C-Totally Real Submanifolds of R***! Satisfying a
Certain Inequality
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Abstract

We establish a sharp inequality between the squared mean curvature and
the scalar curvature for a C-totally real submanifold of maximum dimension in
a Sasakian space form. In particular we investigate C-totally real submanifolds
of R?"*1 satisfying the equality case.
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1 Introduction

Let C" denote the complex Euclidean n—space with complex structure J defined by
J(T1,22, .y Ton) = (—Tnt1y ey =Ty T1y eevy Tny).

If f: M — C" is an isometric immersion from a Riemannian n—manifold M into
C", then M is called a Lagrangian submanifold (or totally real submanifold in [5] )
if J carries each tangent space of M into its normal space. Lagrangian submanifolds
appear naturally in the context of classical mechanics and mathematical physics.

It is well-known, that every curve in C! is Lagrangian. For n > 2, there is a
Lagrangian immersion from an n—sphere S" into C™ given by Whitney which is a
called the Whitney immersion. The Whitney immersion is defined as follows :

Let f: E""' — C” be a map from E"*! into the complex Euclidean space C"
defined by :

1

= 1_'_7x2(9131, vy Ty TOLLy vey TOTy )
0

f(l'o,l‘l, ,a:n)

Denote by S™ the unit hypersphere of E™*! centered at the origin. The restriction
of f to S™ gives rise to an immersion :
w:S" — C"
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which has a unique self-intersection point f(—1,0,...,0) = f(1,0,...,0). With respect
to the canonical complex structure J on C™, w : S — C" is a Lagrangian immersion
which is the Whitney immersion.

Let g denote the metric on 8™ induced from the Euclidien metric on C" via w.

We call the Riemannian n—manifold S™ = (S", ) the Whitney n-sphere.

Let S™ denote the unit hypersphere of R". Consider the spherical coordinates
{t1,....tn} on S™ defined by

i—1 n—1
(1.1) 1 = costy,...,x; = cost; H sint;, ..., x, = cost, H sint;,
Jj=1 Jj=1
n—1
Tp+1 = Sint, H sint;.
j=1

Recall that the Whitney immersion w : 8" — C" is defined by

1

(12) U}(I’O,l’l,...,xn) = T]}g

(T1, ooy Ty TOTLy oeey TOTy, ).

for (zg,x1,...,2,) € S™ and consider the Whitney n—sphere S" = (S™,g) endowed
with the Riemannian metric § induced from the Whitney immersion w. (1.1) and (1.2)
imply that the components g,3 of the metric tensor § with respect to the spherical
coordinates are given by

a—1 9
I sin®t;
Jj=1

1.3 ~ao¢ = T 94
(1.3) 9 1+ cos?t;

gaﬂ:07 1§OL7A/BSTL7
0
where we put H sin?t; = 1.
i=1
Let N and S denote the points (1,0,...,0) and (—1,0,...,0) in S™, respectively.
From (1.3) we see that S” — {N, S} is a warped product (—g, g) Xty 8" of the

open interval (72’ g) and the unit (n—1)—sphere with warped product metric given

by
1 sin2t1
g=(— )+ (2L g,
g <1+cos2t1> 1+<1+coszt1>go

where go is the standard metric on the unit (n — 1)—sphere S"™' and p(t) =
sintq

V1+¥cosZty
Let {ej,...,en} be the unit vector fields in the direction of the tangent vector
fields {g, ey W} on S™ respectively. Then {eq, ..., €, €14, ..., €ns } form an adapted
1
Lagrangian orthonormal frame field. By a direct, long computation, we may prove
that the second fundamental form of the Whitney immersion w with respect to this
adapted frame field satisfies (see [2])
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h(er,e1) = 3Aers, hl(es,ez) =...= h(en, ) = Ae1s,
h(ei,e;) = Aej., hlejex) =0,2<j#k<n.
where int
= — S

V1+¥cosZéy

An orthonormal frame field eq, ..., e,, €14, ..., € 18 called an adapted frame field if
e1, ..., e, are orthonormal tangent vector fields and ey, ..., €, are normal vector fields
given by

e1x = Jeq, ..., ens = Jey

2 Submanifolds of a Sasakian space form

Let (M, g) be a (2m + 1)-dimensional Riemannian manifold endowed with an endo-
morphism ¢ ( (1,1)—tensor field) of its tangent bundle TM, a vector field £ and a
1-form 7 such that

{ P*X ==X +n(X)E, p€=0,n0p=0,n(&) =1,
g(eX, oY) = g(X,Y) = n(X)n(Y), n(X) = 9(X,§),

for all vector fields X,Y € I'(TM). }
If, in addition, dn(X,Y) = g(¢X,Y), then M is said to have a contact Riemannian
structure (p,&,n, g). If, moreover, the structure is normal, i.e. if

[(pX, Y]+ ©*[X, Y] — [ X, Y] — ¢[pX, Y] = —2dn(X, Y )¢,

then the contact Riemannian structure is called a Sasakian structure and M is called
a Sasakian manifold. For more details and background, we refer to the standard
references [1], [8]. ) B
A plane section ¢ in T, M of a Sasakian manifold M is called a @-section if it is
spanned by X and X, where X is a unit tangent vector field orthogonal to £. The
sectional curvature K(o) w.r.t. a @-section o is called a @-sectional curvature. If a
Sasakian manifold M has constant y-sectional curvature ¢, then it is called a Sasakian
space form and is denoted by M(c). 3
The curvature tensor R of a Sasakian space form M(c) is given by [1]:
~ c+3
RXYV)Z = S5V 2)X - g(X,2)Y )+
c—1
+ (n(XM(2)Y =n(Y)n(Z)X + g(X, Z)n(Y)E = g(Y, Z)n(X)&+
+ 9(0Y, D)X — g(¢X, Z)pY —29(pX,Y)pZ),

for any tangent vector fields X,Y, Z to M(c).

An n-dimensional submanifold M of a Sasakian space form M(c) is called a
C—totally real submanifold if £ is a normal vector field on M. A direct consequence
of this definition is that ¢(T'M) C T+ M, i.e. that M is an anti-invariant submanifold
of M(c), (hence their name of ”contact”-totally real submanifolds); see e.g. [6].

As examples of Sasakian space forms we mention R*™* and S, with standard
Sasakian structures.
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If M is a Riemannian n—manifold isometrically immersed in a Euclidian m—space
E™, one may consider extrinsic invariants as well as intrinsic invariants on M .

Let M be an n-dimensional Riemannian manifold. Denote by K (m) the sectional
curvature of the plane sectionm C T,M , p € M. For any orthonormal basis {eq, ..., e, }
of the tangent space T}, M, the scalar curvature T at p is defined by

T= Z K(e; Nej) .

1<i<j<n

Let p € M and {eq, ...,e,} an orthonormal basis of the tangent space T,M. We
denote by H the mean curvature vector, that is

1
H(p) = n Z h(e;, e;)
Also, we set

hy; = g(hleies)ien),  IRIP =7 g(hlei e;), hleie).

i,j=1

3 Main results

Theorem 1. If M™ is a C-totally real submanifold of a Sasakian space form MQ"H(C),
then the mean curvature H and the scalar curvature T of M satisfy

(31 i > Zrt - (1E2) (22,

Moreover the equality sign holds if and only if, with to respect an adapted frame
field ex, ..., €n, €14, ooy €ns, €211 = § with e1. parallel to H , the second fundamental
form of M™ in M?*"*1(c) takes the following form:

h(ei,e1) = 3Xe1s, hlea,e2) =...=h(en, en) = Nex,

hiei,ej) = Xejx  h(ej,er) =0, 2<j#k<n,

with A € C>*(M). )
Proof. Let M™ be a C-totally real submanifold of a Sasakian space form M?2"+1(c),
and eq, ..., €n, €14, .., Enx, €2nt1 = € a local adapted frame field on M™.

Put hjy, = g (h(ej, ex), eix).

Then, by

(3.2) AoxY = —ph(X,Y) = Agy X VX,Y € I(TM),

we have
he, = hy, = hi;, .5, k=1,..,n.

From the definition of the mean curvature function we have
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n2[HP =30 Y ()" + 2> i,

% J i<k
From the equation of Gauss we have

c+3 c+3 = i\2
2T:n(n—1)< 0 >+n2|H||2—||h2:n(n—1)< I >+n2 IH?= > (hiy)"

6,4, k=1

Thus, by applying precedent relations, we obtain

P () S S - Y 065 T 06

i j<k i#£] i<j<k

2
Let m = nte . Then, we get
n—1

n? |H|? — m<2rn(n1)(‘313))_Z(h;ii)2+(1+2m)2(h;‘.j)2+

i i#j

+o6m Y (W) —2m—1)>" S hih, =

i<j<k i j<k
= Z (hiz)Q + 6m Z (’%)2 + (m — 1)22 (h%; — Zk)Z +

7 i<j<k i j<k
o4 2m— (n=2)(m 1)) (k)" —2(m —1) Y hishi; =

J#i J#i
= 6m Y (h) 4 (m=1) Y 3 (bl — hig)
i<j<k i#£j,kj<k

1 ) )

+ g > (W= (= 1)(m = D) 2 0
J#i

which implies inequality (3.1). We see that the equality sign of (3.1) holds if and only
if hi; = 3hy;,hY, = 0, for distinct i, j, k. In particular, if choose ei,...,e, in such
way that pe; is parallel to the mean curvature vector H, we also have hik = 0 for
i>Lk=1,..,n.

O
Theorem 2. Let i : M" — R*" ™! be a C-totally real isometric immersion satisfying

the equality case

2(n+2)

(3.3) |H|? = 2n—1)"

Then either M 1is a totally geodesic submanifold and hence M is locally isometric
to the real space R™ or the set U of non-totally geodesic points in M is a dense subset
of M, U is an open portion of a S™ Withney sphere with a > 1 and, up to rigid
motions of R* Y, the immersion i is given by W, where @ : S — R*" " is the
immersion lifted from the Whitney immersion.
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2

") JHP =i a

n—2
well-defined function on M. If the function ¢ vanishes identically, then M is a totally
geodesic submanifold of R*" . So, for simplicity, we may assume from now on that
M is non-totally geodesic, i.e. ¢ # 0. Thus, U = {p € M | ¢(p) # 0} is a non-empty
open subset of M.

Let w!,...,w™ denote the dual 1-forms of ey, ...,e, and denoted by (wg), A, B =
1,...,n, 1%, ...n%,2n + 1, the connection forms on M defined by

n n n n

Ve — J J* \V/ — J J* P

Ve; = g wje; + E Wy €jx, Ve = g w;,. e + g Wi, s, 1 =1,...,n,
Jj=1 Jj=1 Jj=1 Jj=1

Proof. It follows from Theorem 1 that the function ¢ =

where w; = —w}, w;, = —wj

For a C-totally real submanifold M™ of a R?" ™!, (3.2) yields
Wit =wlt Wl =W, W= Zh;kwk.
k=1

We find

(3.4) wi* =3t Wi = A Wi =l wé-* =0,2<i#j<n.

By applying the equation of Codazzi, we obtain

(3.5) etd = wi(es) = ... = Ml (en), el =..=e,\=0,

(3.6) wiler) =0, 1<j#k<n.
By precedent formulas yield
(3.7) W =ey(InMNw’, j=2,..,n

From Cartan’s structure equations and (3.7) we get dw! = 0 and V., e; = 0.

Therefore, we have the following
Lemma 3. On U, the integral curves of oH (or, equivalently, of e1) are geodesics
of M.

Let D denote the distribution spanned by @H and D+ denote the orthogonal
complementary distribution of D on U. Then D and D+ are spanned by {¢H} and
{ea,...,en}, respectively.

By using (3.6) we obtain the following.

Lemma 4. On U, the distributions D and D+ are both integrable.
Proof. For any j,k > 1, (3.6) implies

<[€j7€k]>€1> = wi(ej) — w}(ek) =0

Thus, the distribution D' is completely integrable. The integrability of D is ob-
vious, since D is a 1-dimensional distribution.
Now, we give the following.
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Lemma 5. On U, there exist local coordinate systems {x1,...,x,} satisfying the
following conditions :
(a) D is spanned b {E} and D~ is spanned b {i i}
pa y 8x p y aIQ )y axn )
(b) 61:% 7w1:dx7

n
(c) the metric tensor g takes the form : g = dx®+ Z gik(x, x2, ..., xn)dxdzy,
Gok=2
where T = 7.
Proof. It is well-know, that there exists a local coordinate systems {yi,...,y,} such

0
that e; = e Since D™ is completely integrable, there also exists a local coordinate
Y1
0 0 N
systems {z1, ..., zp } such that —,.., — span D—. Put x = 21 = y1 22 = 22, ..., Ty, =
822 8Zn

Zn, then {z1,...,2,} is a desired coordinate system.

(3.5) and Lemma 5 imply that A depends only on = = z, i.e. A = A(z). Let X
and )\’ denote the first and second derivates of A with respect to z.
Lemma 6. On U, the function A satisfies the following second order ordinary differ-
ential equation:

d?\

3.8 ——+2X*=0
(3.8) prol
Proof. By taking the exterior differentiation of (3.7) and using (3.4), (3.7) and Car-
tan’s structure equations, we find

(InN)” 4 (In \)? = —2)?

which is equivalent to (3.8).
Lemma 7. The solution of the second order ordinary differential equation (3.8) are
given by

sin(t(z) + b)

(3.9) Mz) =~ ay/1+ cos2(t(z) + b)

)

where t(x) is the inverse function of x(t) defined by

(3.10)

t
/ adu

xTr =
J /14 cos?(u + b)

and a and b are constants with a >0 and 0 < b < 2m.
Proof. (3.10) implies that x(¢) is a strictly increasing differentiable function of t.
Thus, = z(t) has an inverse function, denoted by ¢t = ¢(z). From (3.10) we get
dt 1

(3.11) = g\/l + cos?(t(x) + b),

Thus by (3.9), (3.11), and chain rule, we find
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d\_ 2cos(t(z) +b)

dx a?(1 4 cos?(t(x) + b))
(312) X 2sin®(t(x) + b)

dr? T a3(1 4 cos2(t(x) + b))3

(3.9) and (3.12) imply that, for any a and b are constants with a« > 0 and 0 < b <

27, the function A given by (3.9) is a solution of the differential equation (3.8).
/ of 02

Let f = f(x,\,\) = —2)3. Then f, a—f\c, a—)\é are continous functions on the 3-
space R®. Thus, by Existence and Uniquenss Theorem of second ordinary differential
equation, the differential equation (3.8) together with the given initial conditions :
Axo) = Ao, A (zo) = Aj, has a unique solution.

Since for any two arbitrary constants A\, A{, we may find real number a and b with
a >0 and 0 < b < 27 which satisfy the following two conditions :

sin(t(xo) + b) B 2 cos(t(xzo) + b)
ay/1+ cos?(t(zo) + b) O a2(1 4 cos?(t(zo) + b)
therefore every solution of the differential equation (3.8) takes the form given by

3.10). The rigidy theorem of C-totally real immersions in R2n ! achieves the pI‘OOf.
giay Y
O

!
= )\07
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