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Abstract

In this paper we put together ideas and results related to the geometric
theory of connections, with the hope that, on such bases, the applications to
Physics will become a little bit more conceptual.
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1 Introduction

The theory of connections arose in Riemannian geometry by the grace of Levi Civita
and became soon a part of Physics in the works of A.Einstein, H.Weyl, E.Cartan,
C.T.Yang and Mills. The geometrical spirit dominated the works o these giants and
of their followers, until the hightech penetrated the field, leading to important achieve-
ments, especially in Differential Topology. These trends shadowed the geometrical in-
tuition, but recent work, especially due to E.Witten, brought the geometrical thinking
into Physics once more.

It is the first goal of this Note to remind the origins of the geometrical theory of
connections, which can be found in the work of H.Poincaré, who invented covering
spaces and the fundamental group.

The second goal is to generalize Poincaré’s construction of universal coverings and
fundamental groups. As a result, we produce the universal principal bundle associ-
ated with a connected manifold. This principal bundle is named universal because
every differentiable finite dimensional bundle with structure group is associated to the
universal bundle.

2 Connections on complex vector line bundles

Let M be an orientable, connected, compact manifold and consider a complex vector
line bundle L = (E, p,M) endowed with a connection C. Denote by Ω ∈ ∧2(M) the
curvature form of the connection C. Since Ω is closed, for each contractible neigh-
bourhood U ⊂ M there exists a 1–form ϕU ∈ ∧1(U) such that
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Ω|U = dϕU .

When U is an pen covering of M consisting in contractible sets with contractible
double intersections U ∩V , U ∈ U , V ∈ U , we can find a system of 1–forms {ϕU}U∈U
and a system of functions FUV : U ∩B → C such that

Ω = dϕU on U, ϕU − ϕV = dfUV on U ∩ U.

Let (h1, . . . , hm, k1, . . . , kr) be a system of generators of the homology group
H1(M,Z) and denote by x1, . . . , xm, y1, . . . yr smooth closed paths representing the
homology classes hj , ks. We can suppose that all linear relations between xj , ys are
consequences of torsion relations

psks = 0, s = 1, . . . , r, ps ∈ N.

Denote by c1 = ρ(x1), . . . , cm = ρ(xm), d1 = ρ(y1), . . . , dr = ρ(yr) the (non van-
ishing) complex numbers representing the holonomy automorphisms corresponding to
the paths xj , ys. According to one of the famous de Rham theorems, there exists a
closed complex–valued 1–form α such that

exp

(∫

xj

α

)
= cj , j = 1, . . . , m.

Then we have this almost obvious
Proposition. The bundle L and the connection C determined, up to isomorphisms,
by the system

(Ω, α, x, y, d),

where
x = (x1, . . . , xm), y = (y1, . . . , yr), d = (d1, . . . , dr).

The numbers (dj)pj are known when Ω and y are given.
Proof. We make use of the fact that the holonomy group of the connection C is abelian
and that, for each closed path x in M there exist integers z1, . . . , zm, u1, . . . , ur and
2–chains σ, σ1, . . . , σr such that

x = z1x1 + . . . + zmxm = u1y1 + . . . + uryr + dσ, psys = dσs.

Then we shall have, by using Stokes’ theorem,

(d1)p1 = exp
(∫

σ1

Ω
)

, . . . , (dr)pr = exp
(∫

σr

Ω
)

and the holonomy automorphism ρ(x) will be represented by the complex number:

c(x) = exp
(∫

σ

Ω
)

(c1)z1 . . . (cm)zm(d1)u1 . . . (dr)ur .

The Proposition is now a direct consequence of the following general Theorem,
which will be proved in the next sections:
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Theorem I . A pair (E,C), consisting in a differentiable vector bundle E and in a
linear connection C in this bundle, is determined, up to isomorphisms, by the holon-
omy representation of the connection.
Corollary 1. When the group H1(M,Z) is torsion-free, the isomorphism class [E,C]
of the pair (E, C) is determined by the system (Ω, α, x).
Corollary 2. When the manifold M is simply connected, the isomorphism class [E,C]
is determined by the curvature form Ω alone.
Remark. For each integer 2-cycle Z of M , the period

∫
ZΩ is an integer.

3 A generalized fundamental group

Let M be a connected differentiable manifold and let a, b be points in M . We de-
note by P (a, b) the set of continuous paths of M with endpoints a, b and which
are smooth excepting finite sets of points. Then introduce an equivalence rela-
tion in the set P (a, b) by considering equivalent two paths c1, c2 which define the
same holonomy isomorphism h : Ea → Eb for all connexions C in all bundles
E → M . Let P ′(a, b) the set of equivalence classes. There is a natural compo-
sition law for paths P (a, b) × P (b, q) → P (a, q), which induces a multiplication
P ′(a, b)× P ′(b, q) → P ′(a, q). Let Q(a), Q′(a), G(a), G′(a) be the sets

Q(a) =
⋃
{P (a, b); b ∈ M}, Q′(a) =

⋃
{P ′(a, b); b ∈ M}

G(a) = P (a, a), G′(a) = P ′(a, a).

Then it is a question of routine to prove the following statements, by repeating
the guidelines leading to Poincaré’s universal coverings:

1. G′(a) is a group and the multiplication of equivalence classes induces a left
action

G′(a)×Q′(a) → Q′(a).

2. When (E,C) is a bundle–connection pair, the holonomy construction provides
natural maps

ρ(C, a) : G′(a) → G(Ea), λ(C, a) : Ea ×Q′(a) → E,

where G(Ea) is the group of automorphisms of the fibre Ea.
3. The map ρ(C, a) is a morphism of groups and is related to λ(C, a) in a way

which is expressed by the equality:

λ(C, a)(e, ω α) = (ρ(C, a)(ω))(λ(C, a)(e, α))

e ∈ Ea, ω ∈ G′(a), α ∈ Q′(a).

4. The group G′(a) is canonically embeded as a dense subgroup of the projective
limit of the groups G(Ea) and Q′(a) is canonically embeded as a dense subset of the
projective limit of the bundles E → M . These embedings induce topologies on G′(a)
and Q′(a) such that G′(a) becomes a topological group acting continously on Q′(a).

5. The map
λC,a : Ea ×Q′(a) → E
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is onto and E arises as coset space of Ea×Q′(a) and of the equivalence relation given
by

(e, ω α)(ρ(C, a)(ω)(e), α).

6. There is a canonical projection pa : Q′(a) → M defined as follows:

pa(α) = b if α ∈ P ′(a, b)

and the triple π(M, a) = (Q′(a), pa,M) is a topological, locally trivial, principal
bundle with structure group G′(a).

7. Every differentiable bundle ξ over M , with structure group G, is associated with
the principal bundle π(M,a) and with a continuous homomorphism ρ : G′(a) → G.
Such a homomorphism defines a connection on the bundle ξ.

Theorem I is a direct consequence of these properties, from the topological back-
ground view. In order to recover the differentiable structures of the bundle–connection
pairs, we have to introduce differentiable structures in the triple π(M,a).
Definition. The bundle π(M,a) will be named the universal bundle of the pair (M, a)
and the group G′(a) will be named the generalized fundamental group of (M,a).

4 Generalized connections

Let ξ = (E, p, M) be a differentiable bundle with fibres Eb = p−1(b).
We denote by C(M) the category whose objects are points of M and whose sets of

morphisms are the sets P ′(a, b). And we denote by C(ξ) the category whose objects
are the fibres Eb and whose morphisms are the diffeomorphisms f : Ea → Eb.

When ξ is a bundle with structure group G, each fibre Ea is endowed with a group
Ga of automorphisms of Ea, which is isomorphic to the group G.

When ξ is a bundle with structure group G, we denote by C(ξ, s) the subcategory
of C(ξ) having the same objects as Cξ) and whose morphisms f : Ea → Eb are the
diffeomorphisms with the property

g ∈ Ga ⇒ f gf−1 ∈ Gb.

The categories C(ξ), C(ξ, s) have canonical differentiable structures.
Suppose C is a given connection on ξ. Then the holonomy construction provides

differentiable morphisms of categories

FC : C(M) → C(ξ), C(ξ, s).

Conversely, suppose F : C(M) → C(ξ, s) is a given differentiable morphism. In this
case, by restriction, we get a homomorphism of groups

ρ′G(a) → Ga

and an associated bundle η with a connection C. The bundle η is canonically isomor-
phic to ξ and the canonic isomorphism ϕ : η → ξ allows us to transport the connection
C and get a connection C ′ on ξ. We proved:
Theorem II. Each differentiable morphism of categories

F : C(M) → C(ξ, s)

defines a connection on ξ.
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5 Subgroups of G′(m) associated with acyclic open
coverings

Let H be a set of pairs (U, hU ) the first terms of which form an open acyclic covering
U of M and such that each hU is a diffeomorphism from U to the open unit ball
B = {x ∈ brn : |x| < 1}, where n is the dimension of M .

Let further m be a fixed point in M . For each U ∈ U , we define mU = (hU )−1(0)
and select a path λU with end points m, mU . Then for each point x ∈ U we denote
xU = hU (x). For a ∈ B we denote by ca : [0, 1] → B the straight path in B with
endpoints 0, a. When a = xU , we denote the path ca by Cx,U and consider the path
lx,U = (hU )−1xx,U .

Finally, we suppose that, for each couple (x, y) of points in M , which belong
at least to a set U ∈ U , we selected a path mx,y, with endpoints x, y, depending
differentiably on x and y, but not depending on U . This is always possible, using for
instance a Riemannian structure on M and minimal geodesic arcs.

The paths

λU ∈ P (m,mU ), lx,U ∈ P (mU , x), mx,y ∈ P (x, y)

define equivalence classes

[λU ] ∈ P ′(m,mU ), [lx,U ] ∈ P ′(mU , x), [mx,y] ∈ P ′(x, y).

We define further:
for x ∈ U, y ∈ U, ωU,x,y = [λU ][lx,U ][ly,U ]−1[λU ]−1 ∈ G′(m)
for x ∈ U ∩ V, ωU,V,x = [λU ][lx,U ][lx,V ]−1[λV ]−1

for x ∈ U, y ∈ U, z ∈ U, ωU,x,y,z = ωU,x,yωU,y,zωU,z,x ∈ G′(m).
Then we have the identities:

ωU,V,y = ωU,y,xωU,V,xωV,x,y

ωU,x,y = ωU,y,x

ωU,V,xωv,W,x = ωU,W,x.

For each non empty double or triple intersection, let us select points

xU,V ∈ U ∩ V, xU,V,W ∈ U ∩ V ∩W

not depending on the order of the intersected sets. Denote

ωU,V = ωU,V,xU,V
, ωU,V,W = ωU,xU,V ,xU,V,W

.

Then, for x ∈ U ∩ V , we have ωU,V,x = ωx,xU,V ωU,V ωV,xU,V,x and, in particular,
ωU,V,xU,V,W = (ωU,V,W )−1ωU,V ωV,U,W . Let us denote

pU,V,W = (ωU,V,W )−1ωU,V ωV,U,W .

Then
pU,V,W pV,W,UpW,U,V = 1.

Let us denote by G(m,U) the subgroup of G′(m) generated by the elements ωU,x,y,
ωU,V,x; the group G(m,U) carries a differentiable structure consisting in the family
of maps fU : U × U → G(m,U), fU (x, y) = ωU,x,y, fUV : U ∩ V → G(m,U),
fUV (x) = ωU,V,x. The group G(m,U) is generated by the elements ωU,x,y and ωUV .
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6 Computation of the coefficients of a
connection

Suppose it is given a linear connection in a vector bundle ξ = (E, p, M) with fibre
F = Em. Then we have a homomorphism of groups ρ : G′(a) → GL(F ) and we can
consider the maps:

gU : U × U → GL(F ), gU (x, y) = ρ(ωU,x,y)

gU,V : U
⋂

V → GL(F ), gU,V (x) = ρ(ωU,V,x).

Using the holonomy along the paths λU , we can identify canonically each set
p−1(U), with U × F and, considering the charts hU , u ∈ U , the connection form
Aidxi will be defined, on each U , by the relation

Ai(x) =
∂gU (x, y)

∂yi
|(x,x).

The maps gU , gU,V , enjoy some properties that are consequences of the relation
verified by the ω’s.
Theorem II. Let F be a real vector space of finite dimension. Then with each dif-
ferentiable vector bundle-connection pair (E, C), there exists a family of differentiable
maps

G = (gU : U × U → GL(F ), gUV : U
⋂

V → GL(F ))

subject to the relations

gUV (y) = gU (y, x)gUV gV (x, y)
gUV (x)gV W (x) = gV W (x).

Conversely, given a family G enjoying the properties above, there exists a unique
class of isomorphism of bundle-connection pairs (E, C) such that G is associated with
(E, C).

When we want to compare this theorem with the Proposition given in Section 1,
we recognize that the role of Ω is played by the system {gU}, while the role of α is
played by the system {gU,V }.
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