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Abstract

In the last decade, contact, almost contact, paracontact cosymplectic, and
conformal cosymplectic manifolds carrying κ > 1 structure vector fields ξ have
been studied by many authors, e.g. [2], [7], [11], [15].

In the present paper we consider a (2m + 2)-dimensional Riemannian mani-
fold carrying two structure vector fields ξr (r ∈ {2m+1, 2m+2}), a (1, 1)-tensor
field Φ, and a structure 2 - form Ω of rank 2m, such that for ηr := (ξr)

[

Φ2 = −Id + ηr ⊗ ξr Φ ξr = 0, ηr (ξs) = δr
s

Ω(Z, Z′) = g(Φ Z, Z′), Ωm ∧ η2m+1 ∧ η2m+2 6= 0
(0.1)

holds. Here the (2m)-dimensional subspace ImΦ of the tangent space is supposed
to be Kählerian (see eq. (2.12) below). If the 3-forms

γr = ηr ∧ dηr(0.2)

satisfy
dγr = 0 ,(0.3)

they are called Godbillon-Vey forms [6]. On the other hand, if

∇X ξr = fr X

r = 2m + 1, 2m + 2
(0.4)

holds for all X orthogonal to ξr and for some fr ∈ Λ0M , the structure vector
fields define a concircular pairing [1]. It will turn out that (0.3) follows from (0.1)
and (0.4). Therefore we call such manifolds M(Φ, Ω, ηr, ξr) 2-framed Godbillon-
Vey manifold (abbreviated 2FG-V). We shall prove that they have the following
properties:

Any 2FG-V manifold is equipped with a conformal symplectic structure
CSp(m + 1, IR) with ξ :=

∑
fr ξr as vector of Lee, i.e.

dΩ = 2ξ[ ∧ Ω(0.5)

and M is the local Riemannian product

M = M⊥ ×M>

such that
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1. M⊥ is a flat surface tangent to the structure vector fields ξr;

2. M> is a 2m-dimensional Kählerian submanifold, and the immersion
x : M> → M has the following properties:

(a) The mean curvature vector field H associated with x is−ξ and satisfies
‖H ‖2= const.

(b) The immersion x is umbilical. In section 3, the existence of a horizontal
skew symmetric conformal (abbreviated SC) vector field C is proved
by an exterior differential system in involution (in the sense of E.
Cartan [3]). Denote by K and R the scalar curvature of M and the
Ricci tensor field of ∇, respectively. Then

LC K = −ρ K ; LC R(Z, Z′) = 0 ; ρ = const. ; Z, Z′ ∈ XM

and C is a module commuting vector field, i.e.

[C, ∇‖C ‖2] = 0 , ∇ : gradient of a scalar .

(c) C defines an infinitesimal homothety of all (2q + 1)-forms (C[)q :=
C[ ∧ Ωq, i.e.

LC(C[)q = (q + 1)(C[)q ,

and Φ C defines an infinitesimal automorphism of Ω:

LΦ C Ω = 0 .
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1 Preliminaries

Let (M, g) be a Riemannian C∞-manifold and ∇ the covariant differential operator
with respect to the metric g. We assume that M is oriented and ∇ is the Levi-Civita
connection.

Define Γ(TM) =: XM and let TM
[
⇀↽
]

T ∗M be the musical isomorphism defined

by g and
Ω[ : TM → T ∗M ; Z → −iZΩ =: [Z

the symplectic isomorphism defined by Ω. Following Poor [10], we set

Aq(M, TM) := Hom(ΛqTM, TM)

and notice that the elements of Aq(M, TM) are vector valued q-forms. The local field
of orthonormal frames on an n-dimensional Riemannian manifold is denoted by

O = {eA; A = 1, · · · , n}
and the associated coframe by

O∗ = {ωA; A = 1, · · · , n} .
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The soldering form dp is expressed by
dp = ωA ⊗ eA(1.6)

and Cartan’s structure equations in index-free notation are written as

∇e = θ ⊗ e(1.7)
dω = −θ ∧ ω(1.8)
dθ = −θ ∧ θ + Θ .(1.9)

Here the 1-forms θ and the 2-form Θ are the connection forms in the tangent bundle
TM and the curvature form, respectively.

Now let W be a conformal vector field, i.e. a vector field satisfying the conformal
version of Killing’s equation

LW g = ρ g ,(1.10)

where the conformal scalar ρ is defined by

ρ =
2

dimM
(divW ) .(1.11)

We recall some basic formulas [14] which will be needed in the last section:
LW K = (n− 1)∆ρ−K ρ ; n = dimM(1.12)

2LW R(Z, Z ′) = g(Z, Z ′)∆ρ− (n− 2)(Hess∇ ρ)(Z, Z ′),(1.13)

where
(Hess∇ ρ)(Z, Z ′) = g(Z, ∇Z′ grad ρ) .

In these equations LW , K, ∆ and R denote the Lie derivative with respect to W , the
scalar curvature of M , the Laplacian and the Ricci tensor field of ∇ respectively.

2 2-Framed Godbillon - Vey manifolds

Let M(Φ, Ω, ηr, ξr, g) be a (2m + 2) - dimensional Riemannian manifold carrying
two structure vector fields ξr (r ∈ 2m + 1, 2m + 2) and let ηr be their associated
covectors. Suppose that the structure tensors (Φ, Ω, ηr, ξr) satisfy (0.1). Then M
carries a 2-framed structure in the sense of Yano and Kon [15]. We further assume
that (0.4) holds. Defining er := ξr and ωr := ηr, this yields

fr ωa = θa
r , fr ∈ Λ0M , a = 1, · · · , 2m(2.1)

and
dη2m+1 = u ∧ η2m+2

dη2m+2 = −u ∧ η2m+1 ,
(2.2)

where u is some closed 1-form. In the same way, (0.4) ensures that dγr = 0 holds.
(2.2) can be written as

u = θ2m+2
2m+1 .(2.3)

Connections satisfying (2.1) are called principal connections [12].
One may split the soldering form dp in a unique manner as

dp = dp> ⊗ dp⊥,(2.4)
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where dp> := ωa ⊗ ea and dp⊥ := ηr ⊗ ξr are called the horizontal and the vertical
component of dp, respectively. From (2.3) and (2.1) one finds

∇ξ2m+1 = f2m+1 dp> + u⊗ ξ2m+2

∇ξ2m+2 = f2m+2 dp> − u⊗ ξ2m+1 .
(2.5)

Hence we have

∇ξ2m+2ξ2m+1 = u(ξ2m+2) ξ2m+2

∇ξ2m+1ξ2m+2 = −u(ξ2m+1) ξ2m+1,

and referring to [1] one may say that the structure vector fields ξr define a concircular
pairing. Then (2.5) and the well-known formula

div Z = tr(∇Z) =
2m∑
a=1

ωa (∇ea
Z) +

2m+2∑
r=2m+1

ηr (∇ξr
Z) , Z ∈ XM

yield
div ξ2m+1 = 2 m f2m+1 + u(ξ2m+2)

div ξ2m+2 = 2 m f2m+2 + u(ξ2m+1) .

If u is a basic form, i.e. if u(ξr) = 0, then (2.2) entails

iξr dηr = 0.

Therefore, according to a well known definition, we may say that ξr move to Reeb
vector fields (in the large).

In the general case, i.e. u(ξr) 6= 0, we shall say that the manifold
M(Φ, Ω, ηr, ξr, g) is endowed with a 2-framed Godbillon - Vey structure, (abbre-
viated 2FG-V structure). Referring to [11] we call the distribution D⊥ := {ξr; r =
2m + 1, 2m + 2} the vertical distribution, and its orthogonal complement D> :=
{ea, a = 1, · · · , 2m} the horizontal distribution on M . Similarly

ϕ⊥ := η2m+1 ∧ η2m+2

and
ϕ> := ω1 ∧ · · · ∧ ω2m(2.6)

are called the vertical and the horizontal form, respectively. With these definitions,
(2.2) gives immediately

dϕ⊥ = 0 .

Therefore it follows from Frobenius’ theorem that the horizontal distribution D>
is involutive. Setting

η :=
2m+2∑

r=2m+1

fr ηr ,(2.7)

(2.6) and (2.1) yield

dϕ> = 2 mη ∧ ϕ> .(2.8)

This shows that ϕ> is an exterior recurrent form [5] and consequently D⊥ is also
involutive. Hence any 2FG-V manifold is the local Riemannian product
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M = M> ×M⊥ ,

where M> is a 2m-dimensional manifold tangent to D> and M⊥ is a surface tangent
to D⊥.

Since η is the recurrence form of ϕ> (see (2.8)), it is closed. (Generally, we shall
call an exterior recurrent form strictly recurrent, if its recurrence form is closed.) This
fact together with (2.7) and (2.2) give

df2m+1 = f2m+2 u

df2m+2 = −f2m+1 u .
(2.9)

Therefore the Poisson bracket { }P of the function fr, i.e.

{f2m+1, f2m+2}P := Ω(∇f2m+1, ∇f2m+2)

vanishes. Defining

ξ :=
2m+2∑

r=2m+1

fr ξr ; η :=
2m+2∑

r=2m+1

fr ηr = ξ[

one easily deduces from (2.9) that
‖ξ‖2 = (f2m+1)2 + (f2m+2)2 =: 2 f = const.(2.10)

and further from (2.9), (2.4), and (2.5):
∇ξ = 2 f dp>.(2.11)

On the other hand using (2.3), (2.1), (1.9), du = 0 (see (2.2)) and the fact that
θa
2m+2 = −θ2m+2

a holds because of g(e2m+2, ea) = 0, one finds

Θ2m+2
2m+1 = 0 .

It is easily seen that Θ2m+2
2m+1 is the curvature form of M⊥. Therefore this surface

is flat. Further, because of (0.1), the horizontal connection forms satisfy the Kähler
relations

θi
j = θi∗

j∗ ; θi∗
j = θj∗

i ; i = 1, · · · ,m ; i∗ = i + m.(2.12)

Recalling the standard expression for the structure 2-form Ω

Ω =
m∑

i=1

ωi ∧ ωi∗ ; i∗ = i + m,(2.13)

we find with the help of (2.1) and (2.7), after some calculation,

dΩ = 2 η ∧ Ω .(2.14)

This shows the important fact that the 2FG-V manifold under discussion is en-
dowed with a locally conformal symplectic structure CSp(m + 1, IR), with η = ξ[ as
covector of Lee. Since iξ Ω = 0 and f = const. (see (2.10)), one gets from (2.13):

Lξ Ω = 2 f Ω ,(2.15)

which shows that ξ defines an infinitesimal homothety of Ω.
On the other hand, Ω|

M> is of rank 2m. Therefore it is the symplectic form of
the Kähler submanifold M> of M . Next let H be the mean curvature vector field
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associated with the immersion x : M> → M . If γA
BC denote the coefficients of the

connection θ, the vector field H is given by

H =
1

2 m

2m∑
a=1

γr
aa ξr .

(We denote the induced elements by the same letters.) Now using (2.1) and (2.10),
an easy calculation gives

H = −ξ ⇒ ‖H‖2 = 2 f = const.

Hence one deduces the following important fact: M> is a Kähler submanifold of
M of constant mean curvature. Moreover, since dp> is the soldering form of M>,
it follows from (2.4) that the second quadratic forms associated with the immersion
x : M> → M are

lr = − < dp>, ∇ ξr >= −fr g> .

This means that the immersion x : M> → M is umbilical.
Summing up we state

Theorem 1. Let M(Φ, Ω, ξr.η
r, g) be a (2m + 2)-dimensional Riemannian manifold

endowed with a 2 FG-V structure defined by (0.1) - (0.3). Such a manifold admits a
locally conformal symplectic structure with ξ[ as covector of Lee, i.e.

dΩ = 2 ξ[ ∧ Ω .

Furthermore M is the local Riemannian product

M = M⊥ ×M>,

where

1. M⊥ is a flat surface tangent to the structure vector fields ξr.

2. M> is a 2m-dimensional Kählerian submanifold, and the immersion x : M> →
M has the following properties:

(a) M> is of constant mean curvature.

(b) The immersion x : M> → M is umbilical.

3 Skew symmetric conformal vector fields

In this section we assume that the 2FG-V manifold under consideration carries a
horizontal skew symmetric conformal (abr. SSC) vector field C. The generative of C
is assumed to be the Reeb vector field ξ. This means [9]

∇C = λ dp + C ∧ ξ .(3.1)

Here ∧ denotes the wedge product of vectors: C ∧ ξ := ξ[ ⊗C −C[ ⊗ ξ. One may
set

C = Ca ea ∈ D> ; a, b ∈ {1, · · · , 2m}.
Then it follows from (2.1), (3.1), and (1.7):
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dCa + Cb θa
b = λωa + Ca η .(3.2)

Clearly, from

C[ =
2m∑
a=1

Ca ωa(3.3)

one obtains
dC[ = 2 η ∧ C[ .(3.4)

This agrees with Rosca’s lemma [9]. As a simple consequence of (3.2), one derives
d‖C‖2 = 2 λC[ − 2 ‖C‖2 η .(3.5)

Denote now by Σ the exterior differential system which defines the vector field
C. Then because of dη = 0, (3.4) and (3.5), the characteristic numbers of Σ are
r = 3, s0 = 1, s1 = 2. Since r = s0 + s1 holds, it follows that Σ is in involution (in
the sense of E. Cartan [3]). Therefore Cartan’s test states that C exists and depends on
two arbitrary functions of one argument. On the other hand, recall that the symplectic
isomorphism (see also [8]) is expressed as

Z → −iZ Ω = [Z =: Ω[ (Z) , Ω(Z, Z ′) =: < Z ′, Z > .(3.6)

So one may write

iC Ω = −[C =
m∑

i=1

(Ci ωi∗ − Ci∗ ωi) =: β ,

where we have set β := −[C. From (2.12), (2.14), and (3.2), one derives:

dβ = 2 λ Ω + 2 η ∧ β .

Again an exterior derivation yields λ = const (remember dη = 0.) On the other
hand, from

LZ g =
2 div Z

dimM
g = ρ g ; Z ∈ X (M)

(cf. (1.11)) and from (3.1), one quickly finds
ρ = 2 λ.(3.7)

This means that C defines an infinitesimal homothety of M, because using (2.13)
and (2.15), one obtains at once

LC Ω = ρ Ω

and

Lξ Ω = 2 f Ω

(remember f = const.). Furthermore, let L be the operator of type (1,1) given by

Lu := u ∧ Ω ; u ∈ Λ1M

and define (cf. [6])

Lq u := uq := u ∧ Ωq ∈ Λ2q+1M .
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Coming back to the case under discussion, (3.4) yields

LC C[ = ρC[ .

This shows that C[ is a self-conformal form. A standard calculation gives

LC(C[)q = (q + 1)(C[)q .

Therefore C defines an infinitesimal homothety of all these (2q + 1)-forms.
With Yano’s formulas (1.12) and (1.13), one finds

LC K = −ρK

and
LC R(Z, Z ′) = 0 ; Z, Z ′ ∈ X (M) ,

where K and R denote the scalar curvarure of M and the Ricci tensor field, respec-
tively. Now, for any vector field Z, one has

(∇Φ)Z = ∇(Φ Z)− Φ∇Z .

Therefore (0.1) and (3.1) yield

(∇Φ) C = (
ρ

2
− λ− η(C))Φ dp− (Φ C)[ ⊗ ξ

= ∇(Φ C)− λ Φ dp− η (Φ C).

Hence

∇(Φ C) =
(ρ

2
− η(C)

)
Φ dp + η (ΦC)− (ΦC)[ ⊗ ξ

=
(ρ

2
− η(C)

)
Φ dp + Φ C ∧ ξ(3.8)

(∧: wedge product of vector fields). From the inner product < Z, Φ dp >= Φ Z,
and from (3.8), one derives

< ∇ZΦC, Z ′ > + < ∇Z′ΦC, Z >= 0 ; Z, Z ′ ∈ X (M) .

Furthermore, since C is a horizontal vector field, it is easily seen that

[ΦC = C[

holds. So together with (2.13), this leads to

LΦCΩ = 0 .

Therefore ΦC defines an infinitesimal automorphism of Ω.
It should be noticed that (2.10), (3.1), and (3.8) entail

[ξ, ΦC] = 0 ; [C, ΦC] = 0 ; [C, ξ] = −ρ

2
ξ .

So ξ and C commute with ΦC, and ξ admits an infinitesimal homothety of gen-
erators C [4].

Let now C : (M, g) → (M̃, g̃) be a conformal diffeomorphism (abr. CD) of
argument t, i.e.
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C : g 7→ g̃ := e2t g .

One has (see also [10])

∇̃C = ∇C + (∇t)[ ⊗ C − C[ ⊗∇t + g(C, ∇t) dp ,

and the scalar curvature K̃ of M̃ is given by

K̃ = e−2t
(
K + 2(2m + 1) div∇t + (2m + 1) 2m ‖∇t‖2) .

Since K = const., the manifold M̃ is homothetic to M , if it satisfies ‖∇t‖2 = const.
and div∇t = const. Furthermore

d‖C‖2 = ρC[ + 2 ‖C‖2 η ,

and the gradient (which will also be denoted by∇) of the function ‖C‖2 is expressed by

∇‖C‖2 = ρC + 2 ‖C‖2 ξ .(3.9)

Thus from

div C = (m + 1) ρ = const. ; div ξ = 4 m f = const.

(see (2.5), (2.9), and (2.10)) one quickly derives

∆ ‖C‖2 = −div∇‖C‖2 = −κ f ‖C‖2 − (m + 1) ρ2 ; κ ∈ IR .(3.10)

Therefore as an extension of a well-known definition (see e.g. [13]), we may say
that ‖C‖2 is an almost eigenfunction of ∆ with −κ f as eigenvalue. We notice that
if C is a Killing vector field, i.e. if ρ = 0 (see (3.1) and (3.7)), then ‖C‖2 becomes
an eigenfunction of ∆. Since the eigenvalue is negative definite, the corresponding
manifold cannot be compact.

We recall that a function ν : IR → IR is isoparametric, iff both, ‖∇ν‖2 and
div (grad ν) are functions of ν [13]. Then from (3.9) and (3.10), it is quickly seen that
‖C‖2 is an isoparametric function.

Finally, setting

∇2‖C‖2 := ∇ grad ‖C‖2

in (3.1), one deduces after a short calculation

[C, ∇‖C‖2] = 0 .

This shows that C is a module commuting vector field. Thus we have proven
Theorem 2. Let C be a horizontal skew symmetric conformal vector field on the 2FG-
V manifold defined by conditions (0.1) - (0.3). Such a C always exists; it is determined
by an exterior differential system in involution. C infinitesimal homothety on M , i.e.

LC K = −ρK ; K: scalar curvature of M ; ρ = const.

Moreover:
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1.

LC R(Z, Z ′) = 0 , Z, Z ′ ∈ XM ,

where R denotes the Ricci tensor field, and

LC(C[)q = (q + 1)(C)[
q .

Here Lq : C[ → (C[)q := C[ ∧ Ωq is the (1,1) - Weyl operator.

2. ΦC defines an infinitesimal automorphism of Ω, i.e.

LΦCΩ = 0 ,

and ξ and C commute with ΦC. In addition, ξ admits an infinitesimal homothety
of generators C, i.e.

[ξ, ΦC] = 0 ; [C, ΦC] = 0 ; [C, ξ] = −ρ

2
ξ .

3. ‖C‖2 is an almost eigenfunction of ∆, as well as an isoparametric function, and
C is a module commuting vector field.
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