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Abstract

The theory of conformal changes of Finsler metrics has been studied by M.
Hashiguchi [2] in 1976 and some of the Japanese school have directed their efforts
to find conformally invariant curvature tensors similar to the Weyl conformal
curvature tensor of a Riemannian space and to establish the condition for a
Finsler space to be conformally flat. Finally, about five years ago, S.Kikuchi [6]
succeeded in finding a conformally invariant Finsler connection and giving the
conformally flat condition.

We have, however, a strange and objectionable in Kikuchi’s theory. His con-
formally invariant connection can be only defined on an essential assumption.
Whether this assumption holds or not in a Finsler space under consideration
poses newly a difficult problem. Since we have not a conformally invariant con-
nection in the Riemannian case, the assumption is, of course, not satisfied by
any Riemannian space.

About ten years ago, Y.Ichijyo and M.Hashiguchi [5] defined a conformally
invariant Finsler connection in a Finsler space with (α, β)–metric, where α =
(aij(x)yiyj)1/2 is a Riemannian metric and β = bi(x)yi is a one-form in yi,
on the assumption b2 = aijbibj 6= 0. They gave the condition for a Randers
space with the metric α + β to be conformally flat based on their connection.
M.Matsumoto [11] showed that their theory can be applied to a Kropina space
with the metric α2/β.

The main purpose of the present paper is to consider Kikuchi’s conformally
invariant Finsler connections of Finsler spaces with (α, β)–metric. Since our
main interest is Kikuchi’s assumption, it is sufficient to stop our studies halfway
to Finsler spaces conformal to locally Minkowski spaces. Thus we shall propose
a new notion of conformally Berwald Finsler space.
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1 Conformally Berwald connections

In this section, we give a conformally Berwald connection which is induced from a
scalar field S with a regularity condition.

Let us consider a Finsler space Fn = Fn(Mn, L) with the Berwald connection
BΓ = (Gi

j , Gj
i
k, 0) and a conformal change L → L̄ = ec(x)L. The quantities of the

conformally changed space F̄n will be denoted by putting a bar.
We have first the conformally invariant tensors Bij and Bij ;

Bij =
(

2
L2

)
(gij − 2lilj), Bij =

(
L2

2

)
(gij − 2lilj).

The matrix (Bij) is the inverse of (Bij) [2]. In the following we denote by subscripts
of Bij the partial differentiations of Bij by yh : Bij

h...k = ∂̇ . . . ∂̇kBij .

Putting F =
L2

2
and 2Gi = gij((∂̇j∂rF )yr − ∂jF ), we have Gi

j = ∂̇jG
i and

Gj
i
k = ∂̇kGi

j . If we put ci = ∂ic, on account of the paper [2] we get Ḡh = Gh−Bhrcr

and

(1.1) Ḡh
i = Gh

i −Bhr
icr, Ḡi

h
j = Gi

h
j −Bhr

ijcr.

Then we obtain the relations between the hv-curvature tensors

(1.2) Ḡi
h

jk = Gi
h

jk −Bhr
ijkcr.

Assume that we have a conformally invariant scalar field S(x, y) which is (r)p–
homogeneous in (yi). Denoting by (; ) the h-covariant differentiation in BΓ, (1.1)
yields

S̄;i = ∂iS̄ − (∂̇rS)Gr
i = ∂iS − (∂̇rS)(Gr

i −Brs
ics),

and hence

(1.3) S̄;i − S;i = W r
icr, W j

i := (∂̇rS)Brj
i.

Along the lines of S.Kikuchi [6] and F.Ikeda [4] we shall suppose that

(1.4) det(W j
i) 6= 0, and let (V i

j) be the inverse matrix of (W j
i).

V i
j(x, y) are (−r)p–homogeneous in yi and (1.3) can be written in the form

(1.5) V̄j − Vj = cj , Vj := S;rV
r
j .

Vj(x, y) are (0)p–homogeneous in yi. Since cj are functions of position, we must have

(1.6) ∂̇i(V̄j − Vj) = 0.

Substituting from (1.5) in (1.1), we get the invariant quantities

(1.7) cGh
i = Gh

i + BhrVr,
cGi

h
j = Gi

h
j + BhrVr.

Consequently we obtain the conformally invariant Finsler connection cBΓ = (cGh
i,

cGi
h

j , 0).
This is called the conformal Berwald connection with respect to S. On the other hand,
(1.2) yields a conformally invariant tensor
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(1.8) cGi
h

jk = Gi
h

jk + Bhr
ijkVr.

It is remarked that the hv-curvature tensor (∂̇k(cGi
h

j) of cBΓ is conformally invariant,
but it is different from cGi

h
jk:

(1.9) ∂̇k(cGi
h

j) = cGi
h

jk + Bhr
ij ∂̇kVr.

According to the Berwald expression (Theorem 3.4) of a Finsler connection given
by T.Aikou and M.Hashiguchi [1], the set (Lk, Di

k, Tj
i
k, P i

jk, Cj
i
k) of the essential

tensor fields of cBΓ are

(1.10) Lk = −lrB
rs

kVs, Di
k = 0, Tj

i
k = 0, P i

jk = Bir
j ∂̇kVr, Cj

i
k = 0.

The conditions (1) and (2) mentioned in their theorem are satisfied because Vi(x, y)
are (0)p−homogeneous in yi.

A Finsler space Fn is called a Berwald space if Gj
i
k are functions of position alone,

or Gi
h

jk = 0. In the Cartan connection CΓ = (Gi
j , Fj

i
k, Cj

i
k), Fn is a Berwald space

if and only if Fj
i
k are functions of position alone, or Cj

i
k/l = 0 in terms of the h-

covariant differentiation in CΓ.
Definition. A Finsler space Fn = (Mn, L) is called conformally Berwald, if there
exists a conformal change L → L̄ = ec(x)L such that the changed space F̄n = (Mn, L̄)
is a Berwald space.

We deal with a conformally invariant scalar S which satisfies S;i = 0 for a Berwald
space. Such an invariant S is called of parallel type [4], (Theorem 2.1). The supposition
det(W j

i) 6= 0 with respect to S of parallel type is called the Kikuchi condition. Then
we get

(1.11) cj = V̄j − Vj , Vj = S;rV
r
j ,

on the Kikuchi condition.
Now we consider a Finsler space Fn having S satisfying the Kikuchi condition and

suppose that Fn is conformal to a Berwald space F̄n. Then S̄;i = 0 and V̄j = 0, and
hence (1.11) is reduced to

(1.12) cj = −Vj ,

which implies that Vj = Vj(x) is a gradient vector:

(1.13) (a) ∂̇jVi = 0, (b) Vi;j − Vj;i = 0.

Next, since F̄n is a Berwald space, we have Ḡi
h

jk = 0 and hence (1.8) implies
cḠi

h
jk = 0. Consequently we have

(1.14) cGi
h

jk = 0.

Therefore (1.13a), (1.14) and (1.9) lead to the fact that the hv–curvature tensor of
cBΓ vanishes.

Conversely, we consider a Finsler space Fn having S satisfying the Kikuchi con-
dition such that Vj with respect to S satisfies (1.13) and cBΓ has the vanishing
hv–curvature tensor. (1.9) with (1.13a) show cGi

h
jk = 0. (1.13) gives the function
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c(x) satisfying (1.12) and hence we have the conformal change L → L̄ = ec(x)L. Then
cGi

h
jk = 0 and (1.5) with (1.12) give V̄j = 0. Then (1.8) leads to Ḡi

h
jk = 0 and thus

the changed space F̄n is a Berwald space.
We denote by c∇ the h–covariant differentiation in cBΓ, the v–covariant one in

cBΓ is ∂̇. Then (1.13) are written in terms of cBΓ as follows:

(1.13′) (a) ∂̇jVi = 0, (b) c∇jVi − c∇iVj = 0.

Therefore we have
Theorem 1. Let Fn be a Finsler space having an S satisfying the Kikuchi condition.
Fn is a conformally Berwald space, if and only if its conformal Berwald connection
with respect to S has the vanishing hv–curvature tensor and satisfies (1.13 ′).

2 Kikuchi’s assumption for (α, β)–metrics

To do justice Kikuchi’s assumption (1.4), that is the condition det(W i
j) 6= 0, we shall

be concerned with Finsler space with (α, β)–metrics.
Let us consider a Finsler space Fn = (Mn, L(α, β)) with (α, β)–metric where

α2 = aij(x)yiyj is a Riemannian fundamental form and β = bi(x)yi is a 1–form in yi.
We put αi...j = ∂̇i . . . ∂̇jα and have

(2.1)
ααi = Yi, Yi := airy

r,

ααij = aij − YiYj/α2 := kij ,

where kij is the angular metric tensor of the Riemannian space Rn = (Mn, α) asso-
ciated with Fn. Next we have

(2.2) ααijk = −(kijYk + (ijk))/α2,

where +(ijk) denotes cyclic permutations with respect to indices and their sum.
Further we put F = L2/2 and the derivatives of F with respect to (yi, α, β) are

denoted by the subscripts (i, 1, 2). Then Fi = F1αi + F2vi and

(2.3) Fij = F1αij + F11αiαj + F12(αibj + αjbi) + F22bibj .

Since Fij is the fundamental tensor gij of Fn, we have from (2.1) and F1 = F11α +
F12β,

(2.3)′ gij = (F1/α)aij + F22bibj + (F12/α)(biYj + bjYi)− (βF12/α3)YiYj .

We have shown [8], [12].

(2.4)

det(gij) = (F1/α)n−2T det(aij),

T := DB + 2FF1/α3,

D := F11F22 − F 2
12,

B := b2 − (β/α)2.
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We suppose F1 6= 0, of course. As a consequence Fn has the irregular metric
(det(gij) = 0), if and only if T = 0 [7]. In the following we are concerned only with
Fn having regular metric.

Then the inverse matrix (gij) of (gij) may be put

(2.5) gij = (α/F1)aij − s0B
iBj − s−1(Biyj + Bjyi)− s−2y

iyj ,

where Bi = airbr. The condition gikgij = δk
j for gij leads to

(2.6)
Ts0 = αD/F1, Ts−1 = 2FF12/α2F1,

Ts−2 = −(F12/α2F1)(BF2 + 2Fβ/α2).

From (2.3) and Fijk = 2Cijk we have

2Cijk = C1 + C2 + C3 + C4 + C5,

C1 = F1αijk + F11(αijαk + (ijk)) + F12(αijbk + (ijk)),

C2 = (F111αk + F112bk)αiαj , C3 = (F112αk + F122bk)biαj ,

C4 = (F112αk + F122bk)αibj , C5 = (F112αk + F222bk)bibj .

From (2.1) and (2.2), and putting

(2.7) pi := bi − (β/α2)Yi,

we have C1 = (F12/α)(kijpk + (ijk)). Next, from Fab1α + Fab2β = 0, for a, b = 1, 2,
we have F122 = −(β/α)F222, F112 = (β/α)2F222 and F111 = −(β/α)3F222. Then

C2 = (β2/α4)F222YiYjpk, C3 = −(β/α2)F222biYjpk,

C2 + C3 = −(β/α2)F222piYjpk,

C4 = −(β/α2)F222Yibjpk, C5 = F222bibjpk,

C4 + C5 = F222pibjpk,

C2 + C3 + C4 + C5 = F222pipjpk.

Consequently we have [12], [11]

(2.8) Cijk = (F12/2α)(kijpk + (ijk)) + (F222/2)pipjpk.

Now as a conformally invariant scalar S in the section 1, we shall study two cases,
that is, A2 = gij(LCi)(LCj) in the case of a Berwald Fn in this section and β/α in
the next section.

In the following of this section we study the condition (1.4) i.e. Kikuchi’s assump-
tion for (α, β)–metric.

Let us find A2 = gij(LCi)(LCj) for Fn with (α, β)–metric. From (2.5) and (2.8)
we have

Ci = Cijkgjk = Cijk(αajk/F1 − s0B
jBk).

Also we have
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pkajk = Bj − (β/α2)yj , kijpkajk = pi, pjpkajk = B,

Cijkajk = ((n + 1)F12/2α + F222β/2)pi,

kijBj = pi, pkBk = B, kjkBjBk = B,

CijkBjBk = (3F12B/2α + F222B
2/2)pi.

Thus we get

(2.9)
Ci = Epi,

E = (F12/α)((n + 1)α/2F1 − s0B) + (F222B/2)(α/F1 − s0B).

Consequently we have

(2.10) A2 = 4F 2E2B/α2T.

For the later use we are concerned with two examples where we put t = β/α.
Ex. 1. Randers metric L = α + β,

T = (1 + t)3, βE = (n + 1)t/2(1 + t),

A2 = (n + 1)2B/4(1 + t), B = b2 − t2.

Ex.2 Kropina metric L = α2/β,

T = 2b2/t6,

βE = −n− 2 + t2/b2,

A2 = (B/2b2)(t2/b2 − n− 2)2.

It is remarked that ∂̇it = pi/α, ∂iA
2 = (∂A2/∂t)pi/α for the above two examples.

We now approach to our problem by another way from the homogeneity of F (α, β).
If we put

F (α, β) = α2f(t), f(t) = F (1, t), t = β/α,

then we have the following:

(F1, F2) = α(φ(t), f ′(t)), φ(t) = 2f − tf ′,

(F11, F12, F22) = (φ− tφ′, φ′, f ′′),

(F111, F112, F122, F222) = (f ′′′/α)(−t3, t2,−t, 1).

D = δ(t) := 2ff ′′ − (f ′)2, B = B(b, t) := b2 − t2,

T = δ(t)B(b, t) + 2f(t)φ(t) = T (b, t),

T s0 = δ(t)/φ(t), E = Ψ(b, t)/α,

Ψ(b, t) = [(n + 1)fφ′ + B{(n− 1)δφ/2φ′ + ff ′′′}]/T,

A2 = 4(fΨ)2B/T := Π(b, t).

Consequently we have
∂̇iA

2 = Πtpi/α.
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Putting W j
i = (∂̇rA

2)Brj
i, W0

j
i = (∂̇rt)Brj

i, we obtain

W j
i = ΠtW0

j
i.

As an example of this process we show a case of Kropina metric L = α2/β,

f(t) = 1/2t2, φ(t) = 2/t2, δ(t) = 2/t6, T = 2b2/t6,

Ψ = (t2 − (n + 2)b2)/b2t, A2 = (B/2b2)(t2/b2 − (n + 2))2.

Thus we have
Theorem 2. If a non-Riemannian Finsler space Fn with L(α, β) has the non-zero
Πt, then S = A2 satisfies the Kikuchi’s condition and Theorem 1 can be applicable to
Fn.

3 Another assumption for (α, β)–metrics

As conformally changed L̄(ᾱ, β̄) = ec(x)L(α, β) = L(ec(x)α, ec(x)β) by (1)p–homogeneity
of L, β/α is conformally invariant [5]. Let us take S = β/α and put Wij = girW

r
j =

gir(∂̇sS)Bsr
j . Then we have ∂̇sS = ps/α and

Wij = gir(ps/α)(yjg
rs − δs

jy
r − δr

jy
s − L2Crs

j) =

= (piyj − pjyi − 2FprCrij)/α.

We put P r = aripi, and have from (2.5), (2.7) and (2.6)

pr = gripi = (α/F1 − s0B)pr − (s0β/α2 + s−1)Byr

= (2F/α2T )P r − (B/α2FT )(αβD + 2FF12)yr.

Since [7] shows αβD + 2FF12 = F1F2, we find

(3.1) pr = (2FP r −BF2y
r)/α2T.

Thus (2.8) together with P ipi = B and P ikij = pj leads to

(3.2) prCrij = (F/α3T )(F12Bkij + (2F12 + αF222B)pipj).

From (2.3′) we have

(3.3) yi = F2pi + (2F/α2)Yi.

Consequently we obtain

(3.4)

Wij = Qaij + Q0pipj + Q−1(piYj − pjYi) + Q−2YiYj ,

Q = −2F 2F12B/α4T,

Q0 = −(2F 2/α4T )(2F12 + αBF222),

Q−1 = 2F/α3,

Q−2 = −Q/α2.
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Q = 0, if and only if F12 = 0, that is, F is of the form c1α
2 + c2β

2 with constant
c’s. Thus, suppose that Fn is not Riemannian, then Q 6= 0.

Next, we put V jk = V j
rg

rk. Then

(3.5) WijV
jk = δi

k.

Let us put

(3.6) V jk = ajk/Q + R0P
jP k + R−1(P jyk − P kyj) + R−2y

jyk.

Then (3.5) yields as coefficients of the following terms,

piP
k : (Q + Q0B)R0 − α2Q−1R−1 = −Q0/Q,

YiP
k : −Q−1BR0 = Q−1/Q,

piy
k : (Q + Q0B)R−1 + α2Q−1R−2 = −Q−1/Q,

Yiy
k : −Q−1BR−1 = 1/α2.

Therefore we obtain

(3.7)
R0 = −1/BQ, R−1 = −1/α2BQ−1,

R−2 = −1/α2Q + (Q + Q0B)/α4(Q−1)2B.

In an interesting paper [3] concerned with Finsler spaces equipped with a lin-
ear connection, M.Kashiguchi and Y.Ichijyo showed that if bi of a Finsler space
Fn with (α, β)–metric is parallel with respect to the Levi-Civita connection γ =
(γj

i
k(x)) of the associated Riemannian space, then Fj

i
k of the Cartan connection

CΓ = (Fj
i
k, Gi

j , Cj
i
k) coincide with γj

i
k(x) and hence Fn is a Berwald space. This

is also shown directly from the equation which gives the difference Bj
i
k = Gj

i
k−γj

i
k

[9].
LαBj

k
iy

jyk = αLβ(bj;i −Bj
k

ibk)yj .

If bj;i = 0, then the uniqueness of the theorem leads to Bj
k

i = 0 immediately.
The converse is not true; bi;j = 0 is not necessary for Fn to be a Berwald space. For
instance, as has been shown in [9], a Randers space with L = α+β is a Berwald space,
if and only if bi;j = 0, while a Kropina space with L = α2/β is a Berwald space, if
and only if there exists a vector field fi(x) satisfying bi;j = (frbr)aij + bifj − bjfi.
Definition. Let a Finsler space Fn with L(α, β)–metric (α, β) be a Berwald space.
If bi is necessarily parallel in the associated Riemannian space, then Fn is called a
parallel Berwald space and L(α, β) is of parallel type.

We give here some example of parallel Berwald spaces.
Ex. 1 [13]

L = (αs + . . . + ckαs−kβk + . . . + βs)r,

where rs = 1 and const. c’s, is of parallel type.
Ex. 2 [9], [10].

L = c1α + c2β + β2/α, c2 6= 0,

L = c1α + c2β + α2/β, c1 6= 0,

where const. c’s, are of parallel type.
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We consider a Finsler space Fn with L(α, β) of parallel type and conformal to
a Berwald space F̄n. Then S = β/α is conformally invariant and S̄;i = 0 in the
Levi-Civita connection γ̄ of R̄n. Therefore we have
Theorem 3. Let Fn = (Mn, L(α, β)) be a Finsler space with (α, β)–metric of par-
allel type. Fn is a conformally Berwald space, if and only if the conformal Berwald
connection with respect to β/α has the vanishing hv–curvature tensor and satisfies
(1.12′).

4 Conformally Berwald Randers spaces and Kropina
spaces

The last section is devoted to the conditions for Finsler spaces of Randers type and
Kropina type to be conformally Berwald. We shall use the symbols

rij = (bi;j + bj;i)/2, sij = (bi;j − bj;i)/2, sj = bisij ,

where the covariant differentiation (; ) is the one with respect to the associated Rie-
mannian space with the metric α. By a conformal change L → L̄ = ec(x)L various
quantities are changed as follows:

āij = e2caij , b̄i = ecbi.

Putting ci = ∂ic and ci = aircr, the Christoffel symbols γj
i
k constructed from aij are

changed to
γ̄j

i
k = γj

i
k + δi

jck + δi
kcj − ciajk,

and hence we obtain
b̄i;j = ec(bi;j − cibj + brcraij).

First we are concerned with a Randers space with the metric L = α + β. It is
a Berwald space, if and only if bi;j = 0 [9]. Consequently the space is conformally
Berwald, if and only if there exists a gradient ci(x) satisfying

(4.1) bi;j − cibj + brcraij = 0.

From (4.1) we get

bjbi;j = b2ci − brcrbi, aijbi;j = −(n− 1)brcr.

Consequently we have

(4.2) ci = (brbi;r − arsbr;sbi/(n− 1))/b2.

Since ci is a gradient vector, we have

(4.3) ci;j − cj;i = 0.

(4.1) can be written as

rij = (cibj + cjbi)/2− brcraij , sij = (cibj − cjbi)/2.



116 Shun-ichi Hojo, M.Matsumoto and K.Okubo

These give respectively

arsrrs = −(n− 1)brcr, sj = (brcrbj − b2cj)/2.

Hence we have

(4.4) rij = (rs
s/(n− 1))(aij − bibj/b2)− (bisj + bjsi)/b2

(4.5) sij = (bisj − bjsi)/b2.

Now (4.2) can be written as

ci = (brrir − si − arsrrsbi/(n− 1))/b2,

and (4.4) gives brrir = −si. Therefore we have

(4.6) ci = −(2si + rs
sbi/(n− 1))/b2.

Therefore we have
Theorem 4. A Randers space is conformally Berwald, if and only if (4.4) and (4.5)
hold and ci given by (4.6) is gradient, that is, satisfies (4.3).

Let Fn = (Mn, L = α2/β) be a Kropina space and F̄n = (Mn, L̄) a conformally
changed space with L̄ = ec(x)L. The latter is a Berwald space [9], if and only if there
exists fi satisfying

b̄i;j = (b̄rfr)(āij + b̄ifj − b̄jfi.

From b̄i;j = ec(bi;j − cibj + brcraij) and b̄i = e−cbi the above is written as

(4.7) bi;j − cibj + brcraij = brfraij + bifj − bjfi,

which is equivalent to

(4.8) rij − (bicj + bjci)/2 + brcraij = brfraij .

(4.9) sij + (bicj + bjci)/2 = bifj − bjfi.

Multiplying bi to (4.9) yields

(4.10) sj = b2(fj − cj/2)− bj(fi − ci/2)bi.

Consequently, eliminating fi from (4.9) we obtain

(4.11) sij = (bisj − bjsi)/b2.

Next we deal with (4.8). Put

(4.12) u = br(cr − fr), birij = brj and bjrj = br.

(4.8), transvected with bi yields

(4.13) brj − (bicibj + b2cj)/2 + ubj = 0.
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Multiplying bj and from b2 6= 0 for the Kropina space, we obtain r + u = bici.
Then (4.13) gives

(4.14) cj = (2brj + (u− r)bj)/b2.

As a consequence (4.8) may be written in the form

(4.15) rij = (birj + bjri)/b + (u− r)bibj/b2 − uaij .

(4.14) gives bjcj = u+ r, and hence (4.12) yields brfr = r. Consequently (4.10) yields

(4.16) fi = si/b2 + ri/b.

Conversely, we consider a Kropina space Fn such that (4.15) and (4.11) are satis-
fied and cj of (4.14) is gradient (cj = ∂jc(x)). We make the conformally changed F̄n

from Fn by the conformal change L → L̄ = ec(x)L. Then (4.15), (4.11) and (4.14)
lead to

bi;j − cibj + brcraij = rij + sij − cibj + brcraij =

= raij + bi(rj/b + sj/b2)− bj(ri/b + si/b2).

Thus, (4.16) immediately leads to (4.7).
Theorem 5. A Kropina space is conformally Berwald, if and only if (4.15) and (4.11)
hold and cj of (4.14) is gradient.
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