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Abstract

Weakly symmetric Riemannian manifolds are generalizations of the locally
symmetric manifolds, spaces of recurrent curvature and pseudo symmetric mani-
folds. These are manifolds in which the covariants derivative∇R of the curvature
tensor R is a linear expression in R. The appearing coefficients of this expression
are called associated 1-forms. They satisfy in the specified types of manifolds
gradually weaker conditions. Weakly Ricci-symmetric Riemannian or Kaehler
manifolds are defined by a similar representation of ∇S in place of ∇R, where
S is the Ricci tensor.

We prove several relations that exist between the properties of the weakly
symmetric or weakly Ricci-symmetric Kaehler manifolds and the associated 1-
forms of these spaces. In these relations the Ricci tensor and its eigenvalues play
the decisive role.
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1 Introduction

The notions of weakly symmetric and weakly Ricci symmetric manifolds were intro-
duced by the first an third authors [7], [8]. A non-flat Riemannian manifold (Mn, g)
(n > 2) is called weakly symmetric (denoted by (WS)n) if the curvature tensor R of
type (0, 4) satisfies the condition

(1)
(∇XR)(Y, Z, U, V ) = α(X)R(Y, Z, U, V ) + β(Y )R(X, Z,U, V )+

+ γ(Z)R(Y, X,U, V ) + δ(U)R(Y, Z, X, V )+
+ ρ(V )R(Y, Z, U,X), ∀X, Y, Z, U, V ∈ X (M),

where α, β, γ, δ, ρ are 1-forms called the associated 1-forms which are not zero
simultaneously and ∇ denotes covariant differentiation.

A non-flat Riemannian manifold is called weakly Ricci-symmetric and denoted by
(WRS)n if the Ricci tensor S is non-zero and satisfies the condition

(2) (∇XS)(Y,Z) = α(X)S(Y,Z) + β(Y )S(X,Z) + γ(Z)S(Y, X),
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where α, β, γ are again 1-forms, not zero simultaneously. Weakly symmetric manifolds
have been studied by M. Prvanović [6], T.Q. Binh [2], U.C. De and S. Bandyopad-
hyay [5] and others. If in (1) the 1-form α is replaced by 2α and ρ is equal to α,
then the manifold is called a generalized pseudo symmetric manifold introduced and
investigated by M. C. Chaki [3], and if in (2) the 1-form α is replaced by 2α, then
the manifold is called a generalized pseudo Ricci symmetric manifold introduced by
Chaki and Koley [4]. So the defining conditions of weakly symmetric and weakly Ricci
symmetric manifolds are a litte weaker than the generalized pseudo symmetric and
generalized pseudo Ricci symmetric manifolds.

In a recent paper [5] U.C. De and S. Bandyopadhyay gave an example of (WS)n

and showed that in (1) necessarily γ = β and % = δ. So (1) takes the form:

(3)
(∇XR)(Y,Z, U, V ) = α(X)R(Y,Z, U, V ) + β(Y )R(X,Z, U, V )
+β(Z)R(Y, X, U, V ) + δ(U)R(Y,Z, X, V ) + δ(V )R(Y,Z, U,X).

Let A, B and P be the vector fields associated with the 1-forms α, β and δ respectively
i.e,̇ g(X,A) = α(X), g(X, B) = β(X) and g(X, P ) = δ(X) for all X. A, B and P are
called the associated vector fields corresponding to the 1-forms α, β and δ respectively.

In the present paper we study weakly symmetric and weakly Ricci symmetric
Kaehler manifolds. In Section 2 we prove that in a weakly symmetric Kaehler manifold
(a) if the scalar curvature is a non-zero constant, then the sum of the associated 1-
forms is zero, and (b) the vector fields A, JA, B, JB, P and JP , with the almost
complex structure J , are eigenvectors of the Ricci tensor S with the same eigenvalue
r/2, where r is the scalar curvature of (Mn, g). Finally, we prove that in dimension
n = 6 if A, JA, B, JB, P and JP are linearly independent, then the manifold will
be Ricci flat. In the last Section 3 we consider a weakly Ricci symmetric Kaehler
manifold and prove that in a weakly Ricci symmetric Kaehler manifold of non-zero
constant scalar curvature the associated 1-forms α, β, γ are all equal.

Before starting with our investigations we collect some properties of Kaehler man-
ifolds which will be used in the sequel. A Kaehler manifold is an even-dimensional
manifold M2k with a complex structure J and a positive-definite metric g which
satisfies the following conditions [1]

J2 = −I, g(X, Y ) = g(X, Y ), X = JX

and

(4) ∇J = 0,

where ∇ means the covariant derivation according to the Levi–Civita connection.
The formulas [1]:

(5) R(X,Y ) = R(X, Y ),

(6) S(X,Y ) = S(X, Y ),

(7) S(X, Y ) + S(X, Y ) = 0

are well known for a Kaehler manifold.
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2 Weakly symmetric Kaehler manifolds

In this section we suppose that (Mn, g) is a (WS)n and Kaehler manifold. Then from
(3), (4) and (5) we find

(2.1) (∇XR)(Y, Z, U, V ) = (∇XR)(Y , Z, U, V )

and

(2.2) (∇XR)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V ).

From (3) and (2.1) we obtain

(2.3)
β(Y )R(X, Z,U, V ) + β(Z)R(Y,X, U, V ) =

= β(Y )R(X, Z,U, V ) + β(Z)R(Y ,X, U, V ).

Let m ∈ Mn, and in a neighbourhood N around m, let ei ∈ X (Mn) : g(ei, ej)|m = δij ,
∇ei|m = 0. Letting Z = U = ei in (2.3) we have

β(Y )S(X, V ) + g(B, ei)g(R(Y,X)ei, V ) =

= β(Y )g(R(X, ei)ei, V ) + g(B, ei)g(R(Y , X)ei, V )

or

β(Y )S(X, V ) + g(R(X, Y )V, B) = β(Y )g(R(V, ei)X, ei) + g(B, ei)g(R(Y ,X)ei, V ).

Putting V = X = ej in the above equation we obtain

(2.4) β(Y )r − S(Y, B) = −β(Y )S(ei, ei)− g(B, ei)S(Y , ei),

where r is the scalar curvature of (Mn, g). From (7) it follows that S(ei, ei) = 0.
Hence, from (2.4) it follows

β(Y )r − S(Y, B) = g(B, ei)g(LY , ei) = g(B, LY ) = S(B, Y ) = S(B, Y ),

where L, defined by the relation S(X,Y ) = g(LX, Y ), is the symmetric endomorphism
corresponding to the Ricci tensor S, which implies that

(2.5) β(Y )r = 2S(Y, B).

Similarly, the formulas (3) and (2.2) imply

(2.6) δ(Y )r = 2S(Y, P ), δ(X) = g(X, P ).

Now from (3) we find

(∇XS)(Z, V ) = α(X)S(Z, V ) + β(R(X, Z)V )+

+ β(Z)S(X, V ) + δ(V )S(Z, X) + δ(R(X,V )Z).

Let again Z = V = ei. Then we obtain
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(2.7) X(r) = α(X)r + 2S(X, B) + 2(X, P ).

So, by (2.5) and (2.6)

(2.8) X(r) = [α(X) + β(X) + δ(X)]r.

(3) can be written as

(2.9) (∇XR)(Y, Z)V = α(X)R(Y, Z)V + β(Y )R(X, Z)V +
+β(Z)R(Y,X)V + δ(V )R(Y, Z)X + g(R(Y,Z)V, X)P,

where g(X, P ) = δ(X), ∀X. Contracting, from (2.9) we derive

(2.10)
(divR)(Y, Z)V = α(R(Y, Z)V ) + β(Y )S(Z, V )−

− β(Z)S(Y, V ) + R(Y,Z, V, P ).

From the second Bianchi identity it follows that

(2.11) (divR)(Y, Z)V = (∇Y S)(Z, V )− (∇ZS)(Y, V )

and

(2.12) (divL)(Y ) =
1
2
Y (r),

where g(LX, Y ) = S(X, Y ). From (2.10) and (2.11) we deduce

(∇Y S)(Z, V ) − (∇ZS)(Y, V ) = α(R(Y, Z)V ) + β(Y )S(Z, V )−
− β(Z)S(Y, V ) + R(Y, Z, V, P ).

Letting Y = V = ei in the last equation, we obtain

(2.13) (divL)(Z)− Z(r) = −S(Z, A) + S(Z, B)−B(Z)Y − S(Z, P ).

Using (2.5), (2.6) and (2.12) in (2.13) we get

(2.14) Z(r) = 2S(Z, A) + 2S(X, B) + 2S(X, P ).

From (2.7) and (2.14) it follows that

(2.15) 2S(Z, A) = α(Z)r = g(Z,A)r,

(2.16) i.e.,S(Z, A) =
r

2
g(Z,A), ∀Z,

which implies that A is an eigenvector of S corresponding to the eigenvalue r/2.
Letting A = A in (2.16) we obtain

S(Z, A) =
r

2
g(Z, A)

which implies that JA is also an eigenvector of S with the same eigenvalue r/2.
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Similarly from (2.5) and (2.6) we find that B, JB, P and JP are eigenvectors of
S corresponding to the same eigenvalue r/2.

Summing up, we can state the following theorem:
Theorem 1. In a weakly symmetric Kaehler manifold,

(a) If the scalar curvature is a non-zero constant, then the sum of the associated
1-forms is zero.

(b) A, JA, B, JB, P and JP are the eigenvectors of the Ricci tensor S with the
same eigenvalue r/2.

Next we prove the following:
Theorem 2. Let M be a weakly symmetric Kaehler manifold of dimension n = 6 and
let A, JA, B, JP , P and JP be linearly independent. Then the manifold is Ricci flat.
Proof.

Y = aA + a∗JA + bB + b∗JB + cP + c∗JP.

Now with appropriate scalars a, a∗, b, b∗, c, c∗

S(X, Y ) = g(X, L(aA + a∗JA + bB + b∗JB + cP + c∗JP ) =

= g
(
X,

r

2
(Aa + a∗JA + Bb + bJB + cP + c∗JP )

)
=

(by (2.15), (2.5) and (2.6))

= g
(
X,

r

2
Y

)
=

r

2
g(X, Y ).

So
S(X, Y ) =

r

2
g(X,Y ).

Letting X = Y = ei in the above equation, we get r = 0. Hence S(X, Y ) = 0.
This completes the proof.

3 Weakly Ricci symmetric Kaehler manifolds

In this section we suppose that the Kaehler manifold is a (WRS)n. Then (2) holds.
That is,

(3.1) (∇XS)(Y,Z) = α(X)S(Y,Z) + β(Y )S(X,Z) + γ(Z)S(Y, X).

From (4) and (6) it follows that

(3.2) (∇XS)(Y , Z) = (∇XS)(Y, Z).

Letting Y = Y and Z = Z in (3.1) and using (3.2) and (6) we find

(3.3) β(Y )S(X,Z) + γ(Z)S(Y, X) = β(Y )S(X, Z) + δ(Z)S(Y , X)

Letting X = Z = ei in (3.3) gives

β(Y )r + γ(LY ) = β(Y )S(ei, ei) + γ(ei)S(Y , ei) = −δ(LY ),

since S(ei, ei) = 0.
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Hence

(3.4) β(Y )r + 2γ(LY ) = 0, S(X, Y ) = g(LX, Y ).

Again putting X = Y = ei in (3.3) and proceeding in the same way as above, we
get

(3.5) γ(Y )r + 2β(LY ) = 0

From (3.1) we obtain

(∇XS)(Y, Z)− (∇XS)(Z, Y ) = [β(Y )− γ(Y )]S(X, Z) + [γ(Z)− β(Z)]S(X, Y ),

which implies

(3.6) [β(Y )− γ(Y )]S(X, Z) + [γ(Z)− β(Z)]S(X, Y ) = 0.

Letting X = Z = ei in the above equation, it follows

(3.7) [β(Y )− γ(Y )]r + [γ − β](LY ) = 0.

Using (3.4) and (3.5) in (3.7) we have

(β − γ)r = 0.

Hence we can state the following
Theorem 3.In a weakly Ricci symmetric Kaehler manifold with non-zero scalar cur-
vature the 1-forms β and γ are equal.

Putting Y = Z = ei, the relation (3.1) gives

X(r) = α(X)r + β(LX) + γ(LX).

Using (3.4) and (3.5) in the above equation we can write

(3.8) X(r) = α(X)r − r

2
(β(X) + γ(X))

From (3.8) and Theorem 3 we find

X(r) = [α(X)− β(X)]r.

Hence we get the following
Theorem 4. In a weakly Ricci symmetric Kaehler manifold with non-zero constant
scalar curvature, the 1-forms of (WRS)n are all equal.
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