condition yields Z̄ = 0 (that is, F
is a Riemannian foliation for the metric a) and C̄ = 0. The converse claim follows
directly from (4.15) and the definition of C̄. �
Remark 4.1. In [15] and [5] one may find coordinate presentations of Ry through R̄y

for all y ∈ TM . For example, if ∇̄β = 0 (i.e., F is a Berwald structure) then Ry(u) =
R̄y(u) for all u. Alternative formulas with relationship between Rν and R̄ν follow
from (4.17), where Ag and Z are expressed using Ā and Z̄ given in Propositions 4.1
and 4.3.
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4.3 Around the Reeb and Brito-Langevin-Rosenberg formula

Based on (3.13) and (3.21), one may produce a sequence of similar formulae for
Randers spaces. We will discuss first two of them (i.e., k = 1, 2).

Remark 4.2. In [10], G. Reeb proved that the total mean curvature of the leaves of
a codimension-one foliation on a closed Riemannian manifold equals zero. Note that
Tr Def ⊤

β♯ = div β♯ + β(Z̄), where Z̄ = ∇̄N N is the curvature vector of N -curves for

the metric a. Using notations of Appendix, we find from (4.6),

β(U1) = −2 − c2

2 c
N(c)− 1

2
β♯(c)− 2 − c2

2 c
β(Z̄), β(U2) = −1

2
(cN−β♯)(c)− 1

2
c β(Z̄).

Hence,
β(U1) + β(U2) = −c−1(N(c) + β(Z̄)).

Tracing (4.5), we get

c σ1(Ag) = σ1(Ā) − (m + 1) c−1N(c) + mc−2β♯(c) + c−1 div β♯.

The volume forms of g and a obey dVg = cm+2 dVa, see (4.4). Using the Reeb formula
for metric g, ∫

M

σ1(Ag) dVg = 0,

the equality div(cmβ♯) = cm div β♯ + β♯(cm) and the Divergence Theorem, we get

(4.19)

∫
M

(
cm+1σ1(Ā) −N(cm+1)

)
dVa = 0 ,

which for β = 0 is the Reeb formula for metric a. Remark that (4.19) is a particular
case of a general formula for any f ∈ C2(M), see [12, Lemma 2.5]:∫

M

(f σ1(Ā) −N(f)) dVa = 0.

The next results concern Brito-Langevin-Rosenberg type formulas for foliated Ran-
ders spaces.

The Newton transformations Tk(A) (0 ≤ k ≤ m) of an m×m matrix A (see [12])
are defined either inductively by T0(A) = Im, Tk(A) = σk(A)Im−ATk−1(A) (k ≥ 1)
or explicitly as

Tk(A) = σk(A)Im − σk−1(A)A + . . . + (−1)kAk, 0 ≤ k ≤ m,

and we have Tk(λA) = λk Tk(A) for λ ̸= 0. Observe that if a rank-one matrix
A := U ⊗ β (and similarly for A := ω ⊗ β♯) has zero trace, i.e., β(U) = 0, then

A2 = U(β♯)t · U(β♯)t = Uβ(U) (β♯)t = β(U)A = 0.

Note that for c = const we have, see (4.15), C♯
n = c−2C̄ + c−4(β ◦ C̄) ⊗ β♯, where

C♯
n = c2C♯

ν and
2 C̄ = Sym(β ⊗ Z̄) + c−2β(Z̄)(Im − β ⊗ β♯).
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Theorem 4.5. Let (Mm+1, α+β) be a codimension-one foliated closed Randers space
with constant sectional curvature K̄ of a. If a nonzero vector field β♯ ∈ Γ(TF) obeys
∇̄β = 0, then K̄ = 0 and for 1 ≤ k ≤ m we have∫

M

(∑
j>0

σk−j,j(Ā, c C
♯
ν) + ⟨Tk−1(Ā + cC♯

ν)(β♯), U1⟩

+
⟨
Tk−1(Ā + cC♯

ν + U ♭
1 ⊗ β♯)(U2), β♯

⟩)
dVa = 0,(4.20)

where U1 = 1
2 c

−2(Ā(β♯)− cZ̄), U2 = −1
2 (Ā(β♯)+ cZ̄). Moreover, if m > 3 and Z̄ = 0

then

(4.21)

∫
M

⟨(
c−2Tk−1(Ā) − Tk−1(Ā +

1

2
c−2Ā(β♯)♭ ⊗ β♯)

)
(Ā(β♯)), β♯

⟩
dVa = 0.

Proof. By our assumptions, c = const and R̄(x, y)z = K̄( ⟨y, z⟩x − ⟨x, z⟩ y ). Hence,
on TF

R̄N = K̄Im, R̄β♯ = (1 − c2)K̄Im, R̄(·, N)β♯ = 0.

If ∇̄β = 0 then R̄(U, β♯, β♯, U) = 0 and K̄(U ∧ β♯) = 0 for all U ⊥ β♯; hence, in
our case, K̄ = 0. By Remark 4.1, Ry = R̄y for all y ∈ TM0; hence, Ry = 0. Since
∇̄β♯ = 0, we obtain β(Z̄) = 0 and ⟨Ā(β♯), β♯⟩ = 0:

⟨β♯, Z̄⟩ = ⟨β♯, ∇̄NN⟩ = −⟨∇̄N β♯, N⟩ = 0,

⟨Ā(β♯), β♯⟩ = −⟨β♯, ∇̄β♯ N⟩ = ⟨∇̄β♯ β♯, N⟩ = 0.

By (3.9) and Corollary 4.2,

cA = cAg + cC♯
ν = Ā + cC♯

ν + A1 + A2,

where A1 = U ♭
1 ⊗ β♯ and A2 = U2 ⊗ β are rank ≤ 1 matrices (since ⟨Ui, β

♯⟩ = 0).
By Corollary 5.5 of Appendix, we have

ckσk(A) = σk(Ā) +
∑

j>0
σk−j,j(Ā, c C

♯
ν) + U1

(
Tk−1(Ā + cC♯

ν)(β♯)
)

+ β
(
Tk−1(Ā + cC♯

ν + A1)(U2)
)
.(4.22)

Recall that dVF = cm+2 dVa, see (4.4). Comparing (3.21) (when K = 0) with∫
M

σk(Āp) dVa = 0,

we find (4.20). By Corollary 4.4, if m > 3, Z̄ = 0 then C♯
ν = 0; hence, (4.20)

yields (4.21). �
Example 4.3. For k = 1, (4.20) yields the Reeb type formula∫

M

σ1(C♯
ν) dVa = 0.

Corollary 4.6. Let (Mm+1, α + β), m > 3, be a codimension-one foliated closed
Randers space with constant sectional curvature K̄ of a. If Z̄ = 0 and a nonzero
vector field β♯ ∈ Γ(TF) obeys ∇̄β = 0 then K̄ = 0 and Ā(β♯) = 0 at any point of M .
If, in addition, F is totally umbilical (Ā = H̄ · Im) then F is totally geodesic.
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Proof. For k = 2, the integrand in (4.21) reduces to c2−1
4 c2 ∥Ā(β♯)∥2. Thus, when c ̸= 1,

the claim follows.
Nevertheless, we will give alternative proof with use of integral formula (3.15).

Our Randers space (M,α+β) is now Berwald. For the rank 1 matrices A1 = U ♭
1 ⊗β♯

and A2 = U2 ⊗ β, where U1 = 1
2 c

−2Ā(β♯) and U2 = −1
2 Ā(β♯) and ⟨Ā(β♯), β♯⟩ = 0,

see (4.13) with Z̄ = 0, we have

Tr(A1A2) = ⟨U1, U2⟩β(β♯) =
c2 − 1

4 c2
∥Ā(β♯)∥2α,

Tr(ĀA1) = ⟨U1, Ā(β♯)⟩ =
1

2 c2
∥Ā(β♯)∥2α,

Tr(ĀA2) = ⟨U2, Ā(β♯)⟩ = −1

2
∥Ā(β♯)∥2α.

Thus, Tr(A1A2 + ĀA1 + ĀA2) = 1−c2

4 c2 ∥Ā(β♯)∥2. By the identity for square matrices

σ2(
∑

i
Ai) =

1

2
Tr2(

∑
i
Ai) −

1

2
Tr((

∑
i
Ai)

2)

=
∑

i
σ2(Ai) +

∑
i<j

(
(TrAi)(TrAj) − Tr(AiAj)

)
,

and σ2(A1) = σ2(A2) = 0, by the above and since cA = cAg = Ā + A1 + A2, we get

c2σ2(A) = c2σ2(Ag) = σ2(Ā) +
1

4
(c−2 − 1) ∥Ā(β♯)∥2α.

From the integral formulae, (3.20), for F and for Riemannian metric a,∫
M

σ2(Ā) dVa = 0,

∫
M

σ2(A) dVF = 0,

where the volume forms are related by dVF = cm+2dVa, see (2.6), we find that
(c−2 − 1)

∫
M

∥Ā(β♯)∥2α dVa = 0. Since c ̸= 1 (for β ̸= 0), we obtain Ā(β♯) = 0. �
Similar integral formulae exist for codimension one totally umbilical (i.e., Ā =

H̄Im, where H̄ = 1
m Tr Ā) and totally geodesic foliations. Notice that non-flat closed

Riemannian manifolds of constant curvature do not admit such foliations.

Corollary 4.7. Let F be a codimension-one totally umbilical (for the metric a) foli-
ation of a closed Randers space (Mm+1, α + β) with constant sectional curvature K̄
of a. If a nonzero vector field β♯ ∈ Γ(TF) obeys ∇̄β♯ = 0 then K̄ = 0, F is totally
geodesic and for 1 ≤ k ≤ m (for k = 1, see also Example 4.3) we have∫

M

(
ckσk(C♯

ν) − 1

2
c−1 ⟨Tk−1(cC♯

ν)(β♯), Z̄⟩

− c

2

⟨
Tk−1(cC♯

ν − 1

2
c−1Z̄♭ ⊗ β♯)(Z̄), β♯

⟩)
dVa = 0.(4.23)

Proof. Since ⟨Ā(β♯), β♯⟩ = 0 (see the proof of Theorem 4.5), we obtain H̄ = 0. Thus,
(4.23) follows from (4.20) with Ā = 0 and β(Z̄) = 0. �
Remark 4.4. In results of this section, a closed manifold can be replaced by a
complete manifold of finite volume with bounded geometry, see conditions (3.17).
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5 Appendix: Invariants of a set of matrices

Here, we collect the properties of the invariants σλ(A1, . . . , Ak) of real matrices Ai that
generalize the elementary symmetric functions of a single symmetric matrix A. Let Sk

be the group of all permutations of k elements. Given arbitrary quadratic m×m real
matrices A1, . . . Ak and the unit matrix Im, one can consider the determinant det(Im+
t1A1+. . .+tkAk) and express it as a polynomial of real variables t = (t1, . . . tk). Given
λ = (λ1, . . . λk), a sequence of nonnegative integers with |λ| := λ1 + . . .+ λk ≤ m, we
shall denote by σλ(A1, . . . , Ak) its coefficient at tλ = tλ1

1 · . . . tλk

k :

(5.1) det(Im + t1A1 + . . . + tkAk) =
∑

|λ| ≤m
σλ(A1, . . . Ak) tλ.

Evidently, the quantities σλ are invariants of conjugation by GL(m)-matrices:

(5.2) σλ(A1, . . . Ak) = σλ(QA1Q
−1, . . . QAkQ

−1)

for all Ai’s, λ’s and nonsingular m × m matrices Q. Certainly, σi(A) (for a single
symmetric matrix A) coincides with the i-th elementary symmetric polynomial of the
eigenvalues {kj} of A.

In the next lemma, we collect properties of these invariants.

Lemma 5.1 (see [13]). For any λ = (λ1, . . . λk) and any m×m matrices Ai, A and
B one has
(I) σλ(0, A2, . . . Ak) = 0 if λ1 > 0 and σ0,λ̂(A1, . . . Ak) = σλ̂(A2, . . . Ak) where

λ̂ = (λ2, . . . λk),
(II) σλ(As(1), . . . As(k)) = σλ◦s(A1, . . . Ak), where s ∈ Sk and λ◦s = (λs(1), . . . λs(k)),

(III) σλ(Im, A2, . . . Ak) =
(
m−|λ̂|

λ1

)
σλ̂(A2, . . . Ak),

(IV) σλ1,λ2, λ̂
(A,A,A3, . . . Ak) =

(
λ1+λ2

λ1

)
σλ1+λ2,λ̂

(A,A3, . . . Ak),

(V) σ1,λ̂(A + B,A2, . . . Ak) = σ1,λ̂(A,A2, . . . Ak) + σ1,λ̂(B,A2, . . . Ak) and

σλ(aA1, A2, . . . Ak) = aλ1σλ(A1, A2, . . . Ak) if a ∈ R \ {0}.

The invariants defined above can be used in calculation of the determinant of a
matrix B(t) expressed as a power series B(t) =

∑∞
i=0 t

iBi. Indeed, if one wants to
express det(B(t)) as a power series in t, then the coefficient at tj depends only on the
part

∑
i≤j t

iBi of B(t).

Lemma 5.2 ([13]). If B(t), t ∈ R, is the m×m matrix given by B(t) =
∑∞

i=0 t
iBi,

B0 = Im then

(5.3) det(B(t)) = 1 +
∑∞

k=1

(∑
λ,∥λ∥=k

σλ(B1, . . . Bk)
)
tk,

where ∥λ∥ = λ1 + 2λ2 + . . . + kλk for λ = (λ1, . . . λk). �

Since det : M(m) → R, M(m) ≈ Rm2

being the space of all m × m-matrices,
is a polynomial function, the series in (5.3) is convergent for all t ∈ (−r0, r0), where
r0 = 1/ lim sup k→∞ ∥Bk∥1/k is the radius of convergence of the series B(t).

By the First Fundamental Theorem of Matrix Invariants, see [6], all the invariants
σλ can be expressed in terms of the traces of the matrices involved and their products.
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Lemma 5.3 ([13]). For arbitrary matrices B, C and k, l > 0 we have

σk,l(B,C) = σk(B)σl(C) −
∑min(k,l)

i=1
σk−i,l−i,i(B,C,BC).

In particular, for l = 1, it follows that

σk,1(B,C) =
∑k

i=0
(−1)iσk−i(B) Tr(BiC) = Tr(Tk(B)C).(5.4)

Lemma 5.4. Let A,C be m×m matrices and rankA = 1. Then

(5.5) σk(C + A) = σk(C) + Tr(Tk−1(C)A).

Proof. There exists a nonsingular matrix Q such that Ã = QAQ−1 has one nonzero
element, ã1i ̸= 0 for some i (the simplest rank one matrix). By (5.2), σk,l(C̃, Ã) =

σk,l(C,A) where C̃ = QCQ−1. By Laplace’s formula (which expresses the determi-

nant of a matrix in terms of its minors), det(Im + tC̃ + sÃ) is a linear function in
s ∈ R; hence, see (5.1), σk,l(C̃, Ã) = 0 for l > 1. By the above, σk,l(C,A) = 0 for
l > 1 and all k. Using the identity, see [13],

(5.6) σk(C1 + C2) =
∑ k

i=0
σ k−i,i(C1, C2),

we find that

σk(C + A) = σk(C) + σk−1,1(C,A).

By (5.4), σk−1,1(C,A) = Tr(Tk−1(C)A) and (5.5) follows. �
Corollary 5.5. Let C,D,Ai be m×m matrices and rankAi = 1 (1 ≤ i ≤ s). Then

σk(C + D + A1 + . . . As) = σk(C) +
∑

j>0
σk−j,j(C,D)

+ Tr(Tk−1(C + D)A1) + . . . + Tr(Tk−1(C + D + A1 + . . . + As−1)As).(5.7)

Proof. This follows from Lemma 5.4 and (5.4). For s = 1, we obtain

σk(C + D + A1)
(5.5)
= σk(C + D) + Tr(Tk−1(C + D)A1)

(5.6)
= σk(C) +

∑
j>0

σk−j,j(C,D) + Tr(Tk−1(C + D)A1).

Then, by induction for s, (5.7) follows. �
Let Ci and Pi be m-vectors (columns) and Im the identity m-matrix and 1 ≤ i ≤

j ≤ m. Note that CiP
t
j are m×m-matrices of rank 1 with

σ1(CiP
t
j ) = Ct

iPj = P t
jCi, σ2(CiP

t
j ) = 0,

(Im + CiP
t
j )−1 = Im − (1 + Ct

iPj)
−1 CiP

t
j .

Lemma 5.6. We have det(Im +
∑k

i=1 CiP
t
i ) = 1+det({Ct

iPj}1≤i,j≤k). For example,

det(Im + C1P
t
1) = 1 + Ct

1P1 ,

det(Im + C1P
t
1 + C2P

t
2) = 1 + Ct

1P1 + Ct
2P2 + Ct

1P1 · Ct
2P2 − Ct

1P2 · Ct
2P1 ,

and so on.
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