Codimension reduction on the contact CR-submanifolds of an odd-dimensional unit sphere

E. Abedi, M. Asadollahzadeh, G. Haghighatdoost

Abstract. Let M be an (n+1)-dimensional contact CR-submanifold of an odd-dimensional unit sphere S^{2m+1} of (n-q) contact CR-dimension. We study the condition h(FX,Y)+h(X,FY)=0 on the structure tensor F which is naturally induced from the almost contact structure ϕ of the ambient manifold and the second fundamental form h of the submanifold M. We obtain two results on codimension reduction for such submanifolds.

M.S.C. 2010: 53C25, 53B25.

Key words: Contact CR-submanifold; odd-dimensional unit sphere; second fundamental form.

1 Brief overview

Let \overline{M} be a (2m+1)-dimensional Sasakian manifold with the Sasakian structure tensors (ϕ, ξ, η, g) satisfying:

(1.1)
$$\phi^2 X = -X + \eta(X)\xi, \ \phi \xi = 0, \ \eta(\xi) = 1, \ \eta(\phi X) = 0,$$

(1.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \ \eta(X) = g(X, \xi),$$

for any vector fields X and Y on \overline{M} [8]. Let M be a submanifold tangent to the structure vector field ξ isometrically immersed in the Sasakian manifold \overline{M} . Then M is called a contact CR-submanifold of \overline{M} if there exists a differentiable distribution $D: x \longrightarrow D_x \subset T_x M$ on M such that: (i) D is invariant with respect to ϕ , i.e., $\phi D_x \subset D_x$; (ii) the complementary orthogonal distribution $D^{\perp}: x \longrightarrow D_x^{\perp} \subset T_x M$ is anti-invariant with respect to ϕ , i.e., $\phi D_x^{\perp} \subset T_x^{\perp} M$, for $x \in M$.

If dim D=0, then the contact CR-submanifold M is called an anti-invariant submanifold of \overline{M} tangent to ξ . If dim $D^{\perp}=0$, then M is an invariant submanifold of \overline{M} [8]. Contact CR-submanifold of maximal CR-dimension in an odd-dimensional unit sphere has been studied in [5], [6] and [7].

Balkan Journal of Geometry and Its Applications, Vol.21, No.2, 2016, pp. 1-8.

[©] Balkan Society of Geometers, Geometry Balkan Press 2016.

In the present article we study connected (n+1)-dimensional real submanifolds of codimension (2m-n) of the odd-dimensional unit sphere S^{2m+1} which are contact CR-submanifolds of contact CR-dimension (n-q), that is, dim $D^{\perp} = q+1$.

In Section 2 we collect some basic relations concerning submanifolds, in particular we discuss the notion of contact CR-submanifolds of the Sasakian manifold S^{2m+1} .

Section 3 is devoted to the study of contact CR-submanifolds which satisfy the condition h(FX,Y)+h(X,FY)=0 on the structure tensor F naturally induced from the almost contact structure ϕ of the ambient manifold and on the second fundamental form h of a submanifold M. M. Djoric studied these complex space forms in [2].

Finally, in Section 4, using the codimension reduction theorem in [4], we obtain codimension reduction results for contact CR-submanifolds of an odd-dimensional unit sphere similar to that in [2] and [5].

2 Preliminaries

Let S^{2m+1} be a (2m+1)-unit sphere and $z \in S^{2m+1}$. We put $\xi = Jz$ where J is the complex structure of the complex (m+1)-space \mathbb{C}^{m+1} . We consider the orthogonal projection $\pi: T_z\mathbb{C}^{m+1} \to T_zS^{2m+1}$, and put $\phi = \pi \circ J$. Then we see that (ϕ, ξ, η, g) is a Sasakian structure on S^{2m+1} , where η is an 1-form dual to ξ and g is the standard metric tensor field on S^{2m+1} . Hence, S^{2m+1} can be regarded as a Sasakian manifold of constant ϕ -sectional curvature 1 [1],[9].

Consider M, an (n+1)-dimensional contact CR-submanifold in S^{2m+1} which is tangent to the structure vector field ξ . The subspace D_x is the ϕ -invariant subspace $T_xM \cap \phi T_xM$ of the tangent space T_xM of M at $x \in M$. Then ξ is not in D_x at any x in M. Let D_x^{\perp} denote the complementary orthogonal subspace to D_x in T_xM . For any nonzero vectors U_{α} orthogonal to ξ and contained in D_x^{\perp} , we have ϕU_{α} normal to M. In the following we assume that $\dim D_x = n - q$ and $\dim D_x^{\perp} = q + 1$, at each point x in M. We observe that the definition for a contact CR-submanifold of S^{2m+1} given in [5], states that the maximal ϕ -invariant subspace D_x has constant dimension, for any $x \in M$. For the definition given above, the subspace D_x obviously has constant dimension for any $x \in M$, since D is a distribution. When the contact CR-submanifold is of maximal CR-dimension, the two definition are equivalent. In the general case this need not be so, see [3].

We denote by $\nu(M)$ the complementary orthogonal subbundle of ϕD^{\perp} in the normal bundle TM^{\perp} . We have the following orthogonal direct sum decomposition $TM^{\perp} = \phi D^{\perp} \oplus \nu(M)$. It is easy to see that $\nu(M)$ is ϕ -invariant. For $Y \in \nu(M)$, $\phi Y \in TM^{\perp}$ and writing $\phi Y = Y_1 + Y_2$ with $Y_1 \in \phi D^{\perp}$ and $Y_2 \in \nu(M)$, we obtain that $Y_1 = 0$ by using (1.1) and hence $\phi Y \in \nu(M)$. We choose local orthonormal vector fields $N_1, \ldots, N_q, \lambda_1, \ldots, \lambda_{2m-n-q}$ normal to M, such that N_1, \ldots, N_q span ϕD^{\perp} while $\lambda_1, \ldots, \lambda_{2m-n-q}$ span $\nu(M)$ at each point.

For X tangent to M, we have the following decomposition into tangential and normal components:

(2.1)
$$\phi X = FX + \sum_{\alpha=1}^{q} u^{\alpha}(X) N_{\alpha},$$

where FX is just the tangential component of ϕX , while for X tangent to M, the

normal component is in ϕD^{\perp} hence the second term in the expression on the right of (2.1). As $N_{\alpha} \in \phi D^{\perp}$, we have $N_{\alpha} = \phi U_{\alpha}$, for some $U_{\alpha} \in D^{\perp}$, hence

$$\phi N_{\alpha} = -U_{\alpha}, \qquad \alpha = 1, \dots, q$$

Since $\nu(M)$ is ϕ -invariant, then

$$\phi \lambda_c = \sum_{k=1}^{2m-n-q} \gamma_{ck} \lambda_k, \quad c = 1, \dots, 2m-n-q$$

where F is a skew-symmetric linear endomorphism acting on T_xM , γ_{ck} are real valued functions and U_{α} and u^{α} , are tangent vector fields and 1-forms on M, respectively. Since ξ is tangent to M from (1.1), (1.2) and (2.1), we conclude that:

$$g(X, U_{\alpha}) = u^{\alpha}(X), \quad F\xi = 0, \quad u^{\alpha}(\xi) = 0, \quad FU_{\alpha} = 0, \quad u^{\alpha}(U_{\alpha}) = 1.$$

Using (2.1) again, we get:

(2.3)
$$F^{2}X = -X + \eta(X)\xi + \sum_{\alpha=1}^{q} u^{\alpha}(X)U_{\alpha}.$$

Let us denote by $\overline{\nabla}$ and ∇ the Riemannian connection of S^{2m+1} and M, respectively and by ∇^{\perp} the normal connection induced from $\overline{\nabla}$ in the normal bundle of M. Then the Gauss and Weingarten formulas for M are given by:

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

for any vector fields X, Y tangent to M and any vector field N normal to M, where h denotes the second fundamental form and A_N denotes the shape operator (second fundamental tensor) corresponding to N.

Suppose that $\nu(M)$ is not necessarily invariant with respect to the normal connection, then the Weingarten formula becomes:

(2.4)
$$\overline{\nabla}_X \lambda_c = -A_c X + \sum_{\beta=1}^q S_{c\beta^*}(X) N_\beta + \sum_{d=1}^{2m-n-q} S_{cd}(X) \lambda_d$$

(2.5)
$$\overline{\nabla}_X N_{\alpha} = -A_{\alpha^*} X + \sum_{\beta=1}^q S_{\alpha^*\beta^*}(X) N_{\beta} + \sum_{c=1}^{2m-n-q} S_{\alpha^*c}(X) \lambda_c$$

where $c=1,\ldots,2m-n-q,\,\alpha=1,\ldots,q$ and the S's are the coefficients of the normal connection ∇^{\perp} and A_c,A_{α^*} , are the shape operators corresponding to the normals λ_c,N_{α} , respectively. Furthermore

$$\overline{\nabla}_X \xi = \phi X$$
.

and hence, $\nabla_X \xi + h(X, \xi) = FX + \sum_{\alpha=1}^q u^{\alpha}(X) N_{\alpha}$, and so $\nabla_X \xi = FX$. Moreover,

$$(2.6) A_{\alpha^*}\xi = U_{\alpha}, \quad \alpha = 1, \dots, q.$$

Also.

(2.7)
$$A_c \xi = 0, \quad c = 1, \dots, 2m - n - q.$$

In addition from the equation of Ricci:

$$g(\overline{R}(X,Y)\lambda_c,N_\alpha) = g(R^{\perp}(X,Y)\lambda_c,N_\alpha) + g([A_\alpha,A_c]X,Y),$$

where \overline{R} and R^{\perp} are the curvature tensors with respect to $\overline{\nabla}$ and ∇^{\perp} respectively. Because the ambient space is Sasakian, we have:

(2.8)
$$(\overline{\nabla}_X \phi)Y = -g(X, Y)\xi + \eta(Y)X.$$

From $\phi(\overline{\nabla}_X \lambda_c) = \overline{\nabla}_X(\phi \lambda_c) - (\overline{\nabla}_X \phi) \lambda_c$, using (2.1), (2.2),(2.4), (2.5) and (2.8), we obtain:

$$\phi(-A_cX + \sum_{\alpha=1}^q S_{c\alpha^*}(X)N_\alpha + \sum_{d=1}^{2m-n-q} S_{cd}(X)\lambda_d) = \overline{\nabla}_X \phi \lambda_c.$$

Thus,

$$-FA_{c}X - \sum_{\alpha=1}^{q} u^{\alpha}(A_{c}X)N_{\alpha} - \sum_{\alpha=1}^{q} S_{c\alpha^{*}}(X)U_{\alpha} + \sum_{d=1}^{2m-n-q} \sum_{k=1}^{2m-n-q} \gamma_{dk}S_{cd}(X)\lambda_{k}$$
$$= \sum_{k=1}^{2m-n-q} \{(X\gamma_{ck})\lambda_{k} + \gamma_{ck}(-A_{k}X + \sum_{\alpha=1}^{q} S_{k\alpha^{*}}(X)N_{\alpha} + \sum_{d=1}^{2m-n-q} S_{kd}(X)\lambda_{d})\},$$

for X tangent to M. Comparing the tangential part and the coefficients of N_{α} , we get:

(2.9)
$$FA_{c}X = \sum_{k=1}^{2m-n-q} \gamma_{ck} A_{k}X - \sum_{\alpha=1}^{q} S_{c\alpha^{*}}(X)U_{\alpha},$$

$$u^{\alpha}(A_cX) = -\sum_{k=1}^{2m-n-q} \gamma_{ck} S_{k\alpha^*}(X).$$

Applying F to both sides of the relation (2.9) and using (2.3), we have:

$$A_c X = \sum_{\alpha=1}^q u^{\alpha} (A_c X) U_{\alpha} - \sum_{k=1}^{2m-n-q} \gamma_{ck} F A_k X,$$

for all X tangent to M and c = 1, ..., 2m - n - q

From now on we suppose that $\mu(M)$, $\dim \mu(M) = e$, is a subbundle of $\nu(M)$ which is not necessarily ϕ -invariant, but invariant with respect to the normal connection. We can select a local orthonormal frame $\lambda_1, \ldots, \lambda_{2m-n-q}$ for $\nu(M)$ so that $\lambda_1, \ldots, \lambda_e$ form a local orthonormal frame for $\mu(M)$. Then the Weingarten equation is:

(2.10)
$$\overline{\nabla}_X \lambda_i = -A_i X + \sum_{j=1}^e S_{ij}(X) \lambda_j, \quad i = 1, \dots, e.$$

Since (2.4) is true for c = i, we have:

$$\overline{\nabla}_X \lambda_i = -A_i X + \sum_{\alpha=1}^q S_{i\alpha^*}(X) N_\alpha + \sum_{d=1}^{2m-n-q} S_{id}(X) \lambda_d.$$

Comparing the last relation and (2.10) we conclude that:

(2.11)
$$S_{i\alpha^*}(X) = 0, \quad i = 1, \dots, e$$

and $S_{id}(X) = 0$, $d = e + 1, \dots, 2m - n - q$. Since S^{2m+1} is of constant curvature 1,

$$\overline{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y,$$

for all X, Y, Z tangent to \overline{M} . Since $\mu(M)$ is invariant with respect to the normal connection then from the equation of Ricci we get:

$$g((A_i A_{\alpha^*} - A_{\alpha^*} A_i)X, Y) = 0$$

and hence,

$$(2.12) A_i A_{\alpha^*} X = A_{\alpha^*} A_i X,$$

for all X tangent to M, $\alpha = 1, \ldots, q$ and $i = 1, \ldots, e$.

3 Contact CR-submanifolds of odd-dimensional unit sphere satisfying h(FX,Y) + h(X,FY) = 0

Let M be a connected (n+1)-dimensional contact CR-submanifold of S^{2m+1} with $\dim D_x^{\perp}=q+1$. In this section we study submanifolds M which satisfy the condition

(3.1)
$$h(FX,Y) + h(X,FY) = 0, \text{ for all } X,Y \text{ tangent to } M.$$

The second fundamental form h and the shape operators A_{α^*}, A_c corresponding to normals $N_{\alpha} \in \phi D^{\perp}$ and $\lambda_c \in \nu(M), c = 1, \ldots, 2m - n - q$, respectively, are related by:

$$h(X,Y) = \sum_{\alpha=1}^{q} g(A_{\alpha^*}X, Y)N_{\alpha} + \sum_{c=1}^{2m-n-q} g(A_cX, Y)\lambda_c,$$

for all X,Y in TM. Hence,

$$h(FX,Y) + h(X,FY) = 0 = \sum_{\alpha=1}^{q} \{g(A_{\alpha^*}FX,Y) + g(A_{\alpha^*}X,FY)\} N_{\alpha} + \sum_{c=1}^{2m-n-q} \{g(A_cFX,Y) + g(A_cX,FY)\} \lambda_c.$$

Since F is skew-symmetric, (3.1) is equivalent to $A_{\alpha^*}F = FA_{\alpha^*}$, i.e.,

$$(3.2) A_c F = F A_c,$$

with
$$\alpha = 1, ..., q, c = 1, ..., 2m - n - q$$
.

Lemma 3.1. Let M be a connected (n+1)-dimensional contact CR-submanifold of contact CR-dimension (n-q) of S^{2m+1} . Suppose the subbundle $\mu(M)$ is invariant with respect to the normal connection. If the condition (3.1) is satisfied, then $FA_i = 0 = A_iF$, $i = 1, \ldots, e$, where A_i are the shape operators for the normals λ_i and $e = \dim \mu(M)$.

Proof. Using (3.2) we have:

$$g(FA_cX, Y) - g(X, FA_cY) = g((FA_c + A_cF)X, Y) = 2g(FA_cX, Y)$$

and, using (2.9), we get

$$2g(FA_{c}X,Y) = \sum_{k=1}^{2m-n-q} \gamma_{ck} g(A_{k}X,Y) - \sum_{\alpha=1}^{q} S_{c\alpha^{*}}(X) u^{\alpha}(Y) - \sum_{k=1}^{2m-n-q} \gamma_{ck} g(A_{k}Y,X) + \sum_{\alpha=1}^{q} S_{c\alpha^{*}}(Y) u^{\alpha}(X).$$

Since the shape operators are self-adjoint, then the last relation reduces to:

$$2g(FA_{c}X,Y) = -\sum_{\alpha=1}^{q} S_{c\alpha^{*}}(X)u^{\alpha}(Y) + \sum_{\alpha=1}^{q} S_{c\alpha^{*}}(Y)u^{\alpha}(X).$$

Then, using (2.11) we get:

$$2g(FA_{i}X,Y) = -\sum_{\alpha=1}^{q} S_{i\alpha^{*}}(X)u^{\alpha}(Y) + \sum_{\alpha=1}^{q} S_{i\alpha^{*}}(Y)u^{\alpha}(X) = 0$$

and hence, $FA_iX = 0$, $i = 1, \ldots, e$.

Lemma 3.2. Let M be a connected (n+1)-dimensional contact CR-submanifold of contact CR-dimension (n-q) of S^{2m+1} . Suppose the subbundle $\mu(M)$ is invariant with respect to the normal connection. If the condition (3.1) is satisfied, then $A_i = 0$, $i = 1, \ldots, e$, where A_i are the shape operators for the normals λ_i and $e = \dim \mu(M)$.

Proof. Replacing X with ξ in equation (2.12) and using equations (2.6) and (2.7) we get $A_i A_{\alpha^*} \xi = A_{\alpha^*} A_i \xi = 0$, that is, $A_i U_{\alpha} = 0$, $i = 1, \ldots, e$. From (2.3) and Lemma 3.1 we have $A_i X = \sum_{\alpha=1}^q u^{\alpha}(A_i X) U_{\alpha}$. Then, from the last two equations we conclude that $A_i X = 0$, for all X tangent to M and $i = 1, \ldots, e$.

4 Codimension reduction of contact CR-submanifolds in odd-dimensional unit sphere

In this section, we apply the Erbacher's reduction of codimension theorem to contact CR-submanifold in an odd-dimensional unit sphere.

Let M be a connected submanifold in a Riemannian manifold. The first normal space $N_1(x)$ is defined to be the orthogonal complement of the set $N_0(x) = \{\zeta \in T_x^{\perp} M | A_{\zeta} = 0\}$ in $T_x^{\perp} M$ [9]. Erbacher proved the following theorem [4]:

Theorem 4.1. Let $\psi: M^n \longrightarrow \overline{M}^{n+p}(\widetilde{c})$ be an isometric immersion of a connected n-dimensional Riemannian manifold into an n+p-dimensional Riemannian manifold $\overline{M}^{n+p}(\widetilde{c})$ of constant sectional curvature \widetilde{c} . If $N \supset N_1$ and N is a subbundle of TM^{\perp} invariant with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\overline{M}^{n+p}(\widetilde{c})$ such that $\psi(M^n) \subset N^{n+l}$.

Let M be a connected contact CR-submanifold of S^{2m+1} whose contact CR-dimension is (n-q), i.e, dim $D^{\perp}=q+1$. For any orthogonal direct sum decomposition $TM^{\perp}=V_1\oplus V_2$, it is easy to see that V_1 is invariant with respect to the normal connection if and only if V_2 is invariant with respect to the normal connection.

Using the results of the previous section and Theorem 4.1, we have the following result without assuming that M is of maximal CR-dimension as was the case in [6, 7, 5].

Theorem 4.2. Let M be an (n+1)-dimensional contact CR-submanifold of contact CR-dimension (n-q) of S^{2m+1} . If ϕD^{\perp} is invariant with respect to the normal connection and if the condition (3.1) is satisfied, then there exists a totally geodesic unit sphere of dimension (n+q+1) of S^{2m+1} such that $M \subset S^{n+q+1}$.

Proof. By Lemma 3.2, the first normal space $N_1(x) = \phi D_x^{\perp}$. Hence, by Theorem 4.1 we can conclude that there exists a (n+q+1)-dimensional totally geodesic unit sphere S^{n+q+1} such that $M \subset S^{n+q+1}$.

Suppose $\mu(M)$ is a subbundle which is invariant with respect to the normal connection with $\lambda_1, \ldots, \lambda_e$ forming a local orthonormal frame for $\mu(M)$. At each point $x \in M$, consider the subspace $\widetilde{\mu}(M)_x$ of T_xM given by

$$\widetilde{\mu}(M)_x = span\{\lambda_1(x), \dots, \lambda_e(x), \phi\lambda_1(x), \dots, \phi\lambda_e(x)\}.$$

Then we have the following:

Lemma 4.3. Let $\mu(M)$ be a subbundle of $\nu(M)$ invariant with respect to the normal connection. There is a ϕ -invariant subbundle $\widetilde{\mu}(M)$ invariant with respect to the normal connection with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$, such that $A_{\lambda} = 0$, for any normal vector field λ in $\widetilde{\mu}(M)$.

Proof. We first observe that

$$-A_{\phi\lambda_i}X + \nabla_X^{\perp}(\phi\lambda_i) = \overline{\nabla}_X(\phi\lambda_i) = \phi(\overline{\nabla}_X\lambda_i) = \phi(-A_iX + \nabla_X^{\perp}\lambda_i) = \phi(\nabla_X^{\perp}\lambda_i).$$

This shows that $\phi\mu(M)$ is invariant relative to the normal connection and $A_{\phi\lambda_i}=0$.

Let $\gamma:[a,b]\to M$ be a smooth curve with $\gamma(a)=x$ and $\gamma(b)=y$. Consider orthonormal parallel vector fields $\lambda_1,\cdots,\lambda_e$ in $\mu(M)$ along γ . Then $\phi\lambda_1,\cdots,\phi\lambda_e$ are orthonormal parallel vector fields in $\phi\mu(M)$ along γ . Suppose $\dim \tilde{\mu}(M)_x=r$, $\{v_1,\cdots,v_r\}$ an orthonormal basis for $\tilde{\mu}(M)_x$ and $V_1\cdots,V_r$ parallel vector fields along γ with $V_1(a)=v_1,\cdots,V_r(a)=v_r$. Since each v_j is a linear combination of $\lambda_1(a),\cdots,\lambda_e(a),\phi\lambda_1(a),\cdots,\phi\lambda_e(a)$, each V_j is a linear combination of $\lambda_1,\cdots,\lambda_e$, $\phi\lambda_1,\cdots,\phi\lambda_e$, this shows that $\tilde{\mu}(M)$ is invariant under parallel transport with respect to the normal connection and so $\{V_1(b),\cdots,V_r(b)\}$ is orthonormal in $\tilde{\mu}(M)_y$. Hence, $\dim \tilde{\mu}(M)_y \geq r = \dim \tilde{\mu}(M)_x$. By switching the role of x and y, we see that $\dim \tilde{\mu}(M)_x \geq \dim \tilde{\mu}(M)_y$ and so $\dim \tilde{\mu}(M)_x = \dim \tilde{\mu}(M)_y$.

In general, any two points $x, y \in M$ can be joined by a piecewise smooth curve, since M is connected. We can deduce that $\widetilde{\mu}(M)$ has constant dimension at each point in M and conclude that $\widetilde{\mu}(M)$ defines a vector subbundle of $\nu(M)$. Moreover, it is clear that $\widetilde{\mu}(M)$ is ϕ -invariant with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$. Then by Lemma 3.2 we obtain $A_{\lambda} = 0$, for any normal vector field λ in $\widetilde{\mu}(M)$. Also, $\widetilde{\mu}(M)$ is a maximal subbundle of $\nu(M)$ which is invariant with respect to the normal connection. If $\nabla^{\perp}_{X} N = 0$, then $N \in \widetilde{\mu}(M)$. Let $\{\lambda_{1}(p), \ldots, \lambda_{e}(p)\}$.

We now have a result similar to that in [2]. We do not assume that $\mu(M)$ is ϕ -invariant and M is of maximal CR-dimension.

Theorem 4.4. Let M be an (n+1)-dimensional contact CR-submanifold of contact CR-dimension (n-q) of S^{2m+1} . Let $\mu(M)$ be a subbundle of $\nu(M)$ which is also invariant with respect to the normal connection with dim $\mu(M) = e$. If the condition (3.1) is satisfied, then there exists a totally geodesic odd-dimensional unit sphere of dimension (2m+1-l) in S^{2m+1} such that $M \subset S^{2m+1-l}$ with $l \geq e$.

Proof. From Lemma 4.3 we have a ϕ -invariant subbundle $\widetilde{\mu}(M)$ which is invariant with respect to the normal connection with $\mu(M) \subset \widetilde{\mu}(M) \subset \nu(M)$. Since $\widetilde{\mu}(M)$ is ϕ -invariant, it is of even dimension and $\dim \nu(M) \geq \dim \widetilde{\mu}(M) = l \geq e$. Also since $\widetilde{\mu}(M)$ is invariant with respect to the normal connection, we have $\widetilde{\mu}(M)_x \subset N_0(x)$. Hence the first normal space $N_1(x) \subset N_x = \phi D_x^\perp \oplus \sigma(M)_x$ where $\nu(M) = \widetilde{\mu}(M) \oplus \sigma(M)$. Since $\widetilde{\mu}(M)$ is invariant with respect to the normal connection, so is N. Applying Theorem 4.1, there exists a totally geodesic odd-dimensional unit sphere S^{2m+1-l} such that $M \subset S^{2m+1-l}$.

References

- [1] A. Bejancu, *Geometry of CR-submanifolds*, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
- [2] M. Djoric, Codimension reduction and second fundamental form of CR-submanifolds in complex space forms, J. Math. Anal. Appl. 356 (2009), 237–241.
- [3] M. Djoric, M. Okumura, *CR-Submanifolds of Complex Projective Spaces*, Springer, New York, Dordrecht, Heidelberg, London, 2010.
- [4] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differ. Geom. 5 (1971), 333–340.
- [5] H. S. Kim, J. S. Pak, Certain contact CR-submanifolds of an odd-dimensional uint sphere, Bull. Korean Math. Soc. 44 (2007), 109–116.
- [6] J. H. Kwon, J. S. Pak, On some contact CR-submanifolds of an odd dimensional unit sphere, Soochow J. Math. 26 (2000), 427–439.
- [7] J. S. Pak, J. H. Kwon, H. S. Kim, Y. M. Kim, Contact CR-submanifolds of an odd-dimensional unit sphere, Geom. Dedic. 114 (2005), 1–11.
- [8] K. Yano, M. Kon, Contact CR-submanifolds, Kodai Math. J. 5 (1982), 238–252.
- [9] K. Yano, M. Kon, CR-submanifolds of Keahlerian and Sasakian manifolds, Brikhauser, Boston, Basel, Stuttgart, 1983.

Author's address:

Esmaiel Abedi, Ghorbanali Haghightdoost Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. E-mail: esabedi@azaruniv.edu, gorbanali@azaruniv.edu

Mehri Asadollahzadeh Institute of Mathematical Sciences, University of Bonab, Iran. E-mail: m.a.zadeh@bonabu.ac.ir