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Abstract

We provide invariant formulas for the Euler-Lagrange equation associated
to sub-Riemannian geodesics. They use the concept of curvature and horizontal
connection introduced and studied in the paper.
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1 Introduction

The geodesic is a concept which comes from Riemannian geometry. It is the curve
1

with the minimum energy F = §|c(s)|2 ds between two given points. At least

0
two kind of constraints can be considered to act on the curve: holonomic and non-
holonomic. A holonomic constraint is when the energy is perturbed by a potential

1
1
U(c) and the energy becomes E = / (5 |¢]? +U(c)) ds. The equation geodesic in this
0

case is Vee = —U'(c).
The other kind of constraints are the nonholonomic ones (see [1], [8], [9]). These
are constraints on the velocity of the curve. The energy to be minimized is £ =

1
1
= / (5 |c'|2+w(c')) ds. The paper deals with a presentation of the variational calculus
0

for the case when w is a 1-form of type (1.1) such that (1.3) does not vanish. It is
said that these kind of sub-Riemannian manifolds are of step 2. They are also called
Heisenberg manifolds (see [2]). In general a sub-Riemannian manifold is said to be
of step k if k — 1 iterations need for the brackets of X; in order to span the whole
tangent space.

In section 5 we shall deal with examples of sub-Riemannian manifolds of superior
type.

The idea of the paper is to consider the solutions of the Euler-Lagrange system
as geodesics in a certain connection with certain perturbation given by the curvature
tensor defined in section 2. Section 3 shows that the classical Hamilton-Jacobi equation
still holds if the gradient is modified into a horizontal gradient. The relationship
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between the symplectic and sub-Riemannian structures is pointed out in section 4.
Section 5 provides a few examples of sub-Riemannian manifolds and their geodesic
equations. Some of these equations were solved in [3,4,6].

Consider a nonintegrable 2-dimensional distribution 2 — H,, in R* = R?th) xRy
defined as H = kerw, where w is a 1-form on R3. The distribution H is called the
horizontal distribution. We shall assume the 1-form w = wldz; + w?dzs + w3dt has

the coefficient w3 # 0 so that dividing by it we may assume

(1.1) w = —Al(x)dxl + Ag(x)dl‘g +dt
with A; = —w!, and Ay = w?. One may verify that
w(Xl) = w(Xl) =0
where
(12) Xl = 8m1 + Al(l')at s X2 = 8x2 — Ag(!ﬂ)at

The vector fields X;, X5 span the horizontal distribution H and they are called
horizontal vector fields.
Suppose the 2-form

0A, 0A,
1. :: f— — [—
(1.3) 0 :=dw (8:01 + 02, )da:l A dxg
does not vanish. Then
B 0A1  0A,
(1.4) (X1, Xo) = 7(—&@1 o Jou¢ M

and then H is not integrable, by Frobenius theorem.
Consider the positive definite metric g : H x H — F in which the vector fields
{X1, X5} are orthonormal. The metric g is called the sub-Riemannian metric defined
by the vector fields X; and Xs.
A curve s — c(s) = (w1(s),22(s),1(s)) is called horizontal curve if é(s) € He(), for
every s. As

é(s) = @1(8)0z, + @2(5)0u, +1(5)0;

= il(S)Xl 4+ iJQ(S)XQ + w(c(s))@t

then ¢(s) is a horizontal curve iff
(1.5) w(c) =f{— Al(C)jﬁl + AQ(C)iQ =0

The length of ¢ with respect to the metric g is

(1.6) l(c):/o \/g(c'(s),c'(s)ds:/o V&1(8)? + E2(s)? ds

Given two points O and P there is at lest a horizontal curve connecting them (see
[5]). The Carnot-Carathéodory distance is defined as

(1.7) de (0, P) = inf{l(c),c(0) = O, ¢(1) = P, ¢ horizontal }
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The horizontal curve with minimum length are called sub-Riemannian geodesics and
can be described using the Hamiltonian formalism as in the following (see [7]).
Consider the sub-elliptic operator

1

(1.8) Ax =3

(X T+ X f)
and define the Hamiltonian as the principal symbol of Ax

(1.9) H(z,t,6,0) = %(& + Al(x)9)2 n %(52 — Ag(x)Q)Q

The projections on the (z,t)-space of the solution of the Hamilton’s system
(1.10) i=He, t=H

(1.11) §E=-H,, 6=—-H,

with the boundary conditions

(1.12) z(0)=t(0)=0, z(l)==z,t(1)=t

are called sub-Riemannian geodesics between the origin and (x,t).

From { = Hy we get
(1.13) t=A13 — Axio

i.e. the sub-Riemannian geodesics are horizontal curves.

2 Connection and curvature

The horizontal connection

The horizontal connection is defined as

(2.14) D:HxH—H
(2.15) D(V,W) =DyW = > Vg(W, X)Xy
k=1,2

Proposition 2.1 D s a linear metric connection.
Proof. One needs to verify the Leibnitz rule
(2.16) Dy (fW)=V(f/)W+ fDyW

and the condition
(2.17) Ug(V,W) = g(DuV,W) + g(V,DuW)
For the first part,

Dy(fW)=>_Vg(fW,Xy) Xi =

=Y V(N 9W, X)Xk + [ Vg(W, X)Xy = V()W + fDyW
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To show the second part,
g(DuV, W) +g(V, Dy W) =
= g( DUV, X)X W) +9 (VS UgW, X)X.) =
= g(SUWVIXLW) + (V.S U)X, =
=S UWVHWi+ S UW) Vi = U( > viwi) — U g(V, W)

N—

where V =Y ViX; and W = > W'X,.
Let Z = Z' X, + Z2X5 be a horizontal vector field. The horizontal divergence is
defined as
(2.18) divyZ = tracey(V — Dy Z) =
) k
> 9Kk, D, 2) = 3 (Xk(2)X;) = 30 Xu(2%) =37 X g2, Xi).
k k k k

Define also the X-gradient of a function f as

(2.19) Vxf=> Xi(f) Xx.
k

Then 1

(220) ide VX = Axf

The curvature tensor. Let K : H — H be given by
(2.21) K(U) =>_ U, X)Xy
k

K is F(R?)-linear and can be considered as a (1,1)-tensor of curvature.
The following result shows that K is skew-selfadjoint.

Proposition 2.2 For every U W € H

(2.22) g(/c<U), W) + g(U,zc(W)) —0.
Proof. We show first that

(2.23) g(k@), W) = aw.w),
and using the skew-symmetry of Q we get (2.22).

Indeed,
k

= 3" g(Xp, W)QUU. X,.) = U, W).
k
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Corollary 2.3 For any U € H,
(2.24) g(k@),U) =0,

The last result suggests that in the case of a 2-dimensional distribution, the curvature
K is proportional with a rotation of angle 7/2.

Define the rotation J : H — H as

(2.25) J(X;) = X, J(X2)=-X;

Then
K(X1) = Q(X1, X2)Xo = Q(X1, X2) T (X1)

K(X2) = Q(X2, X1) X1 = Q(X1, X2)T (X2)

We arrived at the following formula for the curvature

(2.26) KU) =Q(X;y,X2)T(U), YU ¢ H
If the matrix €2;; is non-degenerate i.e. (% + %> # 0, then K(U) # 0 for U # 0.
6331 81‘1

If V is not a horizontal vector field then the curvature can still be defined using
(2:27) K(V)=>_QV, X)Xy
k

This is because the right hand side depends only on the horizontal part of V. Indeed,
consider the vector field

V =V'0,, +V?%,, + V30,

A computation shows
V=VX; + V23X, +w(V)o,
—_——
=Vy

Then
QV, Xi) = QVu, Xi) +w(V) Q(0, Xi)
———

=0
Hence K(V) = K(Vy).

3 The Euler-Lagrange equation

The Legendre transform of the Hamiltonian (1.9) leads to the following Lagrangian

(3.28) L(z,t,0,1) = %(m’% +i2) 4 00— Ay(2)in + As(2)d2),

where 6 is constant because
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OH  dH _

3.29 f=——=—"=0.
( ) ot dt
We deal now with a minimization problem with constraints given by
1
(3.30) L(c,¢) = Qg(é, ¢)+0w(c)
A computation shows the Euler-Lagrange system of equations
d oL OL
31 === =

(3:31) dsacgc T et
becomes oA a4

3.32 i =05t + 22

( ) Ty ( s + 92, T2

. 0A;  0A;\ .
3.33 —-0(5+ 5
( ) 2 8:32 8331 1

If the velocity of the geodesic is given by ¢(s) = #1(s)X1 + d2(s)Xa, the system
(3.32) — (3.33) can be written as

. . 0A 0AsN . .
(334) 21X 4+ Z9Xo = 9(%21 + %12)(962)(1 — .’E1X2)

The right hand side has the meaning of curvature. Indeed, using (2.25) and (2.26) the
right hand side of (3.34) yields

(3.35) —9Q(X1, X2) T (&) = —0K(e).

For the left hand side of (3.34) consider the acceleration defined by the horizontal
connection along ¢(s)

Dot = eg(e, Xp) Xp = é(#1) X1 + é(d2) Xo = 51 X1 + 2 X
k

Hence the Euler-Lagrange system of equations can be written globally as
(3.36) Die = —0K(¢)

In sub-Riemannian geometry the acceleration of the geodesics is equal to the curva-
ture. This keeps the geodesics into the horizontal distribution. Like in Riemannian
geometry, we have

Corollary 3.1 The length of velocity ¢ in the sub-Riemannian metric g is constant.
Proof. Since D is a metric connection,

¢g(¢,¢) = 2g(Dec, ¢) = —209(K(¢),¢) = 0,
by Corollary 2.3.
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The Hamilton-Jacobi equation.

Lemma 3.2 Let ¢(s) = (x1(s),z2(s),t(s)) be a horizontal curve and a smooth func-
tion f € F(R?). Then

d 0
(3.37) d—‘z = a% +9(¢, Vx f).
Proof.
- _ of of . of .  Of;
- g{:—k (le —Al(x)a—{>:ﬁ1 + (X2f+A2($)8*{)x.2 + 37{1; =
0 0
= a—£+(X1f)i71+(X2f)it2+a*{W(é):%_Fg(é’va)'

In the following we need to find the minimum of

1 . 1.
I:/ 5(991(5)2 +i9(s)?) ds :/ §|c(s)\3ds
0 0
over the horizontal curves c¢(s) with fixed ends.

Let S(z,t) € F be the solution for the Hamilton-Jacobi equation

1
(3.38) 95 +=|VxS?=0, S(O)=0.
or 2
Consider the integral
1
1.
(3.39) J :/O S1és) 2 ds — s

Using Lemma 3.2

T, 08 N
J = /0(§|C(s)\g—§—g(vxS,C)>ds_

(1 . 9 0s 1 9 . 1, 2
/O <2|C—szg— (£+§‘VXS| )) ds_/o §|C vXS|gds

The integrals I and J reach the minimum for the same horizontal curve and this
occurs for a curve with the velocity

(3.40)

(3.41) ¢=VxS

Theorem 3.3 A horizontal curve c(s) is energy-minimizing iff (3.41) holds.
Using (2.20) we get

Corollary 3.4 The horizontal divergence of the geodesic flow is

(342) divH ¢ = QA)(S
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The Hamiltonian. The Hamiltonian H : T*M — R is defined as

H(x,p) = %Zp(Xk)Q
k

It p = df,
1 1 1
H(z,df) = 5 > df (Xe)* = 5 D Xi(f)? = 5|VxfI*
For f =5,
H(z,dS) = %|VXS|2 - %|¢|2 - %

We also have

H(z,w) = %Zw(xf —0.

The eiconal equation. Consider the energy associated to a function f € F (R?’)
defined as

(343)  H(VS)=H(n,df) = 5V P = 5

5 ((le)2 + (X2f)2)

The front wave is given by the level curves of the energy and it is described by the
eiconal equation

(3.44) H(Vf)=k, positive constant

with the initial condition

(3.45) f(0)=0

If kK = 0, then f is the constant function equal to zero. Indeed, suppose that f is
not constant. There is a point p such that (gradf), # 0. Then ¥, = f~!(c) will
be a surface through p, where ¢ = f(p). As X;(f) = 0, then X, are tangent to X,
on a neighborhood of p and hence ¥. becomes integral surface for the horizontal
distribution H around p, which is nonintegrable, contradiction.

If k # 0, consider the geodesics starting at origin ¢(0) = O, parametrized such
that |¢(s)|2 = 2k. If S is the action along c(s), by (3.41) we have

1 1.
H(VS) = 5|VXS|§ = 5|c|3 = k.
Jacobi vector fields and curvature. Let ¢(s) be a subRiemannian geodesic
which starts at origin and let P be the first conjugate point with 0 along ¢(s). Denote

by V (s) a Jacobi vector field along ¢(s) and by S(s) the action between 0 and c(s).

Proposition 3.5
1
(3.46) /0 K(V(s))(S(s))ds =0,

where P = ¢(1) and K is the curvature.
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Proof. Let ¢, = Fc(c) be a smooth variation of ¢, such that for every ¢, c. is a
sub-Riemannian geodesic. As c. is a horizontal curve, then

d
— [ FFw=0
de /. ¥

/va :0,

where V' is the Jacobi vector field associat to the variation (c.)e. As V is zero at the
end points of ¢,

Then

or

/d(ivw) = / ivw=w(V)(0) —w(V)(1) =0.
c dc
Cartan decomposition yields

Lyw= d(ivu)) + iv(dw),

/iVQ:O,

/0 Q(V(s), &(s)) ds = 0.

and then

which can also be written as

Using ¢ = >" ¢/ X; and ¢/ (s) = X;(S), then
QV,6) = UV, & X;) = FQV, X;) = UV, X;) X;(S) = K(V)(S)

Hence

/1 K(V)(S) ds = 0.
0

4 Constant curvature flow

In this section we ask the problem of a vector field such that [C(V)|> = 1. As a
nondegenerate, closed 2-form, ) can be regarded as a symplectic form. One may
associate the horizontal Hamiltonian vector field X ¢ to a function f as

(4.47) OX;, W) =W(f), VYWeH

We shall show that X has constant curvature for a certain f.

K(Xp) =Y QUXp, Xp)Xp =Y Xp(f)Xi = Vx [
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and choosing f = S we have
(4.48) (X2 = [¢f2 = 1

In the following we find the relation between the Hamiltonian field Xg and the geo-
desic flow ¢.
Applying (2.26),

K(K(U)) = X1, X2)K(T(U)) = Q(X1, X2)2T*(U) = —Q(X1, X2)*U

?249) K? = —Q(X,, X2)%Id
Using (4.49)

Xg = —Q(X1, X2) 23 (Xg) = —Q(X1, Xo)2K(¢) = —Q(X1, Xo) 1T (¢)
(4.50) ¢ = (X1, X2) T (X5s),

which provides the velocity of the geodesic in terms of the Hamiltonian vector field
Xs.

5 A few examples of sub-Riemannian manifolds

5.1 The Heisenberg group H;.

The Heisenberg group constitutes the paradigm of the theory. The 3-dimensional
Heisenberg group can be realized as H; = R* x R = {(z,t)} endowed with the group
law

(5.51) (x,t) % (2',y) = (x + 2/, t +t' + 202 — 22125).

The vector fields which generate the nonintegrable distribution H are

(552) X1 = &61 + 21’2325 5 X2 = 8I2 - Q:vlat, T= 8,5.

They are left invariant with respect to the group law and generate the Lie algebra of
H;. The 1-form is

(553) w=dt— 21’2$1 + 21‘15&2
and the curvature 2-form is

(554) Q =4dx1 N dzo
with

(5.55) Q(Xy, X)) =4

and the curvature given by (2.26) becomes
(5.56) KU)=4J(U), YU e H
The Euler-Lagrange equation is

(5.57) i =407 ().
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5.2 The (2n+1)-dimensional Heisenberg group IH,,.

The 2n-vector fields are defined on R?*"*! as

(558) X :@,k +Bk(x)8t, k=1,2,...2n
where

2n
(5.59) Bj(z) = Z 2akx)

k=1

or B = 2Ax where A is a skew-symmetric non-singular matrix. The 1-form of con-
nection in this case is

(5.60) w=dt —2Azxdx
Then the 2-form becomes

2n
(5.61) Q=dw=2 Z apjdxy N dr; = —2(Adz, dx)

p,j=1
A computation shows that the curvature along a horizontal vector field U is

2n
(5.62) KU) ==Y 4a,U*X,
k,p=1

The Euler-Lagrange equation system of equations is given by
(5.63) &= —40K(2)

5.3 A step 4 case.

Consider the vector fields

(5.64) X1 = 0y, + 4xo||?0y, Xo = Oy, — 4x1|x|?0y,

which define the 1-form

(5.65) w = dt — 4|x|*(zodzy — z1dTs).
Then
(5.66) Q = 16|22 dz; A das.

The curvature becomes
(5.67) KU) =16|z|*TJ(U), YU € H.
The Euler-Lagrange system is

(5.68) &= 160|x|*J (2).
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5.4 A step 3 case.
The vector fields

(5.69) Xi =8y, + %at, Xy =0y,

define the Martinet distribution on R3. Then

1
(5.70) w=dt— ixgd:cl
and
(571) Q= xTo dl’l AN dl’g
The curvature is
(5.72) K(U) =z2J(U).
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