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Abstract

The aim of this paper is to give a positive answer to the following question
concerning the Hamiltonian submanifolds: for a given Hamiltonian, does it exist
a section of the projection of cotangent bundles, which depends only on the
Hamiltonian?
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A natural question concerning Hamiltonian submanifolds arises from [13, 14], as
follows. Let i : M ′ → M be an immersion of a submanifold M ′ and i∗ : T ∗M → T ∗M ′

be the co-differential of i. The study of the induced geometrical objects on T ∗M ′,
which arise from a Hamiltonian H : T ∗M → R on M , is performed in [13, 14]
considering a pair (i, ĩ), where ĩ is an arbitrary section of i∗, i.e., ĩ : T ∗M ′ → T ∗M ,
i∗ ◦ ĩ = idT∗M ′ . The aim of this paper is to show that a natural distinguished section
ĩ exists and it depends only on the Hamiltonian H. It implies that, under natural
conditions, the Hamiltonian H on the manifold M induces the Hamiltonian H ′ = H◦ ĩ
on the submanifold M ′. This construction is performed in a different way in [8], using
the Lagrangian and the Hamiltonian formalisms.

In the first section we recall briefly some classical results used in the paper, con-
cerning Legendre transformations. In the second section we construct explicitly the
section ĩ, using the Legendre transformation as an essential ingredient.

1 Lagrangians, Hamiltonians and the Legendre
transformations in the classical case

This section contains some classical results concerning the Lagrangian and the Hamil-
tonian formalisms, underlying the role of the Legendre transformations. We refer to
[26] for the Legendre transformation in a very general setting and to [8] for examples
and further constructions concerning mechanical systems.

Let M be a smooth manifold. A Lagrangian (a Hamiltonian) on M is a continuous
function L : TM → R (H : T ∗M → M) which is smooth on TM∗ = TM\{0} (on
T ∗M∗ = T ∗M\{0}), i.e. TM∗ (T ∗M∗) is the total space of the tangent (cotangent)
bundle less the image of the null section.
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We consider local coordinates (xi) on M , (xi, yj) on TM and (xi, pk) on T ∗M
(i, j, k, . . . = 1,m, m = dim M), which are adapted to the vector bundle structures.

Consider now a Lagrangian L. The Legendre transformation associated with L is
the function L : TM∗ → T ∗M∗, defined by

L
(

Xi ∂
∂xi

)

= Xi ∂L
∂yi .

It can be regarded as well as defined on each fibre of TM∗ by L =
∂L
∂yj dxj . The local

form of the Legendre transformation L is

(xi, yj) →
(

xi,
∂L
∂yj

)

.(1)

Notice that L is a fibered manifold morphism, but, in general, it fails to be a vector
bundle morphism.

We recall that a Lagrangian L is regular if the vertical Hessian
(

∂2L
∂yi∂yj (xi, yj)

)

1≤i,i≤m

is non-degenerate in every point on TM∗ which has the coordinates (xi, yj). Taking
into account of the local form of the Legendre transformation, it follows:

Proposition 1.1 The Lagrangian L is regular iff its Legendre transformation L is a
local diffeomorphism. If it is the case, then L induces local diffeomorphisms on each
fibers.

Definition 1.1 We say that the Lagrangian L is L-regular if its Legendre transfor-
mation L is a global diffeomorphism of TM∗ on T ∗M∗.

Consider now a Hamiltonian H. The Legendre∗ transformation associated with H
is the function H : T ∗M∗ → TM∗ defined by

H
(

ωidxi) = ωi
∂H
∂pi

.

It can be regarded as well as defined on each fibre of T ∗M∗ by H =
∂L
∂pi

∂
∂xi . The

local form of the Legendre∗ transformation H is

(xi, pj) →
(

xi,
∂H
∂pj

)

.(2)

Notice that H is a fibered manifold morphism, but, in general, it fails to be a vector
bundle morphism.

In an analogous way, we say that a Hamiltonian H is regular if the vertical Hes-

sian
(

∂2H
∂pi∂pj

(xk, pl)
)

1≤i,i≤m
is non-degenerate in every point on T ∗M∗ which has

the coordinates (xi, pj). Taking into account of the local form of the Legendre∗ trans-
formation, it follows:
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Proposition 1.2 The Hamiltonian H is regular iff its Legendre∗ transformation H
is a local diffeomorphism. If this is the case, then H induces a local diffeomorphism
on each fiber.

Definition 1.2 We say that the Hamiltonian H is H-regular if its Legendre∗ trans-
formation H is a global diffeomorphism of T ∗M∗ on TM∗.

The link between the Lagrange and Hamilton geometry is given by:

Proposition 1.3 a) If L : TM → R is an L-regular Lagrangian, then H = (Z(L)−
L) ◦ L−1 is an H-regular Hamiltonian on T ∗M , where Z ∈ X (TM) is the Liouville
vector field and L : TM → T ∗M is the Legendre transformation.

b) If H : T ∗M → R is an H-regular Hamiltonian, then L = (Ξ(H) − H) ◦ H−1

is an L-regular Lagrangian on T ∗M , where Ξ ∈ X (T ∗M) is the Liouville vector field
and H : T ∗M → TM is the Legendre∗ transformation.

Proof. We prove only b), since a) is analogous. We denote K = H−1. Using local
coordinates, it follows that K has the local form (xi, yj) → (xi,Kj(xk, yl)). The
condition K ◦ H = idT∗M∗ gives

Kj(xi,Hj(xk, pl)) = pj ,(3)

where Hj(xk, pl) =
∂H
∂pj

(xk, pl). Differentiating with respect to pi the relation (3), it

follows that
∂Kj

∂yk (xi,Hj(xk, pl))·
∂Hk

∂pi
(xk, pl) = δi

j , or
∂Kj

∂yk (xi,Hj(xk, pl)) ·hik = δi
j ,

where hik =
∂2H

∂pi∂pk
. Denote (hij) = (hij)−1. Then

∂Kj

∂yi (xi,Hj(xk, pl)) = hij(xk, pl) .(4)

The Liouville field has the local form Ξ = pi
∂

∂pi
. Using the definition of L it

follows
L(xi, yj) = Kk(xi, yj)

∂H
∂pk

(xi,Kj(xi, yj))−H(xi,Kj(xi, yj)).

We have
∂L
∂yi =

∂Kj

∂yi

∂H
∂pj

+ Kj
∂Kk

∂yi

∂2H
∂pk∂pj

− ∂Kj

∂yi
∂H
∂pj

= Kj
∂Kk
∂yi

∂2H
∂pk∂pj

= Kjhikhkj =

Ki, thus, using (4), we have
∂2L

∂yi∂yj =
∂Kj

∂yi = hij . It follows

∂2L
∂yi∂yj (xi, yj) = hij(xi,Kj(xi, yj)).

2
In the particular case of a Finsler metric on M (i.e. the Lagrangian L is 2-

homogeneous), we have Z(L) = 2L, thus, in this case, H = L ◦ L−1. A similar
result is obtained for a 2-homogeneous Hamiltonian on M . In this case Ξ(H) = 2H,
thus L = H ◦ H−1.
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2 Subspaces of Hamilton spaces

Besides the theory of Lagrange and Finsler submanifolds, which is studied by many
authors, (see the Bibliography), an attempt to study the Hamilton submanifolds is
performed in [13, 14], using an arbitrary section of the natural projection of the
cotangent bundles. Here we show that there is a distinguished section, which depends
only on the Hamiltonian.

Let M ′ ⊂ M be a submanifold and H : T ∗M → R be a regular Hamiltonian.
Without loss of generality we can suppose that H is H-regular, thus the Legendre∗

transformation H : T ∗M∗ → TM∗ is a diffeomorphism. We denote by K = H−1 :
TM∗ → T ∗M∗ the inverse of the Legendre∗ transformation. Let i : TM ′∗ → TM∗ be
the submanifold inclusion.

We consider the local coordinates (xi) = (xu, xū) on M , (xi, yj) = (xu, xū, yv,
yv̄) on TM and (xi, pk) = (xu, xū, pv, pv̄) on T ∗M ( i, j, k, . . . = 1,m, m = dim M ,
u, v, . . . = 1, m′, ū, v̄, . . . ∈ m′ + 1,m, m′ = dim M ′), which are adapted to the vector
bundle structures and to the submanifolds structures. Notice that the points in M ′

have as coordinates (xu, xū = 0), the points in TM ′ have as coordinates (xu, xū =
0, yv, yv̄ = 0) and the points in T ∗M ′ have as coordinates (xu, pu). The local form

of the Legendre∗ transformation H is (xi, pj) → (xi,
∂H
∂pj

(xk, pl) = Hj(xk, pl)). We

denote by (xi, yj) → (xi,Kj(xk, yl)) the local form of K. The local forms of the
inclusion i and of the canonical projection i∗ : T ∗M∗ → T ∗M ′∗ are (xu, yv) →
(xu, 0, yv, 0) and (xu, xū, pv, pv̄) → (xu, pv) respectively.

We have that WM ′ = K ◦ i(T ∗M ′∗) is a submanifold of T ∗M∗.

Proposition 2.1 The restriction of i∗ to WM ′, i∗|WM ′ : WM ′ → TM ′∗ is a diffeo-
morphism.

Proof. We have: K is a diffeomorphism, i∗ is a surjective submersion and i is an
injective immersion. The local form of i∗ ◦ K ◦ i is (xu, yv) → (xu,Kv(xu, 0, yv, 0)),
thus it is a local diffeomorphism. In fact i∗ ◦ K ◦ i is a diffeomorphism, since it sends
the fibre TxM ′∗ in the fibre TxM ′∗ for every x ∈ M ′ and K is a diffeomorphism, thus
i∗|WM ′ is also a diffeomorphism. 2

Taking into account of the local form of the Legendre∗ transformation and of the
local coordinates adapted to the submanifold M ′, it follows that the points of the
submanifold WM ′ have as coordinates (xu, 0, pv, Qv̄(xu, pv)) in TM∗, where

∂H
∂pū

(xu, 0, pv, Qv̄(xu, pv)) = 0,(5)

since the Legendre∗ transformation of the set of these points is a set included in
i(TM∗). Differentiating this equation with respect to pu, we get:

∂2H
∂pu∂pū

+
∂2H

∂pv̄∂pū
· ∂Qv̄

∂pu
= 0.

Denoting by hij =
∂2H

∂pi∂pj
, we suppose that the square matrix h̃ = (hūv̄)ū,v̄=m′+1,m

is non-degenerate; if this condition holds, we say that the Hamiltonian is non-
degenerate along the submanifold M ′ (notice that this condition automatically holds
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when the Hamiltonian defines a positive quadratic form). Considering the inverse
h̃−1 = (h̃ūv̄)ū,v̄=m′+1,m, it follows that

∂Qv̄

∂pu
= −huūh̃ūv̄.(6)

Denote by ĩ = i∗−1
|WM ′ : T ∗M ′∗ → WM ′ ⊂ T ∗M∗. Using the above constructions,

we obtain the following result.

Theorem 2.1 There is a section of i∗, namely ĩ, which depends only on H.

We define H ′ = H ◦ ĩ : T ∗M ′∗ → R and we consider the vertical Hessian of H ′:
(

∂2H ′

∂pu∂pv
(xt, pw)

)

u,v=1,m′

at every point of T ∗M ′∗.

Proposition 2.2 a) If the Hamiltonian H is non-degenerate along the submanifold
M ′, then the vertical Hessian of H ′ is also non-degenerate in every point of T ∗M ′∗.

b) If the Hamiltonian has a positive definite metric, then the vertical Hessian of
H ′ is also positive definite.

Proof. We use local coordinates. We have H ′(xu, pv) = H(xu, 0, pv, Qv̄(xu, pv)).
Using formula (5) it follows that

∂H ′

∂pu
(xu, pv) =

∂H
∂pu

(xu, 0, pv, Qv̄(xu, pv)).

Differentiating this formula with respect to pv, then using formula (6), we get:

∂2H ′

∂pv∂pu
=

∂2H
∂pv∂pu

+
∂Qv̄

∂pv

∂2H
∂pv̄∂pu

= hvu − hvūh̃ūv̄hv̄u.

We use now the following Lemma of linear algebra.

Lemma 2.1 Let A be a symmetric matrix of dimension p, B a symmetric and non-
degenerated matrix of dimension q and C a p × q matrix such that the symmetric

matrix
(

A C
Ct B

)

of dimension p + q is non-degenerate. Denote
(

A C
Ct B

)−1

=
(

X Z
Zt Y

)

, where X, Y and Z have the same dimensions as the matrices A, B and

C respectively.
Then the matrix A− C ·B−1Ct is invertible and its inverse is X.

Proof. We have
(

A C
Ct B

)

·
(

X Z
Zt Y

)

=
(

Ip 0
0 Iq

)

. Thus A ·X + C ·Zt = Ip

and Ct ·X+B ·Zt = 0. The second equality implies Zt = B−1 ·Ct ·X, then introducing
in the first equality we get (A−C ·B−1 ·Ct) ·X = Ip, thus the conclusion follows. 2
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Turning back to the proof of the Proposition 2.2, consider the matrix h = (hij) =
(

huv hūv

huv̄ hūv̄

)

. Using the Lemma, it follows that the matrix

(

huv − huūh̃ūv̄hv̄u
)

u,v=1,m′

is invertible and its inverse is (huv), where
(

huv hūv

huv̄ hūv̄

)

=
(

huv hūv

huv̄ hūv̄

)−1

. 2

If the inverse K of the Legendre∗ transformation of H can be extended to the
image of the null section of M ′, such that K becomes continuous, it follows that the
local functions (xu, pv) → Qv̄(xu, pv) becomes continuous, thus H ′ can be extended
continuously on the image of the null section of T ∗M ′.

Corollary 2.1 If the inverse K of the Legendre∗ transformation of H can be extended
to the image of the null section of M ′ such that it becomes continuous and if the
Hamiltonian H is non-degenerate along the submanifold M ′, then H ′ defines also a
Hamiltonian on M ′.

Finally we remark that H ′ can be obtained as in [8], in the following way. Consider the
Lagrangian L : TM → R defined by the Hamiltonian H and the induced Lagrangian
L′ : TM ′ → R on M ′. Let H′ : T ∗M ′∗ → TM ′∗ be the inverse of the Legendre trans-
formation determined by L′ and L : TM∗ → T ∗M∗ be the Legendre transformation
determined by L. It can be shown that ĩ = L◦ i∗ ◦H′, thus H ′ = H ◦ ĩ is the same as
the induced Hamiltonian obtained in [8]. The condition on H to be non-degenerate
along the submanifold M ′ reads to the condition that H′ exists.
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