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Abstract

In a paper by I. Hasegawa, K. Yamaguchi and H. Shimada, [2], it was proved
that the indicatrix bundle of a Finsler space F" = (M, L) has a natural almost
contact structure. On a different way, the same structure was found by M.
Anastasiei in [1]. Adopting the approach from [1] we prove that the indicatrix
bundle of F™ carries also an almost paracontact structure.
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1 Introduction

Let F™ = (M, L) be a Finsler space. Here M is a real C'™° manifold of dimension
n with local coordinates (z?), 4, j, k... = 1,...,n. For the tangent manifold TM with
the projection 7 over M we take the local coordinates (z° o 7,y*), where 3’ are the

components of a vector from T}, M, in the natural basis 0; = ——.
z

The function L : ToM : TM \ {0} — R is smooth, positively homogeneous of

, 1 0%L?
degree 1 with respect to y* and the matrix | g;;(x,y) = = =—%— | is of rank n. We
2 0y* oy’
. 0
set 0; = —.
oyt

The homogeneity of L implies
L2 (2,y) = g5 (2, 0)y'y’ = v’y for  yi = gijv/”.

The functions N (z,y) = %3j(’yéo), for vi, = ’y;k(x,y)yjyk and 7%, (z,y) the "gen-
eralized” Christoffel symbols, are the local coefficients of the nonlinear Cartan con-
nection. See [Ch. VIII, 4] for details. One considers a new local basis {d;,0;}, with
§; = 0;— NF(z,y)0k, on ToM. Its dual basis is (dz?, §y*) with 0y’ = dy’+ N} (z,y)dz*.
If we assume that the quadratic form g;;(z,y)£'¢7, € € R" is positive definite, then
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Gs = gij(@,y)da’ @ da? + g;i;(z,y)6y’ @ 6y’

is a Riemannian metric on Ty M.
The linear operator P given in the local basis by

(1.1) P(6;) =6;, P(0;) =0,
defines an almost product structure on Ty M and we have
(1.2) Gs(PX,PY)=Gs(X,)Y), XY € x(ToM).

Here x(TyM) is the module of vector fields on Ty M. The vector field C' = yd; is
called the Liouville vector field on TyM and S = y'J; is the geodesic spray of F™.

An almost paracontact structure on a manifold N is a set (¢,£,n), where ¢ is a
tensor field of type (1,1), & a vector field and 1 an 1-form such that

(1.3) n€) =1, () =0, nop=0, o> =+ — R,

where I denotes the Kronecker tensor field.

This structure generalizes as follows. One considers on a manifold N of dimension
(2n + s) a tensor field f of type (1,1). If there exists on N the vector fields (£,) and
the 1- forms (%) (o = 1,2, ...s) such that

(1'4) 770((55) = 6g’f<£a) = 0777(1 © f = Oan =1I- Zana ® gaa

then (f, (&), (n%)) is called a framed f(3,—1)- structure. The term was suggested by
the equation f2 — I = 0. This is in some sense dual to the framed f-structure which
generalizes the almost contact structure and which may be called a framed f(3,+1)-
structure. For an account of such kind of structures we refer to the book [3].

In the following (Section 2) we show that the slit tangent bundle Ty M of a Finsler
space carries a natural framed f(3, —1)- structure. The set I(M) = {(z,y) | L(z,y) =
1} is a (2n — 1)— dimensional submanifold of Ty M. In Section 3 we prove that the
framed f(3,—1)- structure on ToM induces on I(M) an almost paracontact structure.
We note that it was known that I(M) carries an almost contact structure [2], [1] but
only the approach from [1] allowed us to construct this almost paracontact structure.

2 A framed f(3,—1)- structure on Ty M

Let us put & := S = y'6; and & := C = 49;. By a direct calculation one finds (P is
the almost product structure (1.1)).
Lemma 2.1. P(&) = &1, P(&) = —&. We consider the 1- forms
Yi i Yi ¢ 4

= zdrt 0 = 750y
and we prove
Lemma 2.2. n' o P =n',n? 0 P = —n2. .
Proof. It is sufficient to check these equalities on the adapted basis (d;,9;). We have

(n* o P)(6;) = 0" (P(6;)) =n'(6;) and (' o P)(d;) =—n"(d;) =0.
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Then . .
(n* o P)(8;) =1*(8;) =0 and (1?0 P)(9;) = —n*(9y).

1
Let be G = ﬁGs a Riemannian metric which is conformal with Gg.

Lemma 2.3. n'(X) = G(X,&), n*(X) = G(X, &), VX € x(ToM).

Proof. Tt is sufficient to check these equalities on the basis (d;, ;). We have: n'(5;) =
— Y di%gjkyk and G(0;,61) = %Gs(éj,yk(sk) = %ykGS(dj,(Sk) = %ykgjk.
Further, '(d;) = 0 and G(9;,&,) = %Gs(éi,ykék) = 0. Similarly, one checks the

= 73
equation n?(X) = G(X, &).
O
Now we define a tensor field p of type (1,1) on ToM by

(2.1) p(X) = P(X) = 0" (X)& +n*(X)&, X € x(ToM).

This can be written in a more compact form as p = P — ' ® & + 1% ® &,.

Theorem 2.1. For the data (p, (&), (n%)), a = 1,2 the following hold
(i) n*(&) = 65, p(§a) =0, " op =0,
(ii) PP =1 —n' @& —n* @&, X € x(ToM),
(iii) p is of rank 2n — 2 and p*> — p = 0.
Proof. (i) follows easily from Lemmas 2.1, 2.2 and the formula (2.1). For (ii) we have
P*(X) = p(p(X)) = P(P(X) = 0" (X)& + n*(X)&) — n' (P(X) — n' (X)&+
+77(X)&) + 1 (P(X) — ' (X)& + n*(X)&2) = +X — ' (X)& — n*(X)&e,

the other terms vanish or cancel because of Lemmas 2.1, 2.2 and (i). Applying p to
the equality (i) and using again the Lemmas 2.1, 2.2 and (i) one gets p3 — p = 0.
From the second equation in (i) we see that the subspace span(&1, &) is contained in
Ker p. Let now X = X'6; + Y'9; € Kerp. On using (2.1),

i i 4 i Yi i Yi i Xty i i Yk \ iy g
p(X) = X0 =Y 0=(X' Z)e+Y e = (X - LQ’“)y 0= (Y =(YF )y )0, = 0
equivalent to
Xi — X'y yi— (kak)yqz.

2 ¥ E

Xy Yy

Hence X = T2 &+ 752 that is X belongs to span(&1,&2). In other words, Ker

p =span(&1,&). Thus rank p = 2n — 2.

|

1
Theorem 2.2. The Riemannian metric G = ﬁGS satisfies
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(2.2) G(pX,pY) = G(X,Y) —n' (X)n' (V) = *(X)n*(Y), X,Y € x(ToM).

Proof. Use (2.1) and Lemma 2.3 and Lemma 2.1 as well as G(&1,&1) =1, G(&2,&2) =
1, G(&1,&2) = 0 to obtain

G(pX,pY) = G(PX,PY) —n'(Y)G(PX,&1) + n*(Y)G(PX, &)~

N (X)G (&, PY) + 0 (X)n' (V) +7°(X)G(&, PY) + n*(X)* (V) =

= G(X,Y) = n'(V)n'(P(X)) + n*(Y)n*(PX) = 0! (X)n' (PY) + 7*(X)n*(PY)+
0t (X' (V) + n?(X)n?(Y) = GX,Y) = ' (X)n' (V) = n*(X)n*(Y)

Remark. In the local basis (d;,d;), we get

03 G(p(5:),p(5;)) = %(gij - B G0, p30) =0,
GG, ) = (o — B2,
Let us put
(2.4) h(X,Y) = G(pX,Y),X,Y € x(ToM).
We have

Theorem 2.3. The map h is a symmetric bilinear form on ToM of rank 2n — 2, with
the null space span(&y,&a).
Proof. h is bilinear since G is so. As for the symmetry we have

h(Y, X) = G(pY, X) = G(pY, p*X + 0" (X)&1 +n*(X)&) =

= GpY,p(pX)) + 1 (X)G(pY. &) +7*(X)G(pY. &) =

= G(pY.p(pX)) + ' (X)n'(PY) + n*(X)n*(PY) =

= G(Y,pX) — ' (Y)n' (pX) = n*(Y)n*(pX) = G(Y,pX) = h(X,Y).
Then we have h(£1,&1) = h(§2,62) = 0. Thus span(£;,€2) is contained in the null
space of h. Conversely, if X = X*; is such that (X, X) =0 < G(pX,X) =01t
results X = %51 and similarly, if X = Y9, is such that h(X,X) =0, it results
X = %52. Thus the null space of h is just span(&;,&2) and the proof is finished.

Remark. The map h is a singular pseudo-Riemannian metric on ToM. Locally it
looks as follows

yzy]

1 YiY; 1
h = ﬁ(gzj ])dx ® da’ — Iz (9i5 — 5-)0y" @ 6y,
with iy
rank (g;; — 22]) =n-1
since

(935 — L2J W =yi—yi=0 (y;9) =L%).
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3 An almost paracontact structure on the indicatrix
bundle of the Finsler space " = (M, L)

The indicatrix bundle of F™ is the submanifold
I(M) = {(z,y) € ToM | L(z,y) = 1}
of Ty M projected over M. It is well-known that & = y’d; is normal to I(M) and this

is unitary with respect to G since

1
G(&1,&) = ﬁylngij =1

We consider ToM with the Riemannian metric G and then I(M) appears as a
hypersurface of Ty M with normal vector field . We restrict to I(M) all the objects
introduced above and indicate this fact by putting a bar over the letters denoting
those objects. We have:

o & = ¢ since & is tangent to (M),

e 772 =0 on I(M) since n?(X) = G(X, &) = 0 for X € x(I(M)) ,
e G =Gy |1 because L? =1 on I(M),

o B(X) = P(X) — 7 (X)& for X € x(I(M)) .

e The map P is an endomorphism of the tangent bundle to I(M) since G(pX, &2) =
0.

We put & = €, 7' =7 and as a consequence of the Theorem 2.1 we get
Theorem 3.1. The triple (p,&,7) defines an almost paracontact structure on I(M),
that is,

(i) 7€) = 1,p(€) =0,70p =0,
(i) P*(X) = X —7(X)&, X € x(I(M))),
(iii) p> —p=0, rankp=2n—2=(2n —1) — 1.

Using the restriction to /(M) and the Theorem 2.2 one infers
Theorem 3.2. The Riemannian metric G satisfies

(3.1) G(PX,pY) = G(X,Y) =qn(X)n(Y), X, Y € x(I(M)).

From the last two theorems we see that the ensemble (p,&,7, G) defines an almost
metrical paracontact structure on I(M).
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