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Abstract

In this paper we consider contact metric R-harmonic manifolds M with &
belonging to (k, u)-nullity distribution. In this context we have k < 1. If kK <
1, then M is either locally isometric to the product E™** x S™(4), or locally
isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If
k = 1, then M is an Einstein-Sasakian manifold.
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1 Introduction

Throughout this paper we use the notations and terminology of [1] and [2]. Let M
be a (2n + 1)-dimensional Riemannian C°° manifold. M?"*! is said to be contact
manifold, if it admits a global differential 1-form 7 such that nA(dn)™ # 0, everywhere
on M?"*1, Given a contact form 7, we have a unique vector field &, which is called
the characteristic vector field, satisfying n(¢) = 1, dn(&, X) = 0, for any vector field
X.

It is well-known that, there exists a Riemannian metric g and a (1,1)-tensor field
@ such that

(1) n(X) =g(X,8), dn(X,Y) =g(X,9Y) and ¢’ X = —X +n(X)¢,

where X and Y are vector fields on M?"+1,
From (1) it follows that no @ =0, p(§) =0, g(¢X,9Y) = g(X,Y) — n(X)n(Y).
A Riemannian manifold M2"*! equipped with structure tensors (¢, &, 7, g) satisfy-
ing (2) is said to be a contact metric manifold and denoted by M = (M?*"*1 . & n, g).
Given a contact metric manifold M we can define a (1,1)-tensor field & by h =

1

—L¢p, where L denotes Lie differentiation. Then we may observe that h is symmetric
and satisfies hé = 0 and hp = —ph,Vx& = —pX — phX, where V is Levi-Civita
connection [2]. A contact metric manifold for which ¢ is Killing vector field is called K
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-contact manifold. It is well-known that a contact manifold is K-contact if and only
if h=0.
We denote by R the Riemannian curvature tensor field defined by

R(X,Y)Z =Vx(VyZ) - Vy(VxZ) - VixyvZ,

for all vector fields X,Y, Z.

For a contact metric manifold M one may define naturally an almost complex
structure on M x R . If this almost complex structure is integrable, M is said to
be a Sasakian manifold [1]. A Sasakian manifold is characterized by the condition
(Vxp)Y = g(X,Y)¢ —n(X)Y, for all vector fields X and Y on the manifold [1].

Let M be a contact metric manifold. It is well known that M is Sasakian if and
only if
(2) R(X,Y)§ =n(Y)X —n(X)Y,

for all vector fields X and Y [1].
A contact metric manifold M is said to be n— FEinstein if

(3) Q=ald+bn®E,

where @ is the Ricci operator and a,b are smooth functions on M [2].

2 Contact metric manifolds with ¢ belonging to
(k, p)—nullity distribution

In this section we give some well-known results.
Let M be a contact metric manifold. The (k, p)- nullity distribution of M for the
pair (k, ) is a distribution

N(H?N’) ‘P Np(ﬁvu) = {Z €e1,M | R(X,Y)Z =
(4) = klg(Y,2)X —g(X,2)Y]+
+ plg(Y,Z)hX — g(X, Z)RY ]},

where &, ;1 € R (see [5]). So if the characteristic vector field £ belongs to the (x, )-
nullity distribution we have

R(X,Y)E=r[nY)X —n(X)Y]+ pn(Y)hX — n(X)hY].

Lemma 2.1 [2]. If M is a contact metric manifold with £ belonging to the (k,u)-
nullity distribution, then

(Vxh)Y =[(1 - k)g(X,9Y) — g(X, hpY )] § + n(Y)h(pX + ¢hX) — un(X)phY,

where X and Y are any vector fields on M.

Theorem 2.2 [2]. Let M be a contact metric manifold with & belonging to a (k,p)-
nullity distribution. Then k < 1. If k = 1, then h = 0 and M is Sasakian manifold. If
Kk < 1, M admits three mutually orthogonal and integrable distributions D(0), D(\)
and D (-)\) determined by the eigenspaces of h, where A = /1 — k.
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Lemma 2.3 [2]. Let M be a contact metric manifold with & belonging to the (k,u)-
nullity distribution (k < 1). For any vector field X, the Ricci operator @ is given
by
(5) QX =02(n—-1)—nuX +2(n—1) + plhX+

+[2(1 = n) + n(26 + p)n(X)& n = 1.

A consequence of Lemma 2.3 is the following
Lemma 2.4. Let M be a contact metric manifold. If & belonging to the (k, u)-nullity
distribution, then

©) (VxS)(¥.2) = 20— 1) + plg(Vxh)Y. 2)+
+[2(1 =) + 02+ )] {a Y, TxE)n(Z) + 9(Z.Vxn(¥)}

3 R—-Harmonic manifolds

Let M be a (2n+1)-dimensional Riemannian C'°° manifold, V and R denote its Levi—
Civita derivative and curvature tensor respectively.
A tensor field R of type (1,3) on M is called algebraic curvature tensor field if it
has symmetric properties of the curvature tensor field of Riemannian manifolds.
The curvature tensor R satisfies the second Bianchi identity if

(VxR)(Y,Z, W)+ (VyR)(X,Z,W)+ (VzR)(X,Y,W) = 0.

Proposition 3.1 [4]. Let R be an algebraic curvature tensor field which satisfies the
second Bianchi identity. If S is the associated Ricci tensor field, then

(divR)(X.Y, Z) = (VxS)(Y, Z) — (Vy S)(X, Z).

Definition 3.1. An algebraic curvature tensor field R is harmonic (or Codazzi type
in the sense of [3]) if
(divR)(X,Y,Z) = 0.

A Riemannian manifold M is called R-harmonic if its curvature tensor field R is
harmonic.

It is obvious that every Ricci-symmetric manifold (i.e. V.S = 0) is R-harmonic.
Corollary 3.2 [4]. An algebraic curvature tensor field satisfying the second Bianchi
identity is harmonic if and only if the associated Ricci tensor @ (related to S by
S(X,Y) = ¢g(QX,Y)) is a Codazzi tensor field i.e., (VxQ)Y — (VyQ)X = 0, for
every X, Y € x(M).

Now we state our main results.

Theorem 3.3. Let M be a contact metric R-harmonic manifold with & belonging to
(K, p)-nullity distribution.

i) If k < 1, then M ‘s either a) locally isometric to the product E™*' x S™(4), or
b) locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space).

i) If k = 1, then M is an Einstein-Sasakian manifold.

Proof. i) Since M is a contact metric manifold with ¢ belonging to (, u)-nullity
distribution, with k < 1, then by the covariant differentiation of the relation (13) we
have
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(VxQ)Y = (VyQ)X = [2(n — 1) + ] [(Vxh)Y — (Vyh) X]+
(7) +12(1 = n) + 026+ p)] [g(Y, VxEE+n(Y)VxE] +
—[2(1 =n) +n(2x + W] [9(X, Vy &+ n(X)VyL].

By Lemma 3.1 iv) in [2] it can be seen that

(Vxh)Y —(Vyh)X = (1-k)[29(X,0Y)E+n(X)pY —n(Y)pX]
+ (1= p) (X)phY —n(Y)phX].

Substituting (8) into (7) and using R-harmonic property we obtain

0=(VxQ)Y - (VyQ)X =

=[2(n = 1) + p]{(1 = k) [29(X, pY)E + n(X)pY —n(Y)pX]
9) +(1 = p) [n(X)phY —n(Y)phX]}+

+[2(1 = n) +n2k + )] [g(Y, VxE)E+

+n(Y)Vx€ — g(X, Vy&E —n(X)VyE

Taking the product of both sides of the equation (9) by & and using the fact that ¢ is
antisymmetric, h is symmetric, o€ = 0, Vx& = —pX — ph X, after some computation
we find [K(2 — p) + p(n + 1)) (X, pY) = 0. Since g(X, ¢Y) = dn(X,Y) # 0, we have
K(2—p)+p(n+1)=0.

Taking X = ¢ into (9) and using the fact that ¢ is antisymmetric, h is symmetric,
pé =0, Vx&=—pX — phX, after some computations we obtain

(10) k(2= p)+pun+ D] Y + 2nk+ p(3—n—p)] ohY =0.

Since k(2 —p) + p(n+1) = 0, the relation (10) becomes [2nk + (3 —n — u)] phY =0.
So we have two possible cases:

Case I. k(2 —p) + p(n+1) =0 and [2nk + p(3 —n — p)] = 0.

Case II. phY = 0.

Let us consider these in turn.

(Case I). Suppose £(2 — p) + u(n+ 1) = 0 and [2nk + (3 —n — p)] = 0. Then
solving this system we obtain the following solutions:

(n—1)(n+1)

k=p=0,k=p=3+nork= , p=2-—2n.

For the case k = j = 0, M must be locally isometric to the product E™ ™! x §™(4)
(see [1] p.121). Since k < 1, the case K = p = 3 + n is not possible. But the case

-1 1
= w, 1= 2—2n is possible only for n = 1. Thus M is 3-dimensional in

n
this case and by Theorem 3 in [2], M is locally isometric to E(2) (the rigid motions
of the Euclidean 2-space).

(Case II). Suppose phY = 0. Then we have Vy& = —pY which implies that
M is K—contact. Therefore h = 0. Since h? = (k — 1)p?, we obtain k = 1 which is
contradicting the fact that x < 1 so this case does not occur.

ii) If kK = 1, then M is an Einstein-Sasakian manifold.

First, using the relation (VxS)(Y,Z) = VxS(Y,Z) - S(VxY,Z) - S(Y,VxZ)
and the symmetric property of @ one can write g(Y,(VxQ)Z) = ¢((VxQ)Y, Z) and
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similarly g(X, (VyQ)Z) = g((VyQ)X, Z). Since M is R-harmonic, by Corollary 3.2
we obtain

(11) 9(VxQ)Y, 2)) = 9((VyQ)X, Z).

Setting Z = £ into (11) and using the relations Vx& = —pX and Q¢ = 2n& (see [1]),
we have

(12) =2ng(Y, pX) + g(Y,QpX) = —2ng(X, ¢Y) + g(X, QpY).

Since M is Sasakian, we have Qp = ¢@Q. So the equation (12) becomes
(13) 2ng(X,9Y) — g(X,QpY) = 0.

Interchanging Y with Y in (13) one finds S(X,Y) = 2ng(X,Y), i.e., M is an Einstein
manifold. This completes the proof of the theorem.
Corollary 3.4. Let M be a contact metric manifold with £ belonging to (k, p)-nullity
distribution . If M is R-harmonic on the distribution D = {X | n(X) =0, X € x(M)},
then M is either Einstein or Einstein-Sasakian manifold.
Proof. Suppose M is a contact metric manifold with & belonging to (x, u)-nullity
distribution.

First we suppose that £ < 1. If M is a R-harmonic on the distribution D, then
the equations (5) and (7) respectively become

(14) QX =2(n—1)—nu] X +[2(n — 1) + p] kX,

(VxQ)Y = (VyQ)X = [2(n — 1) + ] [(Vxh)Y — (Vyh)X] = 0.

So we have the following cases.

CaseI.2(n—1)+p =0,

Case II. (Vxh)Y — (Vyh)X =0.

Let us consider these in turn.

(Case I). Suppose 2(n — 1) + p = 0. Then the equation (14) becomes QX =
[2(n — 1) — nu) X, which implies that M is an Einstein manifold.

(Case II). Suppose (Vxh)Y — (Vyh)X = 0. Then by Lemma 2.1 we have
(Vxh)Y — (Vyh)X = 2(1 — k)g(X,9Y) = 0, which implies x = 1. This contradicts
the fact that x < 1. So this case does not occur.

If k = 1, then by the same discussion given in Theorem 3.3 ii) it is easy to show
that M is an Einstein manifold. This completes the proof of the corollary.
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