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Abstract

In the recent Bild’s paper [1] it was determined the symmetry group of the
minimal surfaces PDE (using classical methods). The aim of this paper is to
find the Lie algebra of contact symmetries of the minimal surfaces PDE using
the correspondence, established by V. V. Lychagin [2], between the second order
non-linear differential operators and differential forms which are given on the
manifold of 1-jets.
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Introduction

A surface is called minimal if the mean curvature of this surface is equal to zero.
In what follows we show that the minimal surfaces PDE is a Monge-Ampere type
equation. So, in order to find symmetries of this equation we can use the relation,
established by V. V. Lychagin [2], between Monge-Ampere equations and differential
forms which are given on the manifold of 1-jets.

In Sections 1 and 2 we recall basic definitions and constructions and then we
investigate symmetries of the minimal surfaces PDE.

1 Monge—-Ampere Operators and Equations

Let M be a smooth manifold, dim M = n. Let also J'(M) be the manifold of 1-jets
of smooth functions which are given on M and w € A'(J!(M)) the Cartan form on
JY(M). The Cartan distribution generated by the Cartan form we denote by C.

On the manifold J!(M) we have the following natural coordinates:

(1) (t17t27"'7tn7 u, Ul,’l,tg,-..,un)7
see [7], [8], [9]. Here coordinates (t!, t2, ..., t") correspond to the local coordinates
(x', 22, ..., 2™) on M, u corresponds to a function given on M and (uy, usg, ..., uy,)

correspond to its first order partial derivatives.
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In such local coordinates (which we also denote by (¢, u, u’)) the Cartan form can
be written as w = du — udt' — ugdt® — - -+ — u,dt™ (or briefly w = du — u'dt).

As we can see, any differential n-form 0 € A"(J'(M)) defines a second order
non-linear differential operator Ay : C*°(M) — A™(M) which acts on functions as
follows:

(2) Do) = j1(h)"(8), Vh e C=(M),

where j1(h) is the 1-jet of the function h, see [2], [3].
In the local coordinates we get that

(3) Ng(h) = Fp(h)(z)daz' Adz? A -+ Ada™,

where Fy : C*(R") — C*°(R") is a second order non-linear scalar differential
operator.

Operators Ay are called Monge-Ampére operators and corresponding equations are
called Monge-Ampére equations. A multivalued (or generalized) solution of the Monge-
Ampere equation defined by the n-form 6 is an n-dimensional integral manifold L of
the Cartan distribution such that 6|, = 0, see [2], [3].

Correspondence 8§ —— Ay is not bijective but Monge-Ampere operators are
uniquely determined by the elements of the quotient-modul A™(J'(M)) / C, where
C={6eA"(J'(M))|Ay =0}.

At each point z € J'(M) the restriction of the exterior differential of the Cartan
form dw, onto Cartan space C, determines a sympletic structure on C, and it allows
to describe the elements of A™(J*(M))/C by the effective forms, see [2], [3].

Differential s-forms on J!(M) can be expressed in the following way:

(4) A (JHM)) = A*(C*) @ (wAATH(CY)),

where by A®(C*) are denoted differential s-forms that vanish along X; and X is the
contact vector field with generating function 1, see [3], [4]. Therefore we can consider
the natural projection

(5) P A (TN (M) — A(C), p(0) =0 —w A (X10)

and the operator
6 d, : A*(C*) — A*THC*), d,=pod.
P P

Using the Hodge—Lepage decomposition we obtain, that any differential s-form 6
has the following unique representation:

(7) 0="0cr+wANb+dwA by,

where 61 € AS7H(JH(M)), 0 € A°*2(J'(M)) and 0. € AS (J'(M))def=AZ;(C*) is
an effective s-form, see [3].

Effective differential n-forms can be described as follows: 6 is effective iff X7 160 =0
and 0 A dw = 0, see [2].

Example 1.0.1 Letn = 3. Let us consider the following 3-form given on the manifold
of 1-jets in the natural coordinates:
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(8) 9:du/\(du1 W g Ao e dus /\dtl).

d’U,Q (%) dU3 us dU3 us

This form as we can see is decomposible.
Differential operator, that corresponds to 6, has the following form:

hir hiz hir his haa  has  ho
Ag(h) = his hos ho + hiz hss hs + hos hss hs dz' A dz? A d:v3,
hi hy O hi hs O ha hs O

Q0 2
h h
where h; = %, 1=1,2 and h;; = %, 7, k=1,2,3. In this case we get:
hir hia hir his haa  has  ho
(10) Fy(h) = hia haa ha + hiz hsz hs + hos hsz hs .

hi hy O hi hs O hy hy O
If we now consider 3-form

1

0,
(uf + u3 + u3)>/?

(11) O =

then we get the following operator

hii hia M hii hiz hoo  hos  ho
hio hes ha + hiz hss hs + hos hss hs
hi hy O hi hs O ha hy O
12 H(h) =
( ) ( ) (h%—l—h%—i—h%)?’m ’

which corresponds to the mean curvature of the surface given in the space x'x2x® by
equation h(x!, 2%, 23) = const.

If the surface is given by equation 2° = @(x', 2?), i.e. by h(z!, 22, 23) = 0,
where h(x!, 22, 23) = 2% — p(at, 22), then the mean curvature of this surface has the
folowing form:

fi(p) = £l F ¥3) + aa(1 + ¢1) — 20102012

13
19) (o1 + @3 +1)2/2

Corresponding effective 2-form can be expressed as follows:

(1 +u)dtt A dug — (1 +u3)dt® A duy — uyuadt A duy + uyuadt? A dusg

14)07 =
(1407 (a1 1)°/2

2 Symmetries of Monge—Ampere Operators and
Equations

Lie group Ct(J'(M)) of contact diffeomorphisms acts on Monge-Ampere operators
in the following way:

(15) F(Ag)def=Ap.(g), F € Ct(J'(M)).
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Lie algebra ct(J'(M)) of contact vector fields acts similarly:
(16) Xf(Ag)defZALXf 9)-

Here X; € ct(J'(M)) is the contact vector field with generating function f €
C>°(J'(M)), see [4], and Lx, is an operator of Lie derivation along X.

A contact transformation F € Ct(J(M)) is called a symmetry of Monge—Ampére
operator Ag if F(Ag) = Ag. A contact vector field X; € ct(J'(M)) is called an
infinitesimal symmetry of Monge-Ampére operator Ag if X;(Ag) = 0.

Finite and infinitesimal symmetries of Monge—Ampere equations are defined sim-
ilarly: A contact transformation F € Ct(J'(M)) is called a symmetry of Monge—
Ampére equation defined by Ag if F(Ag) = ulg for some function p € C°(J1(M)).
A contact vector field Xy € ct(J'(M)) is called an infinitesimal symmetry of Monge—
Ampére equation defined by Ag if X ;(Ag) = Ay for some function A € C°(J1(M)).

If 0 is an effective n-form, then X is an infinitesimal symmetry of Monge-Ampere
equation if the following condition holds:

(17) P(Lx,(0)) = A0

for some smooth function A € C*°(J*(M)), see [3].
Moreover, X is an infinitesimal symmetry if and only if the following Lie equation
holds:

(18) (if 0 dp)(0) + (dp 0 if)(0) + fLx, (0) = N0,

for some function A € C*°(J'(M)), see [2], [3]. Here iy is an operator of inner multi-
plication by X7.

3 Minimal Surfaces PDE

A surface is called minimal if the mean curvature of this surface is equal to zero.
As we can see from (13), the minimal surface PDE of the surface given by equation

23 = p(z!, 2?) has the following form:

(19) o11(1 + ©3) + paz(1 + 1) — 20102912 = 0.

An effective differential 2-form in the space .J 1(RQ)7 which corresponds to the
minimal surfaces PDE is

(20) 0 = (1 +ud)dt' A dug — (1 + ud)dt? A duy — ugugdt' A duy + ugugdt® A dus.

Further we will study the infinitesimal symmetries of the minimal surfaces PDE
using the method described above. The investigation of the infinitesimal symmetries
of this PDE by the classical method which is based on regarding the manifold of
2-jets, see [5], [6], can be found in [1].

We will find only symmetries that are prolognations of the vector fields given on
JO(R?). The generating functions of such symmetries must have the form f(t, u, u’) =
p — &ug — nug, where functions &, n and ¢ depend only on ¢t and u. Corresponding
contact vector field is
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9 9 9 o .0
(21) Xf—E@—FT]@‘F(P%—F@ 6 + @ 8u2

where
! =+ (pu — & )ur — Npug — fuul N U1 U2,
D% = @p2 + (pu — 2 )ug — E2uy — Nyus — Uz,
Considering that Lx, (') = &, Lx,(1?) =1, Lx,(u1) = D', Lx,(uz) = ®?, we
get:

Lx,;(0) = 2uy ®'dt' Adug + (14 uf)dE A dug + (14 uf)dt' A dP*—
—2u®2dt? A duy — (14 u3)dn A duy — (1 + ud)dt? A ddL—
—((bl’l,LQ + ul(DZ)dtl Aduy — U1U2d§ A duy — U1U2dt1 N d(I)1+
+(® ug + ur ®?)dt? A dug + uyusdn A dus + uyuadt? A d®2.
And further we find:
Lx,(0) = 2ppur 4+ 2(pu — Ep)uf — 2npurug — 28,uf — 2nuiug)dt' A dug+
+(1 4+ u)épdt Adug + (14 u2)Epedt? A dug + (1 + u?)Eudu A dug+
+(1 +u )(SDtQtZ + (QOtZU‘ nt2t2)u2 — £t2t2'u1 77t2uu2 £t2uu1u2)dt1 A dtQ
+(1 4 ud)(przu + (Puu — Mezu) U2 — &2 — Nuatis — Suuurug)dt A du—
—( (

uf)
1+ u?) (&2 + Egua)dtt Aduy + (1 4+ u?) 0y — 2 — 2nuus — Eyuy )dt A dug—

—(2¢pus + 2(py — N2 Juj — 28purug — 2nuy — 28 uyu3)dt* A duy—

—(1+ud)nadt Aduy — (14 ud)nedt® A duyp — (14 ud)nedu A dug+
+(1+ud) (g + (prry — Erp )ur — Nprprug — Er 3 — Nryurug)dtt A dit*—

—( (011w + (Puu — Enu)ur — Mgtz — Eyuud — Nugurug)dtt A du—

—(1 4+ ud)(pu — & — 26uur — Muuz)dt! Aduy + (14 u3) (e + nuua)dt' A dug—
—(praur + @pug — E2ud — nuui + (20, — En — N2 Jurug — 28 uiug — 20, uru3) X
xdt! A dup — urug€p dtt A duy — uqua€pedt? A duy — uyugéudu A duy —

—urtz (g2 + (P2 — Enp2)ur — Nrgptin — §2uf — Nz urun)dt' A di?—

—urts (@ + (Puu — Enrw)Ut — Nruts — Euuti] — Nuuurtz)dt A du—

— g (@y — & — 2E4u1 — Nuug)dtt A dt? + urug(np + eyur)dtt A dt?+
+(ppur + Qg — Epud — naud + (20, — Ea — N2 )urus — 2E,uug — 2, uiul) X
xdt? A dug + uruanga dt' A dus + uruanedt? A dus + uiusnedu A dug—

—uuz (e + (Ppy — N )uz — Eppzuy — 77t1u“2 ftluulw)dtl A dt?+

(
+U1U2(§0 (Spuu - ntQu)u2 - §t2uu1 - nuuuz - guu”l“?)dtQ A du—
—uguz (&2 + Euu)dt? A du + uius(py — m2 — 21U — Eyuy )dt? A du.

Substituting du = w +uydt' +usdt? and considering that after the natural projection
p : A°(JY(R?)) — A®*(C*) the part which is proportional to w will eliminate we
obtain:
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p(Lx,(0)) = [‘Ptltl + @iz + (200 — S — e )ur + (2042 — Mergr — My22 Juo+
H(pre + Guu — 2600)u7 + (L + Quu — 212 U5 —
—2(ppez + &y + M) urtz — (Ee + Eun)ud — (erer + Nuu)ud+
—|—(2§t1t2 — 242 — nuu)u%uQ + (277t1t2 — & — fuu)ulug] dtt A dt?+
+[pu + ftl — N2 + 2ppuy — 2n,uz+
+(3pu — &1 — M2 )u? — 26, uf — 2nuu1uQ]dt1 A dug—
[ §t1 + M2 — 28,01 + 202 un+
+(3</7u — & — M2 )u3 — 20y ud — 26, uru3|di® A duy—
— [ + &2 4 (@2 + mu)ur + (P + Eu)ua+
+(3pu — & — M2 )urug — 26, uug — 277uu1u2] (dt' A duy — dt? A dus).

Field Xy is an infinitesimal symmetry of the minimal surfaces PDE if the condition
(17) (or equivalent condition (18)) holds. In this case this condition can be expressed
in the following way:

i1+ P22 4 (20010 — Enp — G2 )ur + (20424 — 77t1t1 — T242 ) U+
Jr(§0t2t2 + Puu — 2£t1u)u% + (@tltl + Puu — 212y )

=2(pprg2 + &2y + Mig)urus — (Eze2 + Euu)ud — (77t1t1 + Mo ) U3+
+(2&142 — M2z — Nuu)uus + (202 — Epp — Euu)wiul =0

Wu + &1 — N2 + 2 u1 — 2 us+
+Bpu — &o = me2)uf — 26} — 2puuug = A1+ uf)

— &+ M2 — 286,u1 + 2<Pt2u2+
+(3pu — & — 77t2)u2 277uU2 2§uU1U2 AL+ U2)

Nt + &2 + (2 + nu)ur + (@i + Eu)ua+
+(Bou — & — M2 )urug — 28 udug — 2N uiud = Aujug

Eliminating A\, we get the following system of partial differential equations:

Oipr + P2 4 (2000 — Enpr — Epp2)ur + (20124 — Mergr — Mgz U+
+(r2e2 + Quu — 281)uT + (Pr1er + Puu — 2142y ) U3 —

—2(pp1pe + &2y + M) urtiz — (Ezez + Eun)us — (Mergr + N ) U3+
+(2812 — M2z — Nuu)uiug + 2z — Epp — Euu)urul =0

&2 + o 4 (2 + nu)ur + (@ + Eu)ua + (&2 + o )ui+
+2(pu — & )urug + (@2 + nu)uf — (g + Eu)ufug =0
) )
( (

&2 + o 4 (2 + nu)ur + (e + &u)uz + (&2 + o )ud+

+2(0u — M2 )urug + (@ + Eu)us — (@2 + Nu)urui = 0

Since functions &, 17 and ¢ do not depend on u; and us, then from the last system
it follows that the coefficients of the monomials depending on u; and us must be
equal to zero. So, we obtain the following system of PDE’s:
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P+ P22 =0 Enp + &2 = 2041,
Nergr + M2z = 2002, Q242 + Puu = 26414
i1t + Puu = Zntzu Pr1¢2 + ftzu + M1y = 0

&2z + &y =0 Mgt + Nuy =0
Mi2e2 + Nuu = 260142 gt + Suu = 2Mp142
§e2+mpn =0 2+ 1y =0

o +& =0 Pu—&n =0
Yu—m2 =0

Solutions of this system have the following form:

th 2, u) = Cp + Crt! + Cyt? + Csu
g( 9 ) ) 1 7 4 6

U(tl, t2, u) =Cy — Cyut! + C7t2 + Csu
o(tt, 12, u) = C3 — Cgt! — Cst? + Cru

for any Cy, Cs, ..., C7 € R.
We get the following theorem:

Theorem 3.0.1 The functions

fi=—ui, fo=-us, fy=1, fi="tlug—1t?u,
f5 ==t —uuy, fo=—1—uus, fr=u—t'us—t*uy

form a basis of the Lie algebra of generating functions of the minimal surfaces PDE
(19) which have the form f = ¢ — &uy — nug. Corresponding vector fields

0 0 0
Xfl oL’ f2 o2’ f3 8’15
R R R R )
Ja %tl th “0u; " Ouy’ )
Xpmu— — 'L (1 u?) -~ wus——
fs ua[Sl t aau (1+ ula) ou UL U 852’
X;, =u— —t2— — (1)
fe alg p) ulu;aul ( +u2)au2?

form a basis of the Lie algebra of symmetries of the minimal surfaces PDE (19) which
are prolognations of the vector fields given on JO(R2).

Similar result obtained by the classical method can be found in the [1].
We note that the method described above allows to find more general symmetries,
not only the prolognations of the vector fields given on J O(Rz).
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