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Abstract

In a paper by I. Hasegawa, K. Yamaguchi and H. Shimada, [2], it was proved
that the indicatrix bundle of a Finsler space F n = (M, L) has a natural almost
contact structure. On a different way, the same structure was found by M.
Anastasiei in [1]. Adopting the approach from [1] we prove that the indicatrix
bundle of F n carries also an almost paracontact structure.
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1 Introduction

Let Fn = (M, L) be a Finsler space. Here M is a real C∞ manifold of dimension
n with local coordinates (xi), i, j, k... = 1, ..., n. For the tangent manifold TM with
the projection τ over M we take the local coordinates (xi ◦ τ, yi), where yi are the

components of a vector from TpM , in the natural basis ∂i =
∂

∂xi .

The function L : T0M : TM \ {0} → R+ is smooth, positively homogeneous of

degree 1 with respect to yi and the matrix
(

gij(x, y) =
1
2

∂2L2

∂yi∂yj

)

is of rank n. We

set ∂̇i =
∂

∂yi .

The homogeneity of L implies

L2(x, y) = gij(x, y)yiyj = yiyi for yi = gijyj .

The functions N i
j(x, y) =

1
2
∂̇j(γi

00), for γi
00 = γi

jk(x, y)yjyk and γi
jk(x, y) the ”gen-

eralized” Christoffel symbols, are the local coefficients of the nonlinear Cartan con-
nection. See [Ch. VIII, 4] for details. One considers a new local basis {δi, ∂̇i}, with
δi = ∂i−Nk

i (x, y)∂̇k, on T0M . Its dual basis is (dxi, δyi) with δyi = dyi+N i
k(x, y)dxk.

If we assume that the quadratic form gij(x, y)ξiξj , ξ ∈ Rn is positive definite, then
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GS = gij(x, y)dxi ⊗ dxj + gij(x, y)δyi ⊗ δyj

is a Riemannian metric on T0M .
The linear operator P given in the local basis by

(1.1) P (δi) = δi, P (∂̇i) = −∂̇i,

defines an almost product structure on T0M and we have

(1.2) GS(PX,PY ) = GS(X, Y ), X, Y ∈ χ(T0M).

Here χ(T0M) is the module of vector fields on T0M . The vector field C = yi∂̇i is
called the Liouville vector field on T0M and S = yiδi is the geodesic spray of Fn.

An almost paracontact structure on a manifold N is a set (ϕ, ξ, η), where ϕ is a
tensor field of type (1, 1), ξ a vector field and η an 1-form such that

(1.3) η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, ϕ2 = +I − η ⊗ ξ,

where I denotes the Kronecker tensor field.
This structure generalizes as follows. One considers on a manifold N of dimension

(2n + s) a tensor field f of type (1, 1). If there exists on N the vector fields (ξα) and
the 1- forms (ηα) (α = 1, 2, ...s) such that

(1.4) ηα(ξβ) = δα
β , f(ξα) = 0, ηα ◦ f = 0, f2 = I −

∑

α
ηα ⊗ ξα,

then (f, (ξα), (ηα)) is called a framed f(3,−1)- structure. The term was suggested by
the equation f3 − I = 0. This is in some sense dual to the framed f -structure which
generalizes the almost contact structure and which may be called a framed f(3, +1)-
structure. For an account of such kind of structures we refer to the book [3].

In the following (Section 2) we show that the slit tangent bundle T0M of a Finsler
space carries a natural framed f(3,−1)- structure. The set I(M) = {(x, y) | L(x, y) =
1} is a (2n − 1)− dimensional submanifold of T0M . In Section 3 we prove that the
framed f(3,−1)- structure on T0M induces on I(M) an almost paracontact structure.
We note that it was known that I(M) carries an almost contact structure [2], [1] but
only the approach from [1] allowed us to construct this almost paracontact structure.

2 A framed f(3,−1)- structure on T0M

Let us put ξ1 := S = yiδi and ξ2 := C = yi∂̇i. By a direct calculation one finds (P is
the almost product structure (1.1)).
Lemma 2.1. P (ξ1) = ξ1, P (ξ2) = −ξ2. We consider the 1- forms

η1 =
yi

L2 dxi, η2 =
yi

L2 δyi

and we prove
Lemma 2.2. η1 ◦ P = η1, η2 ◦ P = −η2.
Proof. It is sufficient to check these equalities on the adapted basis (δi, ∂̇i). We have

(η1 ◦ P )(δi) = η1(P (δi)) = η1(δi) and (η1 ◦ P )(∂̇i) = −η1(∂̇i) = 0.
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Then
(η2 ◦ P )(δi) = η2(δi) = 0 and (η2 ◦ P )(∂̇i) = −η2(∂̇i).

2

Let be G =
1
L2 GS a Riemannian metric which is conformal with GS .

Lemma 2.3. η1(X) = G(X, ξ1), η2(X) = G(X, ξ2),∀X ∈ χ(T0M).

Proof. It is sufficient to check these equalities on the basis (δi, ∂̇i). We have: η1(δj) =

=
yj

L2 = di
1
L2 gjkyk and G(δj , ξ1) =

1
L2 GS(δj , ykδk) =

1
L2 ykGS(δj , δk) =

1
L2 ykgjk.

Further, η1(∂̇i) = 0 and G(∂̇j , ξ1) =
1
L2 GS(∂̇i, ykδk) = 0. Similarly, one checks the

equation η2(X) = G(X, ξ2).
2

Now we define a tensor field p of type (1, 1) on T0M by

(2.1) p(X) = P (X)− η1(X)ξ1 + η2(X)ξ2, X ∈ χ(T0M).

This can be written in a more compact form as p = P − η1 ⊗ ξ1 + η2 ⊗ ξ2.

Theorem 2.1. For the data (p, (ξa), (ηa)), a = 1, 2 the following hold

(i) ηa(ξb) = δa
b , p(ξa) = 0, ηa ◦ p = 0,

(ii) p2 = I − η1 ⊗ ξ1 − η2 ⊗ ξ2, X ∈ χ(T0M),

(iii) p is of rank 2n− 2 and p3 − p = 0.

Proof. (i) follows easily from Lemmas 2.1, 2.2 and the formula (2.1). For (ii) we have

p2(X) = p(p(X)) = P (P (X)− η1(X)ξ1 + η2(X)ξ2)− η1(P (X)− η1(X)ξ1+

+η2(X)ξ2) + η2(P (X)− η1(X)ξ1 + η2(X)ξ2) = +X − η1(X)ξ1 − η2(X)ξ2,

the other terms vanish or cancel because of Lemmas 2.1, 2.2 and (i). Applying p to
the equality (ii) and using again the Lemmas 2.1, 2.2 and (i) one gets p3 − p = 0.
From the second equation in (i) we see that the subspace span(ξ1, ξ2) is contained in
Ker p. Let now X = Xiδi + Y i∂̇i ∈ Kerp. On using (2.1),

p(X) = Xiδi−Y i∂̇i−(Xi yi

L2 )ξ1+Y i yi

L2 ξ2 = (Xi− (Xkyk)
L2 yi)δi−(Y i−(Y k yk

L2 )yi)∂̇i = 0

equivalent to

Xi =
Xkyk

L2 yi, Y i =
(Y kyk)

L2 yi.

Hence X =
Xkyk

L2 ξ1 +
Y kyk

L2 ξ2 that is X belongs to span(ξ1, ξ2). In other words, Ker

p =span(ξ1, ξ2). Thus rank p = 2n− 2.
2

Theorem 2.2. The Riemannian metric G =
1
L2 GS satisfies
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(2.2) G(pX, pY ) = G(X, Y )− η1(X)η1(Y )− η2(X)η2(Y ), X, Y ∈ χ(T0M).

Proof. Use (2.1) and Lemma 2.3 and Lemma 2.1 as well as G(ξ1, ξ1) = 1, G(ξ2, ξ2) =
1, G(ξ1, ξ2) = 0 to obtain

G(pX, pY ) = G(PX, PY )− η1(Y )G(PX, ξ1) + η2(Y )G(PX, ξ2)−

−η1(X)G(ξ1, PY ) + η1(X)η1(Y ) + η2(X)G(ξ2, PY ) + η2(X)η2(Y ) =

= G(X,Y )− η1(Y )η1(P (X)) + η2(Y )η2(PX)− η1(X)η1(PY ) + η2(X)η2(PY )+

+η1(X)η1(Y ) + η2(X)η2(Y ) = G(X, Y )− η1(X)η1(Y )− η2(X)η2(Y )

2
Remark. In the local basis (δi, ∂̇i), we get

(2.3)
G(p(δi), p(δj)) =

1
L2 (gij −

yiyj

L2 ), G(p(δi), p(∂̇i)) = 0,

G(p(∂̇i), p(∂̇j)) =
1
L2 (gij −

yiyj

L2 ).

Let us put

(2.4) h(X, Y ) = G(pX, Y ), X, Y ∈ χ(T0M).

We have
Theorem 2.3. The map h is a symmetric bilinear form on T0M of rank 2n− 2, with
the null space span(ξ1, ξ2).
Proof. h is bilinear since G is so. As for the symmetry we have

h(Y, X) = G(pY, X) = G(pY, p2X + η1(X)ξ1 + η2(X)ξ2) =

= G(pY, p(pX)) + η1(X)G(pY, ξ1) + η2(X)G(pY, ξ2) =

= G(pY, p(pX)) + η1(X)η1(PY ) + η2(X)η2(PY ) =

= G(Y, pX)− η1(Y )η1(pX)− η2(Y )η2(pX) = G(Y, pX) = h(X,Y ).

Then we have h(ξ1, ξ1) = h(ξ2, ξ2) = 0. Thus span(ξ1, ξ2) is contained in the null
space of h. Conversely, if X = Xiδi is such that h(X, X) = 0 ⇐⇒ G(pX, X) = 0 it

results X =
Xkyk

L2 ξ1 and similarly, if X = Y i∂̇i is such that h(X, X) = 0, it results

X =
Y kyk

L2 ξ2. Thus the null space of h is just span(ξ1, ξ2) and the proof is finished.
Remark. The map h is a singular pseudo-Riemannian metric on T0M . Locally it
looks as follows

h =
1
L2 (gij −

yiyj

L2 )dxi ⊗ dxj − 1
L2 (gij −

yiyj

L2 )δyi ⊗ δyj ,

with
rank (gij −

yiyj

L2 ) = n− 1

since
(gij −

yiyj

L2 )yj = yi − yi = 0 (yjyj = L2).
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3 An almost paracontact structure on the indicatrix
bundle of the Finsler space F n = (M,L)

The indicatrix bundle of Fn is the submanifold

I(M) = {(x, y) ∈ T0M | L(x, y) = 1}

of T0M projected over M. It is well-known that ξ2 = yi∂̇i is normal to I(M) and this
is unitary with respect to G since

G(ξ1, ξ2) =
1
L2 yiyjgij = 1.

We consider T0M with the Riemannian metric G and then I(M) appears as a
hypersurface of T0M with normal vector field ξ2. We restrict to I(M) all the objects
introduced above and indicate this fact by putting a bar over the letters denoting
those objects. We have:

• ξ1 = ξ1 since ξ1 is tangent to I(M),

• η2 = 0 on I(M) since η2(X) = G(X, ξ2) = 0 for X ∈ χ(I(M)) ,

• G = GS |I(M) because L2 = 1 on I(M),

• p(X) = P (X)− η1(X)ξ1 for X ∈ χ(I(M)) .

• The map p is an endomorphism of the tangent bundle to I(M) since G(pX, ξ2) =
0.

We put ξ1 = ξ, η1 = η and as a consequence of the Theorem 2.1 we get
Theorem 3.1. The triple (p, ξ, η) defines an almost paracontact structure on I(M),
that is,

(i) η(ξ) = 1, p(ξ) = 0, η ◦ p = 0,

(ii) p2(X) = X − η(X)ξ,X ∈ χ(I(M))),

(iii) p3 − p = 0, rank p = 2n− 2 = (2n− 1)− 1.

Using the restriction to I(M) and the Theorem 2.2 one infers
Theorem 3.2. The Riemannian metric G satisfies

(3.1) G(pX, pY ) = G(X, Y )− η(X)η(Y ), X, Y ∈ χ(I(M)).

From the last two theorems we see that the ensemble (p, ξ, η, G) defines an almost
metrical paracontact structure on I(M).
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