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Abstract

We provide invariant formulas for the Euler-Lagrange equation associated
to sub-Riemannian geodesics. They use the concept of curvature and horizontal
connection introduced and studied in the paper.
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1 Introduction

The geodesic is a concept which comes from Riemannian geometry. It is the curve

with the minimum energy E =
∫ 1

0

1
2
|ċ(s)|2 ds between two given points. At least

two kind of constraints can be considered to act on the curve: holonomic and non-
holonomic. A holonomic constraint is when the energy is perturbed by a potential

U(c) and the energy becomes E =
∫ 1

0

(
1
2
|ċ|2 +U(c)) ds. The equation geodesic in this

case is ∇ċċ = −U ′(c).
The other kind of constraints are the nonholonomic ones (see [1], [8], [9]). These

are constraints on the velocity of the curve. The energy to be minimized is E =

=
∫ 1

0

(1
2
|ċ|2+ω(ċ)

)
ds. The paper deals with a presentation of the variational calculus

for the case when ω is a 1-form of type (1.1) such that (1.3) does not vanish. It is
said that these kind of sub-Riemannian manifolds are of step 2. They are also called
Heisenberg manifolds (see [2]). In general a sub-Riemannian manifold is said to be
of step k if k − 1 iterations need for the brackets of Xj in order to span the whole
tangent space.

In section 5 we shall deal with examples of sub-Riemannian manifolds of superior
type.

The idea of the paper is to consider the solutions of the Euler-Lagrange system
as geodesics in a certain connection with certain perturbation given by the curvature
tensor defined in section 2. Section 3 shows that the classical Hamilton-Jacobi equation
still holds if the gradient is modified into a horizontal gradient. The relationship
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between the symplectic and sub-Riemannian structures is pointed out in section 4.
Section 5 provides a few examples of sub-Riemannian manifolds and their geodesic
equations. Some of these equations were solved in [3,4,6].

Consider a nonintegrable 2-dimensional distribution x → Hx in R3 = R2
(x1,x2)×Rt

defined as H = ker ω, where ω is a 1-form on R3. The distribution H is called the
horizontal distribution. We shall assume the 1-form ω = ω1dx1 + ω2dx3 + ω3dt has
the coefficient ω3 6= 0 so that dividing by it we may assume

ω = −A1(x)dx1 + A2(x)dx2 + dt(1.1)

with A1 = −ω1, and A2 = ω2. One may verify that

ω(X1) = ω(X1) = 0

where
X1 = ∂x1 + A1(x)∂t , X2 = ∂x2 −A2(x)∂t(1.2)

The vector fields X1, X2 span the horizontal distribution H and they are called
horizontal vector fields.
Suppose the 2-form

Ω := dω =
(∂A1

∂x1
+

∂A2

∂x1

)
dx1 ∧ dx2(1.3)

does not vanish. Then

[X1, X2] = −
(∂A1

∂x1
+

∂A2

∂x1

)
∂t /∈ H(1.4)

and then H is not integrable, by Frobenius theorem.
Consider the positive definite metric g : H × H → F in which the vector fields
{X1, X2} are orthonormal. The metric g is called the sub-Riemannian metric defined
by the vector fields X1 and X2.
A curve s → c(s) = (x1(s), x2(s), t(s)) is called horizontal curve if ċ(s) ∈ Hc(s), for
every s. As

ċ(s) = ẋ1(s)∂x1 + ẋ2(s)∂x2 + ṫ(s)∂t

= ẋ1(s)X1 + ẋ2(s)X2 + ω(ċ(s))∂t

then c(s) is a horizontal curve iff

ω(ċ) = ṫ−A1(c)ẋ1 + A2(c)ẋ2 = 0(1.5)

The length of c with respect to the metric g is

l(c) =
∫ 1

0

√
g(ċ(s), ċ(s) ds =

∫ 1

0

√
ẋ1(s)2 + ẋ2(s)2 ds(1.6)

Given two points O and P there is at lest a horizontal curve connecting them (see
[5]). The Carnot-Carathéodory distance is defined as

dC(O, P ) = inf{l(c), c(0) = O, c(1) = P, c horizontal}(1.7)
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The horizontal curve with minimum length are called sub-Riemannian geodesics and
can be described using the Hamiltonian formalism as in the following (see [7]).
Consider the sub-elliptic operator

∆X =
1
2

(
X2

1 + X2
1

)
(1.8)

and define the Hamiltonian as the principal symbol of ∆X

H(x, t, ξ, θ) =
1
2

(
ξ1 + A1(x)θ

)2

+
1
2

(
ξ2 −A2(x)θ

)2

(1.9)

The projections on the (x, t)-space of the solution of the Hamilton’s system

ẋ = Hξ , ṫ = Hθ(1.10)

ξ̇ = −Hx , θ̇ = −Ht(1.11)

with the boundary conditions

x(0) = t(0) = 0 , x(1) = x, t(1) = t(1.12)

are called sub-Riemannian geodesics between the origin and (x, t).
From ṫ = Hθ we get

ṫ = A1ẋ1 −A2ẋ2(1.13)

i.e. the sub-Riemannian geodesics are horizontal curves.

2 Connection and curvature

The horizontal connection

The horizontal connection is defined as

D : H×H → H(2.14)

D(V, W ) = DV W =
∑

k=1,2

V g(W,Xk)Xk(2.15)

Proposition 2.1 D is a linear metric connection.

Proof. One needs to verify the Leibnitz rule

DV (fW ) = V (f)W + f DV W(2.16)

and the condition
Ug(V, W ) = g(DUV,W ) + g(V, DUW )(2.17)

For the first part,
DV (fW ) =

∑
V g(fW,Xk) Xk =

=
∑

V (f) g(W,Xk)Xk + f
∑

V g(W,Xk)Xk = V (f)W + fDV W
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To show the second part,

g(DUV, W ) + g(V, DUW ) =
= g

(∑
U g(V, Xi)Xi,W

)
+ g

(
V,

∑
U g(W,Xi)Xi

)
=

= g
(∑

U(V i)Xi,W
)

+ g
(
V,

∑
U(W i)Xi

)
=

=
∑

U(V i)W i +
∑

U(W i)V i = U
( ∑

V iW i
)

= U g(V, W )

where V =
∑

V iXi and W =
∑

W iXi.

Let Z = Z1X1 + Z2X2 be a horizontal vector field. The horizontal divergence is
defined as

divHZ = traceg(V → DV Z) =(2.18)
∑

k

g(Xk, DXk
Z) =

∑

k

(
Xk(Zj)Xj

)k

=
∑

k

Xk(Zk) =
∑

k

Xk g(Z, Xk).

Define also the X-gradient of a function f as

∇Xf =
∑

k

Xk(f) Xk.(2.19)

Then
1
2
divH∇X = ∆Xf(2.20)

The curvature tensor. Let K : H → H be given by

K(U) =
∑

k

Ω(U,Xk)Xk.(2.21)

K is F(R3)-linear and can be considered as a (1,1)-tensor of curvature.
The following result shows that K is skew-selfadjoint.

Proposition 2.2 For every U,W ∈ H

g
(
K(U),W

)
+ g

(
U,K(W )

)
= 0.(2.22)

Proof. We show first that

g
(
K(U),W

)
= Ω(U,W ),(2.23)

and using the skew-symmetry of Ω we get (2.22).

Indeed,

g
(
K(U),W

)
= g

( ∑

k

Ω(U,Xk)Xk,W
)

=

=
∑

k

g(Xk,W )Ω(U,Xk) = Ω(U,W ).
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Corollary 2.3 For any U ∈ H,

g
(
K(U), U

)
= 0.(2.24)

The last result suggests that in the case of a 2-dimensional distribution, the curvature
K is proportional with a rotation of angle π/2.
Define the rotation J : H → H as

J (X1) = X2 , J (X2) = −X1(2.25)

Then
K(X1) = Ω(X1, X2)X2 = Ω(X1, X2)J (X1)

K(X2) = Ω(X2, X1)X1 = Ω(X1, X2)J (X2)

We arrived at the following formula for the curvature

K(U) = Ω(X1, X2)J (U), ∀U ∈ H(2.26)

If the matrix Ωij is non-degenerate i.e.
(∂A1

∂x1
+

∂A2

∂x1

)
6= 0, then K(U) 6= 0 for U 6= 0.

If V is not a horizontal vector field then the curvature can still be defined using

K(V ) =
∑

k

Ω(V, Xk)Xk(2.27)

This is because the right hand side depends only on the horizontal part of V . Indeed,
consider the vector field

V = V 1∂x1 + V 2∂x2 + V 3∂t

A computation shows
V = V 1X1 + V 2X2︸ ︷︷ ︸

=VH

+ω(V )∂t

Then
Ω(V, Xk) = Ω(VH , Xk) + ω(V )Ω(∂t, Xk)︸ ︷︷ ︸

=0

Hence K(V ) = K(VH).

3 The Euler-Lagrange equation

The Legendre transform of the Hamiltonian (1.9) leads to the following Lagrangian

L(x, t, ẋ, ṫ) =
1
2
(ẋ2

1 + ẋ2
2) + θ(ṫ−A1(x)ẋ1 + A2(x)ẋ2),(3.28)

where θ is constant because
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θ̇ = −∂H

∂t
= −dH

dt
= 0.(3.29)

We deal now with a minimization problem with constraints given by

L(c, ċ) =
1
2
g(ċ, ċ) + θ ω(ċ)(3.30)

A computation shows the Euler-Lagrange system of equations

d

ds

∂L

∂ċ
=

∂L

∂c
, c = (x1, x2, t)(3.31)

becomes
ẍ1 = θ

(∂A1

∂x2
+

∂A2

∂x1

)
ẋ2(3.32)

ẍ2 = −θ
(∂A1

∂x2
+

∂A2

∂x1

)
ẋ1(3.33)

If the velocity of the geodesic is given by ċ(s) = ẋ1(s)X1 + ẋ2(s)X2, the system
(3.32)− (3.33) can be written as

ẍ1X1 + ẍ2X2 = θ
(∂A1

∂x2
+

∂A2

∂x1

)
(ẋ2X1 − ẋ1X2)(3.34)

The right hand side has the meaning of curvature. Indeed, using (2.25) and (2.26) the
right hand side of (3.34) yields

−θ Ω(X1, X2)J (ċ) = −θK(ċ).(3.35)

For the left hand side of (3.34) consider the acceleration defined by the horizontal
connection along ċ(s)

Dċċ =
∑

k

ċ g(ċ, Xk)Xk = ċ(ẋ1)X1 + ċ(ẋ2)X2 = ẍ1X1 + ẍ2X2.

Hence the Euler-Lagrange system of equations can be written globally as

Dċċ = −θK(ċ)(3.36)

In sub-Riemannian geometry the acceleration of the geodesics is equal to the curva-
ture. This keeps the geodesics into the horizontal distribution. Like in Riemannian
geometry, we have

Corollary 3.1 The length of velocity ċ in the sub-Riemannian metric g is constant.

Proof. Since D is a metric connection,

ċ g(ċ, ċ) = 2g(Dċċ, ċ) = −2θg(K(ċ), ċ) = 0,

by Corollary 2.3.
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The Hamilton-Jacobi equation.

Lemma 3.2 Let c(s) = (x1(s), x2(s), t(s)) be a horizontal curve and a smooth func-
tion f ∈ F(R3). Then

df

ds
=

∂f

∂s
+ g(ċ,∇Xf).(3.37)

Proof.

df

ds
=

∂f

∂s
+

∂f

∂x1
ẋ1 +

∂f

∂x2
ẋ2 +

∂f

∂t
ṫ =

=
∂f

∂s
+

(
X1f −A1(x)

∂f

∂t

)
ẋ1 +

(
X2f + A2(x)

∂f

∂t

)
ẋ2 +

∂f

∂t
ṫ =

=
∂f

∂s
+ (X1f) ẋ1 + (X2f) ẋ2 +

∂f

∂t
ω(ċ) =

∂f

∂s
+ g(ċ,∇Xf).

In the following we need to find the minimum of

I =
∫ τ

0

1
2
(ẋ1(s)2 + ẋ2(s)2) ds =

∫ τ

0

1
2
|ċ(s)|2g ds

over the horizontal curves c(s) with fixed ends.

Let S(x, t) ∈ F be the solution for the Hamilton-Jacobi equation

∂S

∂τ
+

1
2
|∇XS|2 = 0, S(O) = 0.(3.38)

Consider the integral

J =
∫ 1

0

1
2
|ċ(s)|2g ds− dS(3.39)

Using Lemma 3.2

J =
∫ τ

0

(1
2
|ċ(s)|2g −

∂S

∂s
− g(∇XS, ċ)

)
ds =

=
∫ τ

0

(
1
2
|ċ−∇XS|2g −

(∂S

∂s
+

1
2
|∇XS|2

))
ds =

∫ τ

0

1
2
|ċ−∇XS|2g ds

(3.40)

The integrals I and J reach the minimum for the same horizontal curve and this
occurs for a curve with the velocity

ċ = ∇XS(3.41)

Theorem 3.3 A horizontal curve c(s) is energy-minimizing iff (3.41) holds.

Using (2.20) we get

Corollary 3.4 The horizontal divergence of the geodesic flow is

divH ċ = 2∆XS(3.42)
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The Hamiltonian. The Hamiltonian H : T ∗M → R is defined as

H(x, p) =
1
2

∑

k

p(Xk)2

If p = df ,

H(x, df) =
1
2

∑
df(Xk)2 =

1
2

∑
Xk(f)2 =

1
2
|∇Xf |2.

For f = S,

H(x, dS) =
1
2
|∇XS|2 =

1
2
|ċ|2 =

1
2
.

We also have

H(x, ω) =
1
2

∑
ω(Xi)2 = 0.

The eiconal equation. Consider the energy associated to a function f ∈ F(R3)
defined as

H(∇f) = H(x, df) =
1
2
|∇Xf |2 =

1
2

(
(X1f)2 + (X2f)2

)
(3.43)

The front wave is given by the level curves of the energy and it is described by the
eiconal equation

H(∇f) = k, positive constant(3.44)

with the initial condition

f(O) = 0(3.45)

If k = 0, then f is the constant function equal to zero. Indeed, suppose that f is
not constant. There is a point p such that (gradf)p 6= 0. Then Σc = f−1(c) will
be a surface through p, where c = f(p). As Xi(f) = 0, then Xi are tangent to Σc

on a neighborhood of p and hence Σc becomes integral surface for the horizontal
distribution H around p, which is nonintegrable, contradiction.

If k 6= 0, consider the geodesics starting at origin c(0) = O, parametrized such
that |ċ(s)|2g = 2k. If S is the action along c(s), by (3.41) we have

H(∇S) =
1
2
|∇XS|2g =

1
2
|ċ|2g = k.

Jacobi vector fields and curvature. Let c(s) be a subRiemannian geodesic
which starts at origin and let P be the first conjugate point with 0 along c(s). Denote
by V (s) a Jacobi vector field along c(s) and by S(s) the action between 0 and c(s).

Proposition 3.5 ∫ 1

0

K(V (s))(S(s)) ds = 0,(3.46)

where P = c(1) and K is the curvature.
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Proof. Let cε = Fε(c) be a smooth variation of c, such that for every ε, cε is a
sub-Riemannian geodesic. As cε is a horizontal curve, then

0 =
∫ 1

0

ω(ċε(s)) ds =
∫

cε

ω =
∫

Fε(c)

ω =
∫

c

F ∗ε ω

Then
d

dε

∫

c

F ∗ε ω = 0

or, ∫

c

LV ω = 0,

where V is the Jacobi vector field associat to the variation (cε)ε. As V is zero at the
end points of c,

∫

c

d(iV ω) =
∫

∂c

iV ω = ω(V )(0)− ω(V )(1) = 0.

Cartan decomposition yields

LV ω = d(iV ω) + iV (dω),

and then ∫

c

iV Ω = 0,

which can also be written as
∫ 1

0

Ω(V (s), ċ(s)) ds = 0.

Using ċ =
∑

ċjXj and ċj(s) = Xj(S), then

Ω(V, ċ) = Ω(V, ċjXj) = ċjΩ(V, Xj) = Ω(V, Xj)Xj(S) = K(V )(S).

Hence ∫ 1

0

K(V )(S) ds = 0.

4 Constant curvature flow

In this section we ask the problem of a vector field such that |K(V )|2 = 1. As a
nondegenerate, closed 2-form, Ω can be regarded as a symplectic form. One may
associate the horizontal Hamiltonian vector field Xf to a function f as

Ω(Xf ,W ) = W (f), ∀W ∈ H(4.47)

We shall show that Xf has constant curvature for a certain f .

K(Xf ) =
∑

Ω(Xf , Xk)Xk =
∑

Xk(f)Xk = ∇Xf
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and choosing f = S we have

|K(XS)|2g = |ċ|2g = 1(4.48)

In the following we find the relation between the Hamiltonian field XS and the geo-
desic flow ċ.
Applying (2.26),

K(K(U)) = Ω(X1, X2)K(J (U)) = Ω(X1, X2)2J 2(U) = −Ω(X1, X2)2U

or
K2 = −Ω(X1, X2)2Id(4.49)

Using (4.49)

XS = −Ω(X1, X2)−2K2(XS) = −Ω(X1, X2)−2K(ċ) = −Ω(X1, X2)−1J (ċ)

or
ċ = Ω(X1, X2)J (XS),(4.50)

which provides the velocity of the geodesic in terms of the Hamiltonian vector field
XS .

5 A few examples of sub-Riemannian manifolds

5.1 The Heisenberg group IH1.

The Heisenberg group constitutes the paradigm of the theory. The 3-dimensional
Heisenberg group can be realized as H1 = R3×R = {(x, t)} endowed with the group
law

(x, t) ∗ (x′, y′) = (x + x′, t + t′ + 2x2x
′
1 − 2x1x

′
2).(5.51)

The vector fields which generate the nonintegrable distribution H are

X1 = ∂x1 + 2x2∂t , X2 = ∂x2 − 2x1∂t, T = ∂t.(5.52)

They are left invariant with respect to the group law and generate the Lie algebra of
H1. The 1-form is

ω = dt− 2x2ẋ1 + 2x1ẋ2(5.53)

and the curvature 2-form is
Ω = 4dx1 ∧ dx2(5.54)

with
Ω(X1, X2) = 4(5.55)

and the curvature given by (2.26) becomes

K(U) = 4J (U), ∀U ∈ H(5.56)

The Euler-Lagrange equation is

ẍ = 4θJ (ẋ).(5.57)
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5.2 The (2n+1)-dimensional Heisenberg group IHn.

The 2n-vector fields are defined on R2n+1 as

Xk = ∂xk
+ Bk(x)∂t , k = 1, 2, . . . 2n(5.58)

where

Bj(x) =
2n∑

k=1

2ajkxk(5.59)

or B = 2Ax where A is a skew-symmetric non-singular matrix. The 1-form of con-
nection in this case is

ω = dt− 2Axdx(5.60)

Then the 2-form becomes

Ω = dω = 2
2n∑

p,j=1

apjdxp ∧ dxj = −2〈Adx, dx〉(5.61)

A computation shows that the curvature along a horizontal vector field U is

K(U) = −
2n∑

k,p=1

4apkUkXp(5.62)

The Euler-Lagrange equation system of equations is given by

ẍ = −4θK(ẋ)(5.63)

5.3 A step 4 case.

Consider the vector fields

X1 = ∂x1 + 4x2|x|2∂t, X2 = ∂x2 − 4x1|x|2∂t,(5.64)

which define the 1-form

ω = dt− 4|x|2(x2dx1 − x1dx2).(5.65)

Then
Ω = 16|x|2dx1 ∧ dx2.(5.66)

The curvature becomes

K(U) = 16|x|2J (U), ∀U ∈ H.(5.67)

The Euler-Lagrange system is

ẍ = 16θ|x|2J (ẋ).(5.68)
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5.4 A step 3 case.

The vector fields

X1 = ∂x1 +
x2

2
∂t, X2 = ∂x2(5.69)

define the Martinet distribution on R3. Then

ω = dt− 1
2
x2

2dx1(5.70)

and
Ω = x2 dx1 ∧ dx2(5.71)

The curvature is
K(U) = x2J (U).(5.72)
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