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Abstract

In this paper we consider contact metric R-harmonic manifolds M with ξ
belonging to (κ, µ)-nullity distribution. In this context we have κ ≤ 1. If κ <
1, then M is either locally isometric to the product En+1 × Sn(4), or locally
isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If
κ = 1, then M is an Einstein-Sasakian manifold.
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1 Introduction

Throughout this paper we use the notations and terminology of [1] and [2]. Let M
be a (2n + 1)–dimensional Riemannian C∞ manifold. M2n+1 is said to be contact
manifold, if it admits a global differential 1-form η such that η∧(dη)n 6= 0, everywhere
on M2n+1. Given a contact form η, we have a unique vector field ξ, which is called
the characteristic vector field, satisfying η(ξ) = 1, dη(ξ, X) = 0, for any vector field
X.

It is well–known that, there exists a Riemannian metric g and a (1,1)–tensor field
ϕ such that

η(X) = g(X, ξ), dη(X,Y ) = g(X, ϕY ) and ϕ2X = −X + η(X)ξ,(1)

where X and Y are vector fields on M2n+1.
From (1) it follows that η ◦ ϕ = 0, ϕ(ξ) = 0, g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ).
A Riemannian manifold M2n+1 equipped with structure tensors (ϕ, ξ, η, g) satisfy-

ing (2) is said to be a contact metric manifold and denoted by M = (M2n+1, ϕ, ξ, η, g).
Given a contact metric manifold M we can define a (1, 1)-tensor field h by h =

1
2
Lξϕ, where L denotes Lie differentiation. Then we may observe that h is symmetric

and satisfies hξ = 0 and hϕ = −ϕh,∇Xξ = −ϕX − ϕhX, where ∇ is Levi-Civita
connection [2]. A contact metric manifold for which ξ is Killing vector field is called K
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-contact manifold. It is well-known that a contact manifold is K-contact if and only
if h = 0.

We denote by R the Riemannian curvature tensor field defined by

R(X, Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,

for all vector fields X,Y, Z.
For a contact metric manifold M one may define naturally an almost complex

structure on M × R . If this almost complex structure is integrable, M is said to
be a Sasakian manifold [1]. A Sasakian manifold is characterized by the condition
(∇Xϕ)Y = g(X, Y )ξ − η(X)Y , for all vector fields X and Y on the manifold [1].

Let M be a contact metric manifold. It is well known that M is Sasakian if and
only if

R(X,Y )ξ = η(Y )X − η(X)Y,(2)

for all vector fields X and Y [1].
A contact metric manifold M is said to be η− Einstein if

Q = aId + bη ⊗ ξ,(3)

where Q is the Ricci operator and a, b are smooth functions on M [2].

2 Contact metric manifolds with ξ belonging to
(κ, µ)–nullity distribution

In this section we give some well-known results.
Let M be a contact metric manifold. The (κ, µ)- nullity distribution of M for the

pair (κ, µ) is a distribution

N(κ, µ) : p → Np(κ, µ) = {Z ∈ TpM | R(X,Y )Z =
= κ[g(Y, Z)X − g(X, Z)Y ]+
+ µ[g(Y, Z)hX − g(X, Z)hY ]},

(4)

where κ, µ ∈ R (see [5]). So if the characteristic vector field ξ belongs to the (κ, µ)-
nullity distribution we have

R(X, Y )ξ = κ [η(Y )X − η(X)Y ] + µ [η(Y )hX − η(X)hY ] .

Lemma 2.1 [2]. If M is a contact metric manifold with ξ belonging to the (κ, µ)-
nullity distribution, then

(∇Xh)Y = [(1− κ)g(X, ϕY )− g(X,hϕY )] ξ + η(Y )h(ϕX + ϕhX)− µη(X)ϕhY,

where X and Y are any vector fields on M .
Theorem 2.2 [2]. Let M be a contact metric manifold with ξ belonging to a (κ, µ)-
nullity distribution. Then κ ≤ 1. If κ = 1, then h = 0 and M is Sasakian manifold. If
κ < 1, M admits three mutually orthogonal and integrable distributions D(0), D(λ)
and D(-λ) determined by the eigenspaces of h, where λ =

√
1− κ.
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Lemma 2.3 [2]. Let M be a contact metric manifold with ξ belonging to the (κ, µ)-
nullity distribution (κ < 1). For any vector field X, the Ricci operator Q is given
by

QX = [2(n− 1)− nµ]X + [2(n− 1) + µ]hX+
+[2(1− n) + n(2κ + µ)]η(X)ξ; n ≥ 1.

(5)

A consequence of Lemma 2.3 is the following
Lemma 2.4. Let M be a contact metric manifold. If ξ belonging to the (κ, µ)-nullity
distribution, then

(∇XS)(Y, Z) = [2(n− 1) + µ]g((∇Xh)Y, Z)+
+ [2(1− n) + n(2κ + µ)] {g(Y,∇Xξ)η(Z) + g(Z,∇Xξ)η(Y )} .

(6)

3 R–Harmonic manifolds

Let M be a (2n+1)–dimensional Riemannian C∞ manifold, ∇ and R denote its Levi–
Civita derivative and curvature tensor respectively.

A tensor field R of type (1,3) on M is called algebraic curvature tensor field if it
has symmetric properties of the curvature tensor field of Riemannian manifolds.

The curvature tensor R satisfies the second Bianchi identity if

(∇XR)(Y, Z, W ) + (∇Y R)(X, Z, W ) + (∇ZR)(X, Y,W ) = 0.

Proposition 3.1 [4]. Let R be an algebraic curvature tensor field which satisfies the
second Bianchi identity. If S is the associated Ricci tensor field, then

(divR)(X, Y, Z) = (∇XS)(Y, Z)− (∇Y S)(X, Z).

Definition 3.1. An algebraic curvature tensor field R is harmonic (or Codazzi type
in the sense of [3]) if

(divR)(X, Y, Z) = 0.

A Riemannian manifold M is called R-harmonic if its curvature tensor field R is
harmonic.

It is obvious that every Ricci-symmetric manifold (i.e. ∇S = 0) is R-harmonic.
Corollary 3.2 [4]. An algebraic curvature tensor field satisfying the second Bianchi
identity is harmonic if and only if the associated Ricci tensor Q (related to S by
S(X, Y ) = g(QX, Y )) is a Codazzi tensor field i.e., (∇XQ)Y − (∇Y Q)X = 0, for
every X, Y ∈ χ(M).

Now we state our main results.
Theorem 3.3. Let M be a contact metric R-harmonic manifold with ξ belonging to
(κ, µ)-nullity distribution.

i) If κ < 1, then M is either a) locally isometric to the product En+1 × Sn(4), or
b) locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space).

ii) If κ = 1, then M is an Einstein-Sasakian manifold.
Proof. i) Since M is a contact metric manifold with ξ belonging to (κ, µ)-nullity
distribution, with κ < 1, then by the covariant differentiation of the relation (13) we
have
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(∇XQ)Y − (∇Y Q)X = [2(n− 1) + µ] [(∇Xh)Y − (∇Y h)X] +
+ [2(1− n) + n(2κ + µ)] [g(Y,∇Xξ)ξ + η(Y )∇Xξ] +
− [2(1− n) + n(2κ + µ)] [g(X,∇Y ξ)ξ + η(X)∇Y ξ] .

(7)

By Lemma 3.1 iv) in [2] it can be seen that

(∇Xh)Y − (∇Y h)X = (1− k) [2g(X,ϕY )ξ + η(X)ϕY − η(Y )ϕX]

+ (1− µ) [η(X)ϕhY − η(Y )ϕhX] .
(8)

Substituting (8) into (7) and using R-harmonic property we obtain

0 = (∇XQ)Y − (∇Y Q)X =
= [2(n− 1) + µ] {(1− k) [2g(X, ϕY )ξ + η(X)ϕY − η(Y )ϕX]
+(1− µ) [η(X)ϕhY − η(Y )ϕhX]}+
+ [2(1− n) + n(2κ + µ)] [g(Y,∇Xξ)ξ+
+η(Y )∇Xξ − g(X,∇Y ξ)ξ − η(X)∇Y ξ

(9)

Taking the product of both sides of the equation (9) by ξ and using the fact that ϕ is
antisymmetric, h is symmetric, ϕξ = 0, ∇Xξ = −ϕX−ϕhX, after some computation
we find [κ(2− µ) + µ(n + 1)] g(X,ϕY ) = 0. Since g(X, ϕY ) = dη(X, Y ) 6= 0, we have
κ(2− µ) + µ(n + 1) = 0.

Taking X = ξ into (9) and using the fact that ϕ is antisymmetric, h is symmetric,
ϕξ = 0, ∇Xξ = −ϕX − ϕhX, after some computations we obtain

[κ(2− µ) + µ(n + 1)] ϕY + [2nκ + µ(3− n− µ)] ϕhY = 0.(10)

Since κ(2−µ)+µ(n+1) = 0, the relation (10) becomes [2nκ + µ(3− n− µ)] ϕhY =0.
So we have two possible cases:

Case I. κ(2− µ) + µ(n + 1) = 0 and [2nκ + µ(3− n− µ)] = 0.
Case II. ϕhY = 0.
Let us consider these in turn.
(Case I). Suppose κ(2 − µ) + µ(n + 1) = 0 and [2nκ + µ(3− n− µ)] = 0. Then

solving this system we obtain the following solutions:

κ = µ = 0, κ = µ = 3 + n or κ =
(n− 1)(n + 1)

n
, µ = 2− 2n.

For the case κ = µ = 0, M must be locally isometric to the product En+1×Sn(4)
(see [1] p.121). Since κ < 1, the case κ = µ = 3 + n is not possible. But the case

κ =
(n− 1)(n + 1)

n
, µ = 2−2n is possible only for n = 1. Thus M is 3-dimensional in

this case and by Theorem 3 in [2], M is locally isometric to E(2) (the rigid motions
of the Euclidean 2-space).

(Case II). Suppose ϕhY = 0. Then we have ∇Y ξ = −ϕY which implies that
M is K−contact. Therefore h = 0. Since h2 = (κ − 1)ϕ2, we obtain k = 1 which is
contradicting the fact that κ < 1 so this case does not occur.

ii) If κ = 1, then M is an Einstein-Sasakian manifold.
First, using the relation (∇XS)(Y, Z) = ∇XS(Y, Z) − S(∇XY,Z) − S(Y,∇XZ)

and the symmetric property of Q one can write g(Y, (∇XQ)Z) = g((∇XQ)Y, Z) and
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similarly g(X, (∇Y Q)Z) = g((∇Y Q)X,Z). Since M is R-harmonic, by Corollary 3.2
we obtain

g((∇XQ)Y, Z)) = g((∇Y Q)X, Z).(11)

Setting Z = ξ into (11) and using the relations ∇Xξ = −ϕX and Qξ = 2nξ (see [1]),
we have

− 2ng(Y, ϕX) + g(Y, QϕX) = −2ng(X,ϕY ) + g(X, QϕY ).(12)

Since M is Sasakian, we have Qϕ = ϕQ. So the equation (12) becomes

2ng(X, ϕY )− g(X,QϕY ) = 0.(13)

Interchanging Y with ϕY in (13) one finds S(X,Y ) = 2ng(X, Y ), i.e., M is an Einstein
manifold. This completes the proof of the theorem.
Corollary 3.4. Let M be a contact metric manifold with ξ belonging to (κ, µ)-nullity
distribution . If M is R-harmonic on the distribution D = {X | η(X) = 0, X ∈ χ(M)},
then M is either Einstein or Einstein-Sasakian manifold.
Proof. Suppose M is a contact metric manifold with ξ belonging to (κ, µ)-nullity
distribution.

First we suppose that κ < 1. If M is a R-harmonic on the distribution D, then
the equations (5) and (7) respectively become

QX = [2(n− 1)− nµ] X + [2(n− 1) + µ]hX,(14)

(∇XQ)Y − (∇Y Q)X = [2(n− 1) + µ] [(∇Xh)Y − (∇Y h)X] = 0.

So we have the following cases.
Case I. 2(n− 1) + µ = 0,
Case II. (∇Xh)Y − (∇Y h)X = 0.
Let us consider these in turn.
(Case I). Suppose 2(n − 1) + µ = 0. Then the equation (14) becomes QX =

[2(n− 1)− nµ] X, which implies that M is an Einstein manifold.
(Case II). Suppose (∇Xh)Y − (∇Y h)X = 0. Then by Lemma 2.1 we have

(∇Xh)Y − (∇Y h)X = 2(1 − κ)g(X,ϕY ) = 0, which implies κ = 1. This contradicts
the fact that κ < 1. So this case does not occur.

If κ = 1, then by the same discussion given in Theorem 3.3 ii) it is easy to show
that M is an Einstein manifold. This completes the proof of the corollary.
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