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Abstract

In this paper, we prove that if every totally real bisectional curvature of an
n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space
of constant holomorphic sectional curvature c is greater than c

4(n2−1)n(2n− 1),
then it is totally geodesic.
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1 Introduction

For the curvatures of a Kähler manifold M , we can consider two kinds of sectional
curvature which are related to almost the complex structure J and different then the
usual sectional curvatures (i.e., the holomorphic sectional curvatures and the totally
real bisectional curvatures). The pinching problem for these three kinds of curva-
tures, the sectional curvature, the holomorphic sectional curvature and the totally
real bisectional curvature, is an interesting topic +in Kähler geometry.

For a complex submanifold M = Mn of a complex space form M ′ = Mn+p(c), the
set B(M) of the totally real bisectional curvatures satisfies B(M) ≤ c

2 by the Gauss
equation. It is easily seen that a totally geodesic complex submanifold M = Mn(c) of
M ′ = Mn+p(c) satisfies B(M) = c

2 again by the Gauss equation. On the other hand,
a complex quadric M = Qn of M ′ = Mn+p(c), c > 0, satisfies 0 ≤ B(M) ≤ c

2 [6].
By paying attention to this fact, and concerning the following theorem by Ros [9] for
holomorphic sectional curvatures, the purpose of this paper is to consider the similar
problem for totally real bisectional curvatures.
Theorem A. Let M = Mn be an n-dimensional complete Kähler submanifold of
an (n + p)-dimensional complex space form M ′ = Mn+p(c) of constant holomorphic
sectional curvature c(> 0). If every holomorphic sectional curvature of M is greater
than c

2 , then M is totally geodesic.

Ogiue [7] gave also the following
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Theorem B. Let M = Mn be an n-dimensional complete Kähler submanifold of
an (n + p)-dimensional complex space form M ′ = Mn+p(c) of constant holomorphic
sectional curvature c(> 0). If every Ricci curvature of M is greater than c

2n, then M
is totally geodesic.

2 Kähler manifolds

This section is concerned with recalling basic formulas on Kähler manifolds. Let M
be a complex n(≥ 2)-dimensional Kähler manifold equipped with Kähler metric ten-
sor g and almost complex structure J . We can choose a local field {Ej , Ej∗} =
{E1, · · · , En, E1∗ , · · · , En∗} of orthonormal frames on a neighborhood of M , where
Ej∗ = JEj and j∗ = n + j. Here and in the sequel, the Latin small indices j, k, · · ·
run from 1 to n. We set Uj = 1√

2
(Ej − iEj∗) and Ūj = 1√

2
(Ej + iEj∗), where i

denotes the imaginary unit. Then {Uj} constitutes a local field of unitary frames on
the neighborhood of M. With respect to the Kähler metric, we have g(Uj , Ūk) = δjk.

Now let {ωj} be the canonical form with respect to the local field {Uj} of unitary
frames on the neighborhood of M . Then {ωj} = {ω1, · · · , ωn} consists of complex val-
ued 1-forms of type (1,0) on M such that ωj(Uk) = δjk and ω1, · · · , ωn, ω̄1, · · · , ω̄n are
linearly independent. The Kähler metric g of M can be expressed as g = 2

∑

j ωj⊗ ω̄j.

Associated with the frame field {Uj}, there exist complex-valued 1-forms ωjk, which
are usually called complex connection forms on M such which satisfy the structure
equations of M

(2.1)

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωkj = Ωij, Ωij =
∑

k

Kījkl̄ ωk ∧ ω̄l,

where Ωij (resp. Kījkl̄) are the components of the curvature form (resp. of the Rie-
mannian curvature tensor R) of M . From the structure equations, the components of
the curvature tensor satisfy

(2.2) Kījkl̄ = K̄j̄ilk̄,

(2.3) Kījkl̄ = Kīkjl̄ = Kl̄jkī = Kl̄kjī.

Next, relative to the frame field chosen above, the Ricci tensor S of M can be
expressed as follows :

(2.4) S =
∑

i,j

(Sij̄ωi ⊗ ω̄j + Sījω̄i ⊗ ωj),

where Sij̄ =
∑

k

Kk̄kij̄ = Sj̄i = S̄īj. The scalar curvature r of M is also given by

(2.5) r = 2
∑

j

Sjj̄.
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An n-dimensional Kähler manifold M is said to be Einstein, if the Ricci tensor S
satisfies the condition

(2.6) Sij̄ =
r
2n

δij.

The components Kījkl̄m and Kījkl̄m̄ (resp. Sij̄k and Sij̄k̄) of the covariant derivative
of the Riemannian curvature tensor R (resp. the Ricci tensor S) are given by

(2.7)

∑

m

(Kījkl̄mωm + Kījkl̄m̄ω̄m) = dKījkl̄

−
∑

m

(Km̄jkl̄ω̄mi + Kīmkl̄ωmj + Kījml̄ωmk + Kījkm̄ω̄ml),

(2.8)
∑

k

(Sij̄kωk + Sij̄k̄ω̄k) = dSij̄ −
∑

k

(Skj̄ωki + Sik̄ω̄kj).

The second Bianchi identity is given as follows :

(2.9) Kījkl̄m = Kījml̄k.

And hence we have

(2.10) Sij̄k = Skj̄i =
∑

m

Kj̄ikm̄m.

Lastly, a Kähler manifold of constant holomorphic sectional curvature is called a
complex space form. The components Kījkl̄ of the Riemannian curvature tensor R of
an n-dimensional complex space form of constant holomorphic sectional curvature c
are given by

(2.11) Kījkl̄ =
c
2
(δijδkl + δikδjl).

3 Complex submanifolds

This section recalls basics of complex submanifolds of a Kähler manifold. First of all,
the main formulas for the theory of complex submanifolds are prepared.

Let M ′ = Mn+p be an (n+p)-dimensional Kähler manifold with Kähler structure
(g′, J ′). Let M be an n-dimensional complex submanifold of M ′ and let g be the
induced Kähler metric tensor on M from g′. We can choose a local field {UA} =
{Ui, Ux} = {U1, · · · , Un+p} of unitary frames on a neighborhood of M ′ in such a way
that, restricted to M , U1, · · · , Un are tangent to M and the others are normal to
M . Here and in the sequel, the following convention on the range of indices is used
throughout this paper, unless otherwise stated :

A,B, · · · = 1, · · · , n, n + 1, · · · , n + p,
i, j, · · · = 1, · · · , n,¸x, y, · · · = n + 1, · · · , n + p.

With respect to the frame field, let {ωA} = {ωi, ωx} be its dual frame fields. Then the
Kähler metric tensor g′ of M ′ is given g′ = 2

∑

A

ωA ⊗ ω̄A. The canonical forms ωA,

the connection forms ωAB of the ambient space M ′ satisfy the structure equations
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(3.1)
dωA +

∑

εCωAC ∧ ωC = 0, ωAB + ω̄BA = 0,

rdωAB +
∑

C

ωAC ∧ ωCB = Ω′AB, Ω′AB =
∑

C,D

K ′
ĀBCD̄ωC ∧ ω̄D,

where Ω′AB (resp. K ′
ĀBCD̄) denotes the components of the curvature form (resp. of

the Riemannian curvature tensor R′) of M ′.
Restricting these forms to the submanifold M , we have

(3.2) ωx = 0,

and the induced Kähler metric tensor g of M is given by g = 2
∑

j ωj ⊗ ω̄j. Then
{Uj} is a local unitary frame field with respect to the induced metric and {ωj} is a
local dual frame filed due to {Uj}, which consists of complex-valued 1-forms of type
(1,0) on M . Moreover, ω1, · · · , ωn, ω̄1, · · · , ω̄n are linearly independent, and {ωj} are
the canonical forms on M . It follows from (3.2) and Cartan′s lemma that the exterior
derivatives of (3.2) give rise to

(3.3) ωxi =
∑

j

hx
ijωj, hx

ij = hx
ji.

The quadratic form α =
∑

i,j,x

hx
ijωi⊗ωj⊗Ux with values in the normal bundle on M in

M ′ is called the second fundamental form of the submanifold M . From the structure
equations for M ′, it follows that the structure equations for M are similarly given by

(3.4)

dωi +
∑

k

ωik ∧ ωk = 0, ωij + ω̄ji = 0,

dωij +
∑

k

ωik ∧ ωk = Ωij, Ωij =
∑

k,l

Kījkl̄ωk ∧ ω̄l.

For the Riemannian curvature tensors R and R′ of M and M ′, respectively, it follows
from (3.1), (3.3) and (3.4) that

(3.5) Kījkl̄ = K ′
ījkl̄ −

∑

x

hx
jkh̄x

il.

The components Sij̄ of the Ricci tensor S and the scalar curvature r on M are given
by

(3.6) Sij̄ =
∑

k

K ′
k̄kij̄ − hij̄

2,

(3.7) r = 2(
∑

j,k

K ′
k̄kjj̄ − h2),

where hij̄
2 = hj̄i

2 =
∑

m,x

hx
imh̄x

mj and h2 =
∑

j

hjj̄
2 .

Now the components hx
ijk and hx

ijk̄ of the covariant derivative of the second fun-
damental form on M are given by
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(3.8)
∑

k

(hx
ijkωk + hx

ijk̄ω̄k) = dhx
ij −

∑

k

(hx
jkωki + hx

ikωkj) +
∑

y

hy
ijωxy.

Then, substituting dhx
ij from this definition into the exterior derivative

dωxi =
∑

j

(dhx
ij ∧ ωj + hx

ijdωj)

of (3.3) and using (3.1) ∼ (3.4) and (3.6), we have

(3.9) hx
ijk = hx

ikj, hx
ijk̄ = −K ′

x̄ijk̄.

In particular, let the ambient space M ′ = Mn+p(c) be an (n + p)-dimensional
complex space form of constant holomorphic sectional curvature c. Then, by (2.11)
and (3.5) - (3.7), we get

(3.10) Kījkl̄ =
c
2
(δijδkl + δikδjl)−

∑

x

hx
jkh̄x

il,

(3.11) Sij̄ =
c
2
(n + 1)δij − hij̄

2 ,

(3.12) r = cn(n + 1)− 2h2 ,

(3.13) hx
ijk̄ = 0.

4 Totally real bisectional curvatures

In this section, we are concerned with the totally real bisectional curvature of a
semi-definite Kähler manifold. Let (M, g) be an n-dimensional semi-definite Kähler
manifold with almost complex structure J. In their paper [3], Bishop and Goldberg
introduced the notion for totally real bisectional curvature B(X,Y ) on a Kähler man-
ifold.

A plane section P in the tangent space TpM at any point p in M is said to be
totally real or anti-holomorphic if P is orthogonal to JP. For an orthonormal basis
{X,Y } of the totally real plane section P, any vectors X, JX, Y and JY are mutually
orthogonal. This implies that for orthogonal vectors X and Y in P, it is totally
real if and only if two holomorphic plane sections spanned by X, JX and Y, JY are
orthogonal.

Houh [5] showed that an n(≥ 3)-dimensional Kähler manifold has constant totally
real bisectional curvature c if and only if it has constant holomorphic sectional cur-
vature 2c. On the other hand, Goldberg and Kobayashi [4] introduced the notion of
holomorphic bisectional curvature H(X, Y ) which is determined by two holomorphic
planes Span{X, JX} and Span{Y, JY }, and asserted that the complex projective
space CPn(c) is the only compact Kähler manifold with positive holomorphic bi-
sectional curvature and constant scalar curvature. If we compare B(X, Y ) with the
holomorphic bisectional curvature H(X, Y ) and the holomorphic sectional curvature
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H(X), then the holomorphic bisectional curvature H(X, Y ) turns out to be totally
real bisectional curvature B(X,Y ) (resp. holomorphic sectional curvature H(X)),
when two holomorphic planes Span{X,JX} and Span{Y, JY } are orthogonal to each
other (resp. coincides with each other). From this, it follows that the positiveness of
B(X, Y ) is weaker than the positiveness of H(X, Y ), because H(X,Y ) > 0 implies
that both of B(X, Y ) and H(X) are positive but we don’t know whether B(X,Y ) > 0
implies H(X, Y ) > 0.

Furthermore, Goldberg and Kobayashi [4] showed that a complete Kähler manifold
M with constant scalar curvature and positive holomorphic bisectional curvature is
Einstein. In order to get this result, they should have verified that the Ricci tensor is
positive definite. In that proof, they used that the fact that the holomorphic sectional
curvature H(X) is positive, which follows necessarily from the condition H(X,Y ) >
0. But the condition B(X, Y ) > 0 carries less information than the condition of
H(X, Y ) > 0, and it gives us no reason for using Goldberg and Kobayashi′s method to
derive the fact that M is Einstein (that is, we can not use the condition H(X, Y ) > 0).
The totally real bisectional curvature B(X,Y ) can be also consider for non-degenerate
totally real planes Span{X, Y } in any indefinite Kähler manifold. In their paper [2],
Barros and Romero asserted that above mentioned Houh′s result can be extended
to indefinite Kähler manifolds. Aiyama, Kwon and Nakagawa [1] have also studied
the classification problem of space-like complex submanifolds of indefinite complex
hyperbolic space CHn+p

0+p (c) with bounded scalar curvature.
Motivated by these results, we present in the followinf the classification problems

with bounded totally real bisectional curvature.
Let (M, g) be an n-dimensional semi-definite Kähler manifold with almost complex

structure J. In the sequel, we only consider the definite totally real planes, unless
otherwise stated.
Definition 4.1. For a totally real plane section P spanned by orthonormal vectors
X and Y , the totally real bisectional curvature B(X, Y ) is defined by

(4.1) B(X,Y ) = g(R(X, JX)JY, Y ).

Then, using the first Bianchi identity to (4.1) and the fundamental properties of the
Riemannian curvature tensor of semi-definite Kähler manifolds, we get

(4.2)
B(X,Y ) = g(R(X, Y )Y,X) + g(R(X, JY )JY, X)

= K(X,Y ) + K(X,JY ),

where K(X,Y ) means the sectional curvature of the plane spanned by X and Y.
Example 4.1. Let Mn

s (c) be an n-dimensional semi-definite complex space form of
constant holomorphic sectional curvature c and of index 2s, 0 ≤ s ≤ n. Then, Mn

s (c)
has constant totally real bisectional curvature c

2 . In fact, if a plane Span{X, Y } is
totally real, then we have

B(X,Y ) =
g(R(X, JX)JY, Y )

g(X, X)g(Y, Y )
=

c
2

,

which follows easily from the form of the curvature tensor of Mn
s (c).

Example 4.2. Let Qn be a complex quadric in a complex projective space CPn+1(c)
of constant holomorphic sectional curvature c. In CPn+1(c) with homogeneous coor-
dinates z0, z1, · · · , zn+1, the complex quadric Qn is complex hypersurface defined by
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the equation
(z0)2 + (z1)2 + · · ·+ (zn+1)2 = 0.

Let g be the Fubini-Study metric on CPn+1(c) of constant holomorphic sectional
curvature c. Its restriction g to Qn is a Kähler metric. Then, it is seen [6] that Qn is
an Einstein hypersurface whose Ricci tensor S satisfies

S =
c
2
ng,

and its totally real bisectional curvature B satisfies

0 ≤ B(M) ≤ c
2
.

In the rest of this section, we suppose that X and Y are orthonormal vectors in
a non-degenerate totally real plane section such that g(X,X) = g(Y, Y ) = ±1. If we
put X ′ = 1√

2
(X + Y ) and Y ′ = 1√

2
(X − Y ), then it is easily seen that

g(X ′, X ′) = g(Y ′, Y ′) = ±1, g(X ′, Y ′) = 0.

Thus we get

B(X ′, Y ′) = g(R(X ′, JX ′)JY ′, Y ′)

=
1
4
{H(X) + H(Y ) + 2B(X, Y )− 4K(X,JY )},

where H(X) = K(X,JX) means the holomorphic sectional curvature of the holo-
morphic plane spanned by X and JX. Hence we have

(4.3) 4B(X ′, Y ′)− 2B(X,Y ) = H(X) + H(Y )− 4K(X, JY ).

If we put X ′′ = 1√
2
(X+JY ) and Y ′′ = 1√

2
(JX+Y ), then we get from the definiteness

of the plane Span{X, Y }

g(X ′′, X ′′) = g(Y ′′, Y ′′) = ±1, g(X ′′, Y ′′) = 0.

Using the similar method as in (4.3), we have

(4.4) 4B(X ′′, Y ′′)− 2B(X,Y ) = H(X) + H(Y )− 4K(X, Y ).

Summing up (4.3) and (4.4) and taking account of (4.2), we obtain

(4.5) 2B(X ′, Y ′) + 2B(X ′′, Y ′′) = H(X) + H(Y ).

Now let M = Mn
0 be an n(≥ 3)-dimensional space-like complex submanifold of an

(n + p)-dimensional semi-definite Kähler manifold M ′ = Mn+p
0+p (c) of index 2p and of

constant holomorphic sectional curvature c.
Assume that the totally real bisectional curvatures on M is bounded from below

(resp. above) by a constant a (resp. b), and let a(M) and b(M) be the infimum
and the supremum of the set B(M) of the totally real bisectional curvatures on M,
respectively. By definition, we see a ≤ a(M) (resp. b ≥ b(M)). From (4.5), we have
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(4.6) H(X) + H(Y ) ≥ 4a (resp. ≤ 4b).

For an orthonormal frame field {E1, · · · , En} on a neighborhood of M , the holo-
morphic sectional curvature H(Ej) of the holomorphic plane spanned by Ej can be
expressed as

(4.7) H(Ej) = g(R(Ej , JEj)JEj , Ej) = Rjj∗j∗j = Kj̄jjj̄.

On the other hand, it is easily seen that the plane sections Span{Ej , JEj}, and
Span{Ek, JEk}, j 6= k, are orthogonal and the totally real bisectional curvature
B(Ej , Ek) is given by

(4.8) B(Ej , Ek) = g(R(Ej , JEj)JEk, Ek) = Kj̄jkk̄, j 6= k.

From the inequality (4.6) for X = Ej and Y = Ek, we have

(4.9) Kj̄jjj̄ + Kk̄kkk̄ ≥ 4a (resp. ≤ 4b), j 6= k.

Thus we have

(4.10)
∑

j<k

(Kj̄jjj̄ + Kk̄kkk̄) ≥ 2an(n− 1) (resp. ≤ 2bn(n− 1)),

which implies that

(4.11)
∑

j

Kj̄jjj̄ ≥ 2an (resp. ≤ 2bn),

where the equality holds if and only if Kj̄jjj̄ = 2a (resp. = 2b) for any index j.
Since the scalar curvature r is given by

r = 2
∑

j,k

Kj̄jkk̄ = 2(
∑

j

Kj̄jjj̄ +
∑

j 6=k

Kj̄jkk̄),

we have by (4.10)

r ≥ 2
∑

j

Kj̄jjj̄ + 2an(n− 1) (resp. ≤ 2
∑

j

Kj̄jjj̄ + 2bn(n− 1)),

from which it follows that

(4.12)
∑

j

Kj̄jjj̄ ≤
r
2
− an(n− 1) (resp. ≥ r

2
− bn(n− 1)),

where the equality holds if and only if Kj̄jkk̄ = a (resp. = b) for any distinct indices
j and k. In this case, M is locally congruent to Mn(a) (resp. Mn(b)) due to Houh [5].
Also (4.9) gives us

∑

k( 6=j)

(Kj̄jjj̄ + Kk̄kkk̄) ≥ 4a(n− 1) (resp. ≤ 4b(n− 1))

for each j, so that
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(n− 2)Kj̄jjj̄ +
∑

k

Kk̄kkk̄ ≥ 4a(n− 1) (resp. ≤ 4b(n− 1)).

From this inequality together with (4.12), it follows that

(4.13)
(n− 2)Kj̄jjj̄ ≥ a(n− 1)(n + 4)− r

2
(resp. ≤ b(n− 1)(n + 4)− r

2 )

for any index j, so that the holomorphic sectional curvature Kj̄jjj̄ is bounded from
below (resp. above) for n ≥ 3. Moreover, the equality holds for some index j if and
only if M is locally congruent to Mn(2a) (resp. Mn(2b)).

By applying Theorem A we infer
Theorem 4.1. Let M = Mn be an n(≥ 3)-dimensional complete Kähler submanifold
of an (n+p)-dimensional complex space form M ′ = Mn+p(c) of constant holomorphic
sectional curvature c(> 0). If every totally real bisectional curvature of M is greater
than c

4(n2−1)n(2n− 1), then M is totally geodesic.
Proof. By the assumption B(M) ≥ a and (4.13), we have

(n− 2)H(M) ≥ a(n− 1)(n + 4)− r
2 .

Since we see r = cn(n + 1)− 2h2 by (3.12), we obtain

H(M) ≥ 1
2(n− 2)

{2a(n− 1)(n + 4)− cn(n + 1)} ≡ a0.

Thus we have by (3.10)

(4.14) Kj̄jjj̄ = c−
∑

x

hx
jj h̄

x
jj ≥ a0, Kīijj̄ =

c
2
−

∑

x

hx
ij h̄

x
ij ≥ a

for any distinct indices i and j. Since the Ricci curvature Sjj̄ of M is given by (3.11)

Sjj̄ =
c
2
(n + 1)− λj , λj =

∑

m,x

hx
jmh̄x

jm

and
λj =

∑

x

hx
jj h̄

x
jj +

∑

m(6=j),x

hx
jmh̄x

jm ≤ (c− a0) + (
c
2
− a)(n− 1)

from (4.14) and using the Ricci curvatures it follows that

Sjj̄ ≥ a0 + a(n− 1).

Given the constants a and a0, we obtain

Sjj̄ >
c
2
n

for any index j. By Theorem B, this completes the proof. 2
Remark 4.1. We should here remark that c

4(n2−1)n(2n−1) < c
2 for n ≥ 3 and c > 0.

Hence Theorem 4.1 is a generalization of Theorem A in the case where n ≥ 3.
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As a direct consequence of Theorem 4.1 combined with the equation (4.2), we can
prove
Corollary 4.2. Let M = Mn be an n(≥ 3)-dimensional complete Kähler submanifold
of an (n + p)-dimensional complex space form M ′ = Mn+p(c) of constant holomor-
phic sectional curvature c(> 0). If every sectional curvature of M is greater than

c
8(n2−1)n(2n− 1), then M is totally geodesic.
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