On 2 - Framed Riemannian Manifolds with Godbillon - Vey Structure Form

K. Buchner and R. Roşca

Dedicated to Prof.Dr. Constantin UDRISTE on the occasion of his sixtieth birthday

Abstract

In the last decade, contact, almost contact, paracontact cosymplectic, and conformal cosymplectic manifolds carrying $\kappa > 1$ structure vector fields ξ have been studied by many authors, e.g. [2], [7], [11], [15].

In the present paper we consider a (2m+2)-dimensional Riemannian manifold carrying two structure vector fields ξ^r ($r \in \{2m+1, 2m+2\}$), a (1, 1)-tensor field Φ , and a structure 2 - form Ω of rank 2m, such that for $\eta^r := (\xi_r)^{\flat}$

(0.1)
$$\begin{aligned} \Phi^2 &= -Id + \eta^r \otimes \xi_r \qquad \Phi \, \xi_r = 0, \qquad \eta^r \, (\xi_s) = \delta_s^r \\ \Omega(Z, \, Z') &= g(\Phi \, Z, \, Z'), \qquad \Omega^m \wedge \eta^{2m+1} \wedge \eta^{2m+2} \neq 0 \end{aligned}$$

holds. Here the (2m)-dimensional subspace $Im\Phi$ of the tangent space is supposed to be Kählerian (see eq. (2.12) below). If the 3-forms

(0.2)
$$\gamma^r = \eta^r \wedge d\eta^r$$

satisfy

$$(0.3) d\gamma^r = 0 ,$$

they are called Godbillon-Vey forms [6]. On the other hand, if

(0.4)
$$\nabla_X \xi_r = f_r X$$
$$r = 2m + 1, 2m + 2$$

holds for all X orthogonal to ξ_r and for some $f_r \in \Lambda^0 M$, the structure vector fields define a *concircular pairing* [1]. It will turn out that (0.3) follows from (0.1) and (0.4). Therefore we call such manifolds $M(\Phi, \Omega, \eta^r, \xi_r)$ 2-framed Godbillon-Vey manifold (abbreviated 2FG-V). We shall prove that they have the following properties:

Any 2FG-V manifold is equipped with a conformal symplectic structure $CSp(m+1, \mathbb{R})$ with $\xi := \sum f_r \xi_r$ as vector of Lee, i.e.

$$(0.5) d\Omega = 2\xi^{\flat} \wedge \Omega$$

and M is the local Riemannian product

$$M = M^{\perp} \times M^{\top}$$

such that

Balkan Journal of Geometry and Its Applications, Vol.5, No.1, 2000, pp. 57-67 OBalkan Society of Geometers, Geometry Balkan Press

- 1. M^{\perp} is a flat surface tangent to the structure vector fields ξ_r ;
- 2. M^{\top} is a 2*m*-dimensional Kählerian submanifold, and the immersion $x: M^{\top} \to M$ has the following properties:
 - (a) The mean curvature vector field H associated with x is $-\xi$ and satisfies $||H||^2 = \text{const.}$
 - (b) The immersion x is umbilical. In section 3, the existence of a horizontal skew symmetric conformal (abbreviated SC) vector field C is proved by an exterior differential system in involution (in the sense of E. Cartan [3]). Denote by K and R the scalar curvature of M and the Ricci tensor field of ∇, respectively. Then

 $\mathcal{L}_C K = -\rho K; \quad \mathcal{L}_C R(Z, Z') = 0; \quad \rho = const.; \quad Z, Z' \in \mathcal{X}M$

and C is a module commuting vector field, i.e.

$$[C, \nabla \| C \|^2] = 0, \qquad \nabla : \text{gradient of a scalar}$$

(c) C defines an infinitesimal homothety of all (2q + 1)-forms $(C^{\flat})_q := C^{\flat} \wedge \Omega^q$, i.e.

$$\mathcal{L}_C(C^\flat)_q = (q+1)(C^\flat)_q$$

and ΦC defines an infinitesimal automorphism of Ω :

$$\mathcal{L}_{\Phi C} \Omega = 0$$

Mathematics Subject Classification: 53C25

Key words: Riemannian manifold, 2-framed structure, concircular pairing, Godbillon - Vey form

1 Preliminaries

Let (M, g) be a Riemannian C^{∞} -manifold and ∇ the covariant differential operator with respect to the metric g. We assume that M is oriented and ∇ is the Levi-Civita connection.

Define $\Gamma(TM) =: \mathcal{X}M$ and let $TM \rightleftharpoons T^*M$ be the musical isomorphism defined \sharp

by q and

$$\Omega^{\flat} : TM \to T^*M; \quad Z \to -i_Z\Omega =: {}^{\flat}Z$$

the symplectic isomorphism defined by Ω . Following Poor [10], we set

$$A^q(M, TM) := Hom(\Lambda^q TM, TM)$$

and notice that the elements of $A^q(M, TM)$ are vector valued q-forms. The local field of orthonormal frames on an n-dimensional Riemannian manifold is denoted by

$$\mathcal{O} = \{e_A; \ A = 1, \cdots, n\}$$

and the associated coframe by

$$\mathcal{O}^* = \{ \omega^A; A = 1, \cdots, n \}$$
.

The soldering form dp is expressed by

(1.6)
$$dp = \omega^A \otimes e_A$$

and Cartan's structure equations in index-free notation are written as

(1.7)
$$\nabla e = \theta \otimes e$$

$$(1.8) d\omega = -\theta \wedge \omega$$

$$(1.9) d\theta = -\theta \wedge \theta + \Theta$$

Here the 1-forms θ and the 2-form Θ are the connection forms in the tangent bundle TM and the curvature form, respectively.

Now let W be a conformal vector field, i.e. a vector field satisfying the conformal version of Killing's equation

(1.10)
$$\mathcal{L}_W g = \rho g ,$$

where the conformal scalar ρ is defined by

(1.11)
$$\rho = \frac{2}{dimM}(divW) \; .$$

We recall some basic formulas [14] which will be needed in the last section:

(1.12)
$$\mathcal{L}_W K = (n-1)\,\Delta\rho - K\,\rho\,; \qquad n = \dim M$$

(1.13)
$$2\mathcal{L}_W R(Z, Z') = g(Z, Z') \Delta \rho - (n-2)(Hess_{\nabla} \rho)(Z, Z'),$$

where

$$(Hess_{\nabla} \rho)(Z, Z') = g(Z, \nabla_{Z'} \operatorname{grad} \rho)$$

In these equations \mathcal{L}_W , K, Δ and R denote the Lie derivative with respect to W, the scalar curvature of M, the Laplacian and the Ricci tensor field of ∇ respectively.

2 2-Framed Godbillon - Vey manifolds

Let $M(\Phi, \Omega, \eta^r, \xi_r, g)$ be a (2m + 2) - dimensional Riemannian manifold carrying two structure vector fields ξ_r $(r \in 2m + 1, 2m + 2)$ and let η^r be their associated covectors. Suppose that the structure tensors $(\Phi, \Omega, \eta^r, \xi_r)$ satisfy (0.1). Then Mcarries a 2-framed structure in the sense of Yano and Kon [15]. We further assume that (0.4) holds. Defining $e_r := \xi_r$ and $\omega^r := \eta^r$, this yields

(2.1)
$$f_r \,\omega^a = \theta_r^a, \qquad f_r \in \Lambda^0 M, \qquad a = 1, \cdots, 2m$$

and (2, 2)

$$d\eta^{2m+1} = \quad u \wedge \eta^{2m+2}$$

$$d\eta^{2m+2} = -u \wedge \eta^{2m+1}$$

where u is some closed 1-form. In the same way, (0.4) ensures that $d\gamma^r = 0$ holds. (2.2) can be written as

(2.3)
$$u = \theta_{2m+1}^{2m+2}$$

Connections satisfying (2.1) are called *principal connections* [12]. One may split the soldering form dp in a unique manner as

$$(2.4) dp = dp^{\perp} \otimes dp^{\perp},$$

59

where $dp^{\top} := \omega^a \otimes e_a$ and $dp^{\perp} := \eta^r \otimes \xi_r$ are called the *horizontal* and the *vertical* component of dp, respectively. From (2.3) and (2.1) one finds

(2.5)
$$\nabla \xi_{2m+1} = f_{2m+1} \, dp^{\top} + u \otimes \xi_{2m+2} \\ \nabla \xi_{2m+2} = f_{2m+2} \, dp^{\top} - u \otimes \xi_{2m+1}$$

Hence we have

$$\nabla_{\xi_{2m+2}}\xi_{2m+1} = u(\xi_{2m+2}) \xi_{2m+2}$$

$$\nabla_{\xi_{2m+1}}\xi_{2m+2} = -u(\xi_{2m+1}) \xi_{2m+1},$$

and referring to [1] one may say that the structure vector fields ξ_r define a *concircular* pairing. Then (2.5) and the well-known formula

$$div \, Z = tr(\nabla Z) = \sum_{a=1}^{2m} \, \omega^a \left(\nabla_{e_a} Z \right) + \sum_{r=2m+1}^{2m+2} \, \eta^r \left(\nabla_{\xi_r} Z \right) \,, \quad Z \in \mathcal{X}M$$

vield

$$div \,\xi_{2m+1} = 2 \,m \,f_{2m+1} + u(\xi_{2m+2})$$
$$div \,\xi_{2m+2} = 2 \,m \,f_{2m+2} + u(\xi_{2m+1}) \quad .$$

If u is a *basic form*, i.e. if $u(\xi_r) = 0$, then (2.2) entails

$$i_{\xi_r} d\eta^r = 0.$$

Therefore, according to a well known definition, we may say that ξ_r move to Reeb vector fields (in the large).

In the general case, i.e. $u(\xi_r) \neq 0$, we shall say that the manifold $M(\Phi, \Omega, \eta^r, \xi_r, g)$ is endowed with a 2-framed Godbillon - Vey structure, (abbreviated 2FG-V structure). Referring to [11] we call the distribution $D^{\perp} := \{\xi_r; r =$ 2m + 1, 2m + 2 the vertical distribution, and its orthogonal complement $D^{\top} :=$ $\{e_a, a = 1, \dots, 2m\}$ the horizontal distribution on M. Similarly

$$\varphi^{\perp} := \eta^{2m+1} \wedge \eta^{2m+2}$$

and (2.6)

(2.6)
$$\varphi^{\top} := \omega^1 \wedge \cdots \wedge \omega^{2m}$$

are called the *vertical* and the *horizontal form*, respectively. With these definitions, (2.2) gives immediately

$$d\varphi^{\perp} = 0 \; .$$

Therefore it follows from *Frobenius'* theorem that the horizontal distribution D^{\top} is involutive. Setting $2m \pm 2$

(2.7)
$$\eta := \sum_{r=2m+1}^{2m+2} f_r \eta^r ,$$

(2.6) and (2.1) yield

(2.8)
$$d\varphi^{\top} = 2 \, m \, \eta \wedge \varphi^{\top} \, .$$

This shows that φ^{\top} is an exterior recurrent form [5] and consequently D^{\perp} is also involutive. Hence any 2FG-V manifold is the local Riemannian product

$$M = M^{\top} \times M^{\perp} ,$$

where M^{\top} is a 2*m*-dimensional manifold tangent to D^{\top} and M^{\perp} is a surface tangent to D^{\perp} .

Since η is the recurrence form of φ^{\top} (see (2.8)), it is closed. (Generally, we shall call an exterior recurrent form strictly recurrent, if its recurrence form is closed.) This fact together with (2.7) and (2.2) give

(2.9)
$$\begin{aligned} df_{2m+1} &= f_{2m+2} \, u \\ df_{2m+2} &= -f_{2m+1} \, u \, . \end{aligned}$$

Therefore the Poisson bracket $\{ \}_P$ of the function f_r , i.e.

$${f_{2m+1}, f_{2m+2}}_P := \Omega(\nabla f_{2m+1}, \nabla f_{2m+2})$$

vanishes. Defining

$$\xi := \sum_{r=2m+1}^{2m+2} f_r \,\xi_r \,; \qquad \eta := \sum_{r=2m+1}^{2m+2} f_r \,\eta^r = \xi^{\flat}$$

one easily deduces from (2.9) that (2.10) $\|\xi\|^2 = (f_{2m+1})^2 + (f_{2m+2})^2 =: 2f = const.$

and further from (2.9), (2.4), and (2.5): $\nabla \xi = 2 f dp^{\top}.$ (2.11)

On the other hand using (2.3), (2.1), (1.9), du = 0 (see (2.2)) and the fact that $\theta_{2m+2}^a = -\theta_a^{2m+2}$ holds because of $g(e_{2m+2}, e_a) = 0$, one finds

$$\Theta_{2m+1}^{2m+2} = 0$$

It is easily seen that Θ_{2m+1}^{2m+2} is the curvature form of M^{\perp} . Therefore this surface is *flat*. Further, because of (0.1), the horizontal connection forms satisfy the Kähler relations

(2.12)
$$\theta_j^i = \theta_{j^*}^{i^*}; \quad \theta_j^{i^*} = \theta_i^{j^*}; \quad i = 1, \cdots, m; \quad i^* = i + m.$$

Recalling the standard expression for the structure 2-form Ω

(2.13)
$$\Omega = \sum_{i=1}^{m} \omega^i \wedge \omega^{i^*}; \qquad i^* = i + m,$$

we find with the help of (2.1) and (2.7), after some calculation,

$$(2.14) d\Omega = 2 \eta \wedge \Omega .$$

This shows the important fact that the 2FG-V manifold under discussion is endowed with a locally conformal symplectic structure $CSp(m+1,\mathbb{R})$, with $\eta = \xi^{\flat}$ as covector of Lee. Since $i_{\xi} \Omega = 0$ and f = const. (see (2.10)), one gets from (2.13): (2.15) $\mathcal{L}_{\xi} \Omega = 2 f \Omega$,

which shows that ξ defines an *infinitesimal homothety* of Ω . On the other hand, $\Omega_{|_{M^{\top}}}$ is of rank 2m. Therefore it is the symplectic form of the Kähler submanifold M^{\top} of M. Next let H be the mean curvature vector field

61

associated with the immersion $x: M^{\top} \to M$. If γ^A_{BC} denote the coefficients of the connection θ , the vector field H is given by

$$H = \frac{1}{2m} \sum_{a=1}^{2m} \gamma_{aa}^r \,\xi^r \,.$$

(We denote the induced elements by the same letters.) Now using (2.1) and (2.10), an easy calculation gives

$$H = -\xi \quad \Rightarrow \quad \|H\|^2 = 2f = const.$$

Hence one deduces the following important fact: M^{\top} is a Kähler submanifold of M of constant mean curvature. Moreover, since dp^{\top} is the soldering form of M^{\top} , it follows from (2.4) that the second quadratic forms associated with the immersion $x: M^{\top} \to M$ are

$$l_r = - \langle dp^\top, \, \nabla \, \xi_r \rangle = -f_r \, g^\top$$

This means that the immersion $x: M^{\top} \to M$ is *umbilical*. Summing up we state

Theorem 1. Let $M(\Phi, \Omega, \xi_r, \eta^r, g)$ be a (2m + 2)-dimensional Riemannian manifold endowed with a 2 FG-V structure defined by (0.1) - (0.3). Such a manifold admits a locally conformal symplectic structure with ξ^{\flat} as covector of Lee, i.e.

$$d\Omega = 2\,\xi^{\flat} \wedge \Omega \; .$$

Furthermore M is the local Riemannian product

$$M = M^{\perp} \times M^{\top},$$

where

- 1. M^{\perp} is a flat surface tangent to the structure vector fields ξ_r .
- 2. M^{\top} is a 2*m*-dimensional Kählerian submanifold, and the immersion $x: M^{\top} \to M$ has the following properties:
 - (a) M^{\top} is of constant mean curvature.
 - (b) The immersion $x: M^{\top} \to M$ is umbilical.

3 Skew symmetric conformal vector fields

In this section we assume that the 2FG-V manifold under consideration carries a *horizontal skew symmetric conformal* (abr. SSC) vector field C. The generative of C is assumed to be the Reeb vector field ξ . This means [9]

(3.1)
$$\nabla C = \lambda \, dp + C \wedge \xi \, .$$

Here \wedge denotes the wedge product of vectors: $C \wedge \xi := \xi^{\flat} \otimes C - C^{\flat} \otimes \xi$. One may set

$$C = C^a e_a \in D^+; \quad a, b \in \{1, \cdots, 2m\}.$$

Then it follows from (2.1), (3.1), and (1.7):

(3.2)
$$dC^a + C^b \theta^a_b = \lambda \,\omega^a + C^a \,\eta \,.$$

Clearly, from

(3.3)
$$C^{\flat} = \sum_{a=1}^{2m} C^a \,\omega^a$$

one obtains

$$(3.4) dC^{\flat} = 2 \eta \wedge C^{\flat} .$$

This agrees with Rosca's lemma [9]. As a simple consequence of (3.2), one derives (3.5) $d\|C\|^2 = 2 \lambda C^{\flat} - 2 \|C\|^2 \eta.$

Denote now by Σ the exterior differential system which defines the vector field C. Then because of $d\eta = 0$, (3.4) and (3.5), the characteristic numbers of Σ are r = 3, $s_0 = 1$, $s_1 = 2$. Since $r = s_0 + s_1$ holds, it follows that Σ is in involution (in the sense of E. Cartan [3]). Therefore Cartan's test states that C exists and depends on two arbitrary functions of one argument. On the other hand, recall that the symplectic isomorphism (see also [8]) is expressed as

 $(3.6) Z \to -i_Z \Omega = {}^{\flat}Z =: \Omega^{\flat}(Z) , \qquad \Omega(Z, Z') =: \langle Z', Z \rangle .$

So one may write

$$i_C \Omega = -{}^{\flat}C = \sum_{i=1}^m (C^i \omega^{i^*} - C^{i^*} \omega^i) =: \beta ,$$

where we have set $\beta := -{}^{\flat}C$. From (2.12), (2.14), and (3.2), one derives:

$$d\beta = 2\,\lambda\,\Omega + 2\,\eta\wedge\beta\;.$$

Again an exterior derivation yields $\lambda = const$ (remember $d\eta = 0$.) On the other hand, from

$$\mathcal{L}_Z g = \frac{2 \operatorname{div} Z}{\operatorname{dim} M} g = \rho g ; \qquad Z \in \mathcal{X}(M)$$

(cf. (1.11)) and from (3.1), one quickly finds (3.7) $\rho = 2 \, \lambda.$

This means that C defines an *infinitesimal homothety* of M, because using (2.13) and (2.15), one obtains at once

$$\mathcal{L}_C \,\Omega = \rho \,\Omega$$

and

$$\mathcal{L}_{\mathcal{E}} \Omega = 2 f \Omega$$

(remember f = const.). Furthermore, let L be the operator of type (1,1) given by

$$L u := u \wedge \Omega; \qquad u \in \Lambda^1 M$$

and define (cf. [6])

$$L^q u := u_q := u \wedge \Omega^q \in \Lambda^{2q+1} M$$

63

Coming back to the case under discussion, (3.4) yields

$$\mathcal{L}_C C^\flat = \rho C^\flat$$

This shows that C^{\flat} is a self-conformal form. A standard calculation gives

$$\mathcal{L}_C(C^\flat)_q = (q+1)(C^\flat)_q \; .$$

Therefore C defines an infinitesimal homothety of all these (2q + 1)-forms. With Yano's formulas (1.12) and (1.13), one finds

$$\mathcal{L}_C K = -\rho K$$

and

$$\mathcal{L}_C R(Z, Z') = 0; \qquad Z, Z' \in \mathcal{X}(M)$$

where K and R denote the scalar curvature of M and the Ricci tensor field, respectively. Now, for any vector field Z, one has

$$(\nabla \Phi) Z = \nabla (\Phi Z) - \Phi \nabla Z$$
.

Therefore (0.1) and (3.1) yield

$$(\nabla \Phi) C = \left(\frac{\rho}{2} - \lambda - \eta(C) \right) \Phi \, dp - (\Phi \, C)^{\flat} \otimes \xi$$

= $\nabla (\Phi \, C) - \lambda \Phi \, dp - \eta \, (\Phi \, C).$

Hence

(3.8)
$$\nabla(\Phi C) = \left(\frac{\rho}{2} - \eta(C)\right) \Phi dp + \eta \left(\Phi C\right) - \left(\Phi C\right)^{\flat} \otimes \xi$$
$$= \left(\frac{\rho}{2} - \eta(C)\right) \Phi dp + \Phi C \wedge \xi$$

(A: wedge product of vector fields). From the inner product $< Z, \, \Phi \, dp >= \Phi \, Z,$ and from (3.8), one derives

$$< \nabla_Z \Phi C, Z' > + < \nabla_{Z'} \Phi C, Z >= 0; \qquad Z, Z' \in \mathcal{X}(M).$$

Furthermore, since C is a horizontal vector field, it is easily seen that

$${}^{\flat}\Phi C = C^{\flat}$$

holds. So together with (2.13), this leads to

$$\mathcal{L}_{\Phi C}\Omega = 0$$

Therefore ΦC defines an infinitesimal automorphism of Ω . It should be noticed that (2.10), (3.1), and (3.8) entail

$$[\xi, \, \Phi C] = 0 \; ; \qquad [C, \, \Phi C] = 0 \; ; \qquad [C, \, \xi] = -\frac{\rho}{2} \, \xi \; .$$

So ξ and C commute with ΦC , and ξ admits an infinitesimal homothety of generators C [4].

Let now \mathcal{C} : $(M, g) \to (\tilde{M}, \tilde{g})$ be a *conformal diffeomorphism* (abr. CD) of argument t, i.e.

$$\mathcal{C}: g \mapsto \tilde{g} := e^{2t} g.$$

One has (see also [10])

$$\tilde{\nabla}C = \nabla C + (\nabla t)^{\flat} \otimes C - C^{\flat} \otimes \nabla t + g(C, \nabla t) \, dp \,,$$

and the scalar curvature \tilde{K} of \tilde{M} is given by

$$\tilde{K} = e^{-2t} \left(K + 2(2m+1) \operatorname{div} \nabla t + (2m+1) \operatorname{2m} \|\nabla t\|^2 \right) \,.$$

Since K = const., the manifold \tilde{M} is homothetic to M, if it satisfies $\|\nabla t\|^2 = const.$ and $div \nabla t = const.$ Furthermore

$$d\|C\|^2 = \rho C^{\flat} + 2 \|C\|^2 \eta ,$$

and the gradient (which will also be denoted by ∇) of the function $||C||^2$ is expressed by

(3.9)
$$\nabla \|C\|^2 = \rho C + 2 \|C\|^2 \xi .$$

Thus from

$$div C = (m+1) \rho = const.$$
; $div \xi = 4 m f = const.$

(see (2.5), (2.9), and (2.10)) one quickly derives

(3.10)
$$\Delta \|C\|^2 = -div \,\nabla \|C\|^2 = -\kappa f \|C\|^2 - (m+1) \,\rho^2 \,; \quad \kappa \in \mathbb{R} \,.$$

Therefore as an extension of a well-known definition (see e.g. [13]), we may say that $||C||^2$ is an *almost eigenfunction* of Δ with $-\kappa f$ as eigenvalue. We notice that if C is a Killing vector field, i.e. if $\rho = 0$ (see (3.1) and (3.7)), then $||C||^2$ becomes an eigenfunction of Δ . Since the eigenvalue is negative definite, the corresponding manifold cannot be compact.

We recall that a function $\nu : \mathbb{R} \to \mathbb{R}$ is isoparametric, iff both, $\|\nabla \nu\|^2$ and $div (grad \nu)$ are functions of ν [13]. Then from (3.9) and (3.10), it is quickly seen that $\|C\|^2$ is an *isoparametric function*.

Finally, setting

$$\nabla^2 \|C\|^2 := \nabla \operatorname{grad} \|C\|^2$$

in (3.1), one deduces after a short calculation

$$[C, \nabla \|C\|^2] = 0$$
.

This shows that C is a module commuting vector field. Thus we have proven **Theorem 2.** Let C be a horizontal skew symmetric conformal vector field on the 2FG-V manifold defined by conditions (0.1) - (0.3). Such a C always exists; it is determined by an exterior differential system in involution. C infinitesimal homothety on M, i.e.

$$\mathcal{L}_C K = -\rho K$$
; K: scalar curvature of M; $\rho = const.$

Moreover:

1.

$$\mathcal{L}_C R(Z, Z') = 0 , \qquad Z, Z' \in \mathcal{X}M ,$$

where R denotes the Ricci tensor field, and

$$\mathcal{L}_C(C^\flat)_q = (q+1)(C)_q^\flat$$

Here $L^q: C^{\flat} \to (C^{\flat})_q := C^{\flat} \land \Omega^q$ is the (1,1) - Weyl operator.

2. ΦC defines an infinitesimal automorphism of Ω , i.e.

$$\mathcal{L}_{\Phi C}\Omega = 0 \; ,$$

and ξ and C commute with ΦC . In addition, ξ admits an infinitesimal homothety of generators C, *i.e.*

$$[\xi, \Phi C] = 0;$$
 $[C, \Phi C] = 0;$ $[C, \xi] = -\frac{\rho}{2}\xi.$

3. $||C||^2$ is an almost eigenfunction of Δ , as well as an isoparametric function, and C is a module commuting vector field.

References

- K. Buchner and R. Roşca, Invariant submanifolds and proper CR foliations on para - coKählerian manifolds with concircular structure vector field, Rend. del Circolo Matem. di Palermo, Serie II, 37 (1988), 161 - 173.
- [2] A. Bucki, Submanifolds of almost r paracontact manifolds, Tensor NS 40 (1984), 69 - 89.
- [3] E. Cartan, Systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris 1948.
- [4] Y. Choquet Bruhat, Géométrie différentielle et systèmes extérieurs, Dunod, Paris 1968.
- [5] J. Dieudonné Treatise on analysis, vol. 4. Academic Press, New York 1974.
- [6] C. Godbillon, Géométrie différentielle et méchanique analytique, Hermann, Paris 1969.
- M. Kobayashi, Differential geometry of symmetric twofold CR submanifolds with cosymplectic 3 - structure, Tensor NS 41 (1984), 69 - 89.

- [8] P. Liebermann and C. M. Marle, Géométrie Symplectique, Bases Théorétiques de la Méchanique, t.1, U.E.R. Math., Paris 7 (1986).
- [9] I. Mihai, R. Roşca and L. Verstraelen, Some aspects of the differential geometry of vector fields, Padge, Katholieke Universiteit Brussel, Vol. 2 (1996).
- [10] W. A. Poor, Differential geometric structures, Mc Graw Hill, New York 1981.
- [11] R. Roşca, On K left invariant almost contact 3 structures, Results Math. 27 (1995), 117 - 128.
- [12] G. Vrănceanu and R. Roşca, Introduction in relativity and pseudo-Riemannian geometry, Editura Academiei Republicii Socialiste Romania, Bucureşti 1978.
- [13] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co, Glenview 1971.
- [14] K. Yano, Integral formulas in Riemannian geometry, M. Dekker, New York 1970.
- [15] K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore 1984.

Klaus Buchner Zentrum Mathematik der TU München D-80290 München Germany

Radu Roşca 50 Av. Emile Zola F-75015 Paris France