On Finslerian Hypersurfaces Given by #-Changes

Masashi Kitayama

Abstract

In 1984 C.Shibata has dealt with a change of Finsler metric which is called
a (-change of metric [12]. For a 3-change of Finsler metric, the differential one-
form B play very important roles. In 1985 M.Matsumoto studied the theory of
Finslerian hypersurfaces [6]. In there various types of Finslerian hypersurfaces
are treated and they are called a hyperplane of the 1st kind, a hyperplane of the
2nd kind and a hyperplane of the 3rd kind.

The purpose of the present paper is to give some relations between the orig-
inal Finslerian hypersurface and another Finslerian hypersurface given by the
[B-change of Finsler metrics under certain conditions.

The terminology and notations are referred to the Matsumoto’s monograph
[8].
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1 Preliminaries

Let M™ be an n-dimensional smooth manifold and F™ = (M™, L) be an n-dimensional
Finsler space equipped with a fundamental function L(z,y) on M™. Then the metric
tensor g;;(z,y) and Cartan’s C-tenson Cj;i(z,y) are given by

(1.1) gi; = (0°L?/0y'0y’) /2,  Ciji = (9g:5/0y") /2,

and we can introduce in F™ the Cartan connection CT' = (F;’; , N%;,C;%) ).

A hypersurface M™~! of the underlying smooth manifold M™ may be parametri-
cally represented by the equation 2° = z%(u®), where u® are Gaussian coordinates on
M™~! and Greek indices run from 1 to n-1. Here, we shall assume that the matrix
consisting of the pojection factors B, = dz*/0u® is of rank n-1. The following nota-
tions are also employed : Bl ; := 9%z'/0u®du’, Bi, := v*Blg, By = B.Bg’. ...
If the supporting element y° at a point (u®) of M™! is assumed to be tangential to
M"~1, we may then write y* = B (u)v®, so that v® is thought of as the supporting
element of M"~! at the point (u®). Since the function L(u,v) := L(x(u),y(u,v))
gives rise to a Finsler metric of M"~!, we get an (n-1)-dimensional Finsler space
Fr=t = (M" 1, L(u,v)).

Batkan Journal of Geometry and Its Applications, Vol.7, No.2, 2002, pp. 49-55.
(© Balkan Society of Geometers, Geometry Balkan Press 2002.




50 M. Kitayama

At each point (u®) of F"~! the unit normal vector N%(u,v) is defined by
(12) g”B;N] :0, ngN’LNj = 1.

If (BY

70

N;) is the inverse matrix of (B!, N*), we have

(1.3) BB’ =6f, BIN;=0, N'B¥=0, N'N;=1,
and further

(1.4) BLB{ + N'N; = 6.

Making use of the inverse matrix (g*?) of (gag), we get BY = gaﬁgingj, N; = g;jN7.
For the induced Cartan connection ICT' = (Ng, Fz*,,Cs%, ) on F=1 the second
fundamental h-tensor H,g and the normal curvature vector H, are given by

— N.(R? K Jk
(1.5) Hop := Ni(Byg + Fy'v Bg) + MaHp,
Hq := Ni(Bj, +N';Bj),
where M, = ijkBgNij and Béa = Bfm vB.
Contracting Hgo by v?, we immediately get

(1.6) Hoo == Hpov? = H,.

Further we have put

(L7)  Map = Cij BIAN", Qap = Ciji 0BLANY, Qapy = CijupBLlL.
The Gauss equation with respect to ICT is written as

Rapys = RijenBLhhs + Pijen(BEHs — BYH,) BN+

(1.8)
+  (HayHps — HasHpy ).

2 Hypersurfaces given by the 3-change of a Finsler
metric

Let F™* = (M™, L) be an n-dimensional Finsler space with a fundamental function
L(z,y). For a differential one-form 3(z,dx) = b;(x)dz® on M"™, we shall consider a
change of Finsler metric which is defined by L(z,y) — L(z,y) = f(L(x,y), 8(z,v)),
where f(L, ) is a positively homogeneous function of L and (3 of degree one. This is
called a 3-change of the metric. Then we can introduce in F* = (M", L) the Cartan
connection CT' = (F}% , N%;, C;%)) from a (B-change of the metric.
For the later use, we prepare here the following two lemmas.
Lemma 1 (Shibata[12]). If the covariant vector b;(x) is parallel with respect to the
Cartan connection CT on F", the difference tensor D;'y (:= F;'x — F;'}) vanishes.
This lemma leads us to N} = N*; from D'; = NI — N'; = D;’). y* = D;"0.
Lemma 2 (Shibata[12]). Assume that the covariant vector b;(x) is parallel with
respect to the Cartan connection CT on F™. Then the h-curvature tensor Ry’ (x,y)
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of F™, obtained from F™ by the (B-change, vanishes if and only if the h-curvature
tensor Ry'ji(x,y) of F™ vanishes.

We now consider a Finslerian hypersurface F"~! = (M"~!, L(u,v)) of F™ and
another Finslerian hypersurface F"~1 = (M", L(u,v)) of the F™ given by the (-
change. Let N' be a unit normal vector at each point of F"~! and (B, N;) be the
inverse matrix of (B%, N*%). The functions B’ (u) may be considered as components
of n-1 linearly independent vectors tangent to F”~! and they are invariant under the
(-change. And so a unit normal vector N*(u,v) of F*~! is uniquely determined by

(2.1) gijBiN7 =0,  g,;N'N =1.

The fundamental tensor g;; = (02°L?/dy'dy’)/2 of the Finsler space F" given by
a (-change is as follows [12]:

(2.2) Gij(z,y) = pgij(z,y) + pobib; + p_1(biy; + bjys) + P—2vsy;,
where we put p = ffr/L

po = ffas+ f5°, p_1=(ffrs+ fLfs)/L,
p—2=(ffrr+ fu* — ffr/L)L?

and subscripts L, 8 denote partial differetiations by L, 8 respectively. Now contracting
(1.2) by v*, we immediately get

(2.3)

(2.4) yiNi =0.

Further contracting (2.2) by N*N7 and paying attention to (1.2) and (2.4), we have
(2.5) 9ij N'N7 = p + po(biN")?.

Then we obtain

(2.6) Gij(EN'/V/p+ po(biN)2)(£N? [/p +po(b:iN')?) = 1,

provided p + po(b;N?)? > 0. Therefore we can put

(2.7) N' = N'/\/p+po(b:NY)2,

where we have chosen the sign ”+” in order to fix an orientation.
Using (1.2) and (2.4), the first condition of (2.1) gives us

(2.8) (b:N")(pob; BL, + p_1y; B) = 0.

Now, assuming that pobng; + p,lijg; = 0 and contracting this by v®, we find
pof + p—1L? = 0. By (2.3) this equation lead us to ffs = 0, where we have used
Lfrg+ Bfss =0 and Lfr + Bfg = f owing to the homogeneity of f. Thus we have
fa = 0 because of f # 0. This fact means L = f(L) and contradicts the definition of
a [-change of metric. Consequently (2.8) gives us

(2.9) b; N =0.
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Therefore (2.7) is rewritten as

(2.10) N'=N/VE  (p>0),

and then it is clear N? satistifies (2.1). Summarizing the above, we obtain
Theorem 2.1. For a field of linear frame (Bi,... B! |, N%) of F", there exists a
field of linear frame (Bi,...,B._;,N'" = N'/\/p) of the F" given by the (3-change
such that (2.1) is satisfied along F"~', and then we get (2.9).

The quantities B¢ are uniquely defined along F™~1 by
(2.11) B% = g*Pg,; By,

where (g°?) is the inverse matrix of (gas)-

Let (B#, N;) be the inverse matrix of (B%, N*), and then we have
(2.12) BB’ =% BN, =0, N'B} =0, N'N, =1,
and further
(2.13) B.B{ + N'N; = §';.

We also get N; = gi; N7, that is,
(2.14) N; = /BN;.

If each path of a hypersurface F”~! with respect to the induced connection is also
a path of the ambient space F™, then F”~! is called a hyperplane of the first kind. A
hyperplane of the 1st kind is characterized by H, = 0.

From (1.5), (2.14) and Lemma 2, we have H, = \/pH,. Thus we obtain
Theorem 2.2. Let b;(x) be parallel with respect to CT on F™. Then a hypersur-
face F™"~' is a hyperplane of the 1st kind, if and only if the hypersurface F*~1 is a
hyperplane of the 1st kind.

If each h-path of a hypersurface F™~! with respect to the induced connection is
also an h-path of the ambient space F", then F"! is called a hyperplane of the
second kind. A hyperplane of the 2nd kind is characterlized by Hnp = 0.

From (1.5), (1.6), (2.14) and Lemma 2, we obtain
Theorem 2.3 Let b;(x) be parallel with respect to CT' on F™.Then a hypersurface
F"=1 is a hyperplane of the 2nd kind, if and only if the hypersurface F"~' is a
hyperplane of the 2nd kind.

As to the torsion tensor Cyjj, of F™, Shibata [12] gave:

(2.15) Cijk. = pCijk + p—1(hijmy + hjpm; + hxim;)/2 + pogmim;imy. /2,
where we put

(2.16) m; = b; — By ) L*.

Using (2.4) and (2.9), we easily get

(2.17) m;N* = 0.
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As for the angular metric tensor h;; = gi; — l;l;, (1.2) and (2.4) yield
(2.18) hi; BLN? = 0.

Contracting (2.15) by ijﬂN’“, (2.17) and (2.18) lead to

(219) éljkBgﬁNk :pC”kB;JﬂNk

On using (1.7) and (2.10), (2.19) is rewritten as

(219) Maﬁ = \/ﬁMaﬁ‘

If the unit normal vector of F™~! is parallel along each curve of F»~! then F"~!
is called a hyperplane of the third kind. A hyperplane of the 3rd kind is characterized
by Haﬁ = Maﬁ =0.

Thus, from Theorem 2.3 and (2.20), we obtain
Theorem 2.4. Let b;(z) be parallel with respect to CT on F™. Then a hypersur-
face F"~1 is a hyperplane of the 3rd kind, if and only if the hypersurface F"~! is a
hyperplane of the 3rd kind.

Taking account of Lemma 1, as to BT we have [6]

(2.21) G, = B} A},

where A% = Bjj_ + GjikBé]fY. Now using (1.4), then (2.21) becomes

(2.22) b, = BiGg’y + N'N, A}y,

Since Lemma 1 leads to flim = Aiﬁw we immediately get

(2.23) 4%, = B AL,

On substituting (2.22) in (2.23) and paying attention to (2.10) and (2.12), we find
G3®y = Gg“~. Thus we obtain

Theorem 2.5. Let b;(x) be parallel with respect to CT on F™. Then a hyperplane
Fn=1 of the 1st kind is a Berwald space, if and only if the hyperplane F™~1 of the 1st

kind is a Berwald space.
Paying attention to Lemma 1, as to CT the (v)hv-torsion tensor is written as

(2.24) P, = B{K},

where K := P} B®. On using (1.4), then (2.24) becomes
(2.25) K}, = BiP’3, + N'N, K},
Lemma 2 gives us Kﬁiﬁ = K}, and then we immediately obtain
(2.26) Pg = BYK},,.

On substituting (2.25) in (2.26) and taking account of (2.10) and (2.12), we find
Pg., = P%g,. Thus we obtain
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Theorem 2.6. Let b;(x) be parallel with respect to CT' on F™. Then a hyperplane
Fn=1 of the 1st kind is Landsberg, if and only if the hyperplane F™"~1 of the 1st kind
1s Landsberg.

From (1.8) the Gauss equation of hyperplane of the 1st kind is rewritten as

(2.27) Rapys = RijinBies + (Hoy Has — HasHy).

Then Lemma 2 and H,z = /PHup give us the following.
Theorem 2.7. Let b;(x) be parallel with respect to CT on F™. Then the curvature
tensor Ragys of a hyperplane F"~1 of the 1st kind of F™ with R;jkn, = 0 vanishes, if
and only if the curvature tensor Ropys of the hyperplane F"=1 of the 1st kind of F™
with Rijkh = 0 vanishes.

Further Theorem 2.5 and Theorem 2.7 immediately give
Theorem 2.8. Let b;(x) be parallel with respect to CT on F™. Then a hyperplane
F"=1 of the 1st kind of F™ with Rijrn, = 0 is a locally Minkowski space, if and only
if the hyperplane F"~' of the 1st kind of F™ with Rijkh = 0 s locally Minkowskian.
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