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Abstract

The main results of this paper refer to three ideas:
- to replace the constraints in an optimum problems by a selector of curves;
- to reformulate and study extremum problems with point constraints and/or

velocity constraints;
- to extend the saddle point theory and the Kuhn-Tucker theory to extrema

with nonholonomic constraints.

Mathematics Subject Classification 2000: 90C30, 49K24
Key words: nonlinear programming, point constraints, velocity constraints, selector
of curves

1 Extremum constrained by a selector of curves

Let D be an open set of Rn. For each point x ∈ D, we denote by Γx the set of all C1

parametrized curves α : I → D which passs through the point x at a given moment
t ∈ I.
1.1. Definition. Any function

Γ̂ : D →
⋃

x∈D

Γx, Γ̂(x) ⊂ Γx,

is called selector of curves on D. The elements of Γ̂(x) are called admissible curves at
the point x.
1.2. Definition. Let f : D → R be a function and Γ̂ be a selector of curves on D. If

f(α(t)) ≥ f(x0), ∀t ∈ [t0, t0 + ε), ∀α ∈ Γ̂(x0), x0 = α(t0),

then x0 ∈ D is called a minimum point of f constrained by the selector Γ̂.
Examples. Suppose Γx is either the set of regular curves at x or the set of C2 curves
having x either as a regular point or as singular point of order 2. Define the selector
Γ̂ by Γ̂(x) = Γx.
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1) In ([11]) was proved the following
1.3. Theorem. 1) x0 ∈ D is a minimum point of f iff x0 ∈ D is a minimum point of
f constrained by the selector Γ̂.

2) Let ga : D → R, a = 1, p, p < n be C1 functions. These functions can be used
to create equality constraints (equations) or inequality constraints (inequations) on
points.

a) The equations ga(x) = 0 introduce the partial selectors

Γ̂ a(x) =

{ {α ∈ Γx|ga(Im α) = 0} for x ∈ D with ga(x) = 0

∅ for x ∈ D with ga(x) 6= 0.

These produce the general selector

Γ̂(x) =
p⋂

a=1

Γ̂ a(x).

Now we can formulate

1.4. Theorem. ([16]) Suppose ga are C1 functions on D satisfying rank
[
∂ga

∂xj
(x)

]
=

p, at any point x of D, and the subset defined by ga(x) = 0, a = 1, p is nonvoid. Then
x0 ∈ D is a minimum point of a function f : D → R constrained by the selector Γ̂
iff ga(x0) = 0, a = 1, p and x0 is a minimum point for f constrained by ga(x) = 0,
a = 1, p.

b) The inequations ga(x) ≥ 0 give the partial selectors

Γ̂ a(x) =





{α ∈ Γx|ga(α(t)) ≥ 0, t ≥ t0)} for x ∈ D with ga(x) = 0

Γx for x ∈ D with ga(x) > 0

∅ for x ∈ D with ga(x) < 0.

The general selector is

Γ̂(x) =
p⋂

a=1

Γ̂ a(x).

1.5. Theorem. ([16]) Suppose ga are C1 functions on D satisfying

rank
[
∂ga

∂xj
(x)

]
= p,

at any point x of D, and the subset defined by ga(x) ≥ 0 is nonvoid. Then x0 is a
minimum point of a continuous function f : D → R constrained by the selector Γ iff
x0 is a minimum point for f constrained by ga(x) ≥ 0, a = 1, p.

3) Let ωa(x) =
n∑

j=1

ωa
j (x)dxj , a = 1, p, p < n be C1 Pfaff forms. These Pfaff forms

can be used to create equality constraints (Pfaff equations) or inequality constraints
(for example, Pfaff inequalities) on velocities.

a) The Pfaff equations generate the partial selectors

Γ̂ a(x) = {α ∈ Γx|α is an integral curve of the Pfaff equation ωa(x) = 0},
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which produce the general selector (associated to the Pfaff system)

Γ̂(x) =
p⋂

a=1

Γ a(x).

The previous selector is connected to extrema with nonholonomic constraints (see
[2], [10], [11]), by the following
1.6. Theorem. x0 ∈ D is a minimum point of the function f : D → R constrained
by the selector Γ̂ iff x0 ∈ D is a minimum point for f constrained by the Pfaff system
ωa(x) = 0, a = 1, p.

b) The primitive of each Pfaff form ωa(x) defines the partial selectors

Γ̂ a(x0) =
{

α ∈ Γx0 |
∫ t

t0

(ωa(α(u)), α′(u))du ≥ 0, ∀t ∈ [t0, t0 + ε)
}

,

where α(t0) = x0. From this point of view, the selector associated to all Pfaff forms
is

Γ̂(x0) =
p⋂

a=1

Γ̂ a(x0).

1.7. Definition. x0 ∈ D is a minimum point of the function f : D → R constrained
by ωa ≥ 0, a = 1, p if x0 is a minimum point of f constrained by the selector Γ̂.

This type of extremum was studied in [11].
Remark. Generally, there are two types of constraints. One given by constraints on
points and other as constraints on velocities. A equation constraint on points induces
an equation constraint on velocities; this last constrained does not contribute for
finding critical points, but contribute in establishing the nature of critical points.
The converse is not true. In the case of extrema of type 2), the point constraints
select certain semicurves. In the case of extrema of type 3), the point constraints
dissapear, any point of D being susceptible to be an extremum point. In the sequel
we introduce a type of extremum where the point constraints and velocity constraints
are not correlate.

2 Extremum with constraints on points and / or
velocities

Let ω(x) =
n∑

j=1

ωj(x)dxj be a C1 Pfaff form with rank [ωj(x)] = 1. Let M = S ∪ bS

be a subset of D, where S and bS are disjoint.
The pair (ω, M) determines the following selector of curves:

Γ̂(x0) =





Γx0 if x0 ∈ S
{

α ∈ Γx0 |
∫ t

t0

(ω(α(u)), α′(u))du ≥ 0, ∀t ∈ [t0, t0 + ε)
}

if x0 ∈ bS

∅ if x0 ∈ D \M.
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Similarly, for each a = 1, p, we consider the pair (ωa,Ma), where ωa(x) =
n∑

j=1

ωa
j (x)dxj are C1 Pfaff forms, and Ma = Sa ∪ bSa. The pair (ωa,Ma) determines

the selector Γ̂ a. If we denote ω = {ωa|a = 1, p}, S =
p⋂

i=1

Sa, bS =
p⋃

a=1

bSa, M = S∪bS,

then the pair (ω,M) induces the selector

Γ̂(x0) =
p⋂

a=1

Γ̂ a(x0), ∀x0 ∈ D.

Let f : D → R be a function. If x0 ∈ M is a minimum point of f constrained by
the selector Γ̂, then we say that x0 is a minimum of f constrained by the pair (ω, M).
Specifying Ma = Sa ∪ bSa, we obtain all the examples in §1.

Example 1: Sa = D, bSa = ∅.
Example 2a): Sa = ∅, bSa = {x ∈ D|ga(x) = 0, a = 1, p}, ωa = dga.
Example 2b): Sa = {x ∈ D|ga(x) > 0}, bSa = {x ∈ D|ga(x) = 0}, ωa = dga.
Example 3a): Sa = ∅, bSa = D.

Γ̂ a(x0) =
{

α ∈ Γx0 |
∫ t

t0

(ωa(α(u)), α′(u))du = 0, ∀t ∈ [t0, t0 + ε)
}

.

Example 3b): Sa = ∅, bSa = D.
Remark. In the Theorems 2.1 and 2.2, the set Γx is the family of all C1 parametrized
curves passing by x and regular at x. In Theorem 2.2, the set Γx can be also the family
of all C2 parametrized curves passing by x and with singularities of order 2 at x.
2.1. Theorem. Let f : D → R be a C1 function, and (ω,M) be the pair described
above. If x0 ∈ M is a minimum point of f constrained by the pair (ω,M), then there

exist λa ≥ 0, a = 1, p such that df(x0) =
p∑

a=1

λaωa(x0). Moreover, if λa 6= 0, then

x0 ∈ bSa.
Proof. Let B(x0) = {a|x0 ∈ bSa}. Let v 6= 0 be a vector of Rn such that

(ωa(x0), v) ≥ 0, ∀a ∈ B(x0).

We denote
J(x0) = {a ∈ B(x0)|(ωa(x0), v) = 0}.

Let α be an integral curve of the Pfaff system ωa(x) = 0, a ∈ J(x0), satisfying
α(t0) = x0, α′(t0) = v. The existence of this curve is ensured by the hypothesis on the
rank of the Pfaff form (In case J(x0) = ∅, the curve α is arbitrary, with α(t0) = x0,

α′(t0) = v). If a ∈ J(x0), then it follows
∫ t

t0

(ωa(α(u)), α′(u))du = 0, ∀t ∈ [t0, t0 + ε);

if a ∈ B(x0) \ J(x0), then
∫ t

t0

(ωi(α(u)), α′(u))du ≥ 0, ∀t ∈ [t0, t0 + ε). Since x0 is a

minimum point of f constrained by (ω, M), i.e., f(α(t)) ≥ f(α(t0)), ∀t ∈ [t0, t0 + ε),
we have (grad f(x0), v) ≥ 0. By the Farkas Lemma we find df(x0) =

∑

a∈B(x0)

λaωa(x0)

with λa ≥ 0. For a /∈ B(x0), we take λa = 0.
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The hypothesis regarding the rank of the Pfaff forms can be replaced with a
regularity condition of Kuhn-Tucker type.
2.2. Definition. We say that (ω,M) satisfies the Kuhn-Tucker regularity condition
at x0 ∈ bS if for each vector v 6= 0 with 〈ωa(x0), v〉 ≥ 0, ∀a ∈ B(x0) = {a|x0 ∈ bSa},
there exists a parametrized curve α ∈ Γ̂x0(α(t0) = x0) such that α′(t0) = v.
2.3. Theorem. Let f : D → R be a C1 function and (ω,M) be the pair described
above. If (ω, M) satisfies the Kuhn-Tucker regularity condition at x0 ∈ M and x0 is
a minimum point of f , then there exist λa ≥ 0 such that

df(x0) =
p∑

a=1

λaωa(x0).

Moreover, if λa 6= 0, then x0 ∈ bSa.
Proof. Let v 6= 0 be a vector of Rn with (ωa(x0), v) ≥ 0, ∀a ∈ B(x0). By the Kuhn-
Tucker regularity condition there exists a parametrized curve (α ∈ Γ̂x0 (α(t0) = x0)

with α′(t0) = v. Consequently,
∫ t

t0

(ωi(α(u)), α′(u))du ≥ 0, ∀t ∈ [t0, t0 + ε). In rest,

the same arguments as in the proof of the Theorem 2.1.
2.4. Theorem . Let Γx be the set of all C2 parametrized curves passing by the point
x and being regular at x. Suppose the Pfaff forms ω and the function f be of class C1

on D. Let (ω,M) be the pair described above and x0 ∈ M .
Suppose: i) there exist λa ≥ 0, a = 1, p, such that

df(x0) =
p∑

a=1

λaωa(x0),

and, if λa 6= 0, then x0 ∈ bSa;
ii) the restriction of the quadratic form

d2f(x0)− 1
2

p∑
a=1

λa

n∑

j,k=1

(
∂ωa

j

∂xk
+

∂ωa
k

∂xj

)
(x0)dxjdxk

to the subspace

n∑

j=1

ωa
j (x0)dxj = 0, a ∈ J1 = {a ∈ B(x0)|λa > 0}

is positive definite.
Then x0 is a minimum point of f constrained by the pair (ω, M).

Proof. Let α : I → D be a C2 curve with α(t0) = x0, regular at the point x0 and
α ∈ Γ̂(x0). It follows

∫ t

t0

(ωa(α(u)), α′(u))du ≥ 0, ∀a ∈ [t0, t0 + ε), ∀j ∈ B(x0) = {a = |x0 ∈ bSa}.

Case 1. If there exists a0 ∈ J ′ with (ωa(x0), α′(t0)) > 0, then df(x0)(α′(t0)) =
p∑

a=1

λa(ωa(x0), α′(t0)) > 0. Using Taylor expansion
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f(x)− f(x0) = df(x0)(x− x0) +O(‖x− x0‖)
and

α(t)− α(t0) = α′(t0)(t− t0) + β(t) · (t− t0),

with lim
t→t0

β(t) = 0, we find

f(α(t))− f(α(t0)) = (t− t0)df(x0)(α′(t0)) + (t− t0)df(x0)(β(t))+

+O(‖α(t)− α(t0)‖) = (t− t0)df(x0)(α′(t0)) +O(t− t0) ≥ 0, ∀t ∈ [t0, t0 + ε).

Case 2. Suppose
(ωa(x0), α′(t0)) = 0, ∀a ∈ J ′.

The function

ϕ(t) = f(α(t))−
p∑

a=1

λa

∫ t

t0

(ωa(α(τ)), α′(τ))dτ.

has the derivative

ϕ′(t) =
n∑

i=1

∂f

∂xi
(α(t))

dxi

dt
−

p∑
a=1

λa

n∑

i=1

ωa
i (α(t))

dxi

dt
,

and hence

ϕ′(t0) =
n∑

i=1

(
∂f

∂xi
(x0)−

p∑
a=1

λaωa
i (x0)

)
dxi

dt
=

= (df(x0)−
p∑

a=1

λaωa(x0))(α′(t0)) = 0.

Also

ϕ′′(t) =
n∑

i,j=1

∂2f

∂xi∂xj
(α(t))

dxi

dt

dxj

dt
+

n∑

i=1

∂f

dxi
(α(t))

d2xi

dt2
−

−1
2

p∑
a=1

λa

n∑

i,j=1

(
∂ωa

i

∂xj
+

∂ωa
j

∂xi

)
(α(t))

dxi

dt

dxj

dt
+

p∑
a=1

λa

n∑

i=1

ωa
i (α(t))

d2xi

dt2
.

Then

ϕ′′(t0) = d2f(x0)− 1
2

p∑
a=1

λa

n∑

i,j=1

(
∂ωa

i

∂xj
+

∂ωa
j

∂xi

)
(x0)

dxi

dt
(t0)

dxj

dt
(t0)+

+
n∑

i=1

(
∂f

∂xi
(x0)−

p∑
a=1

λaωa
i (x0)

)
d2xi

dt2
(t0) =

= d2f(x0)− 1
2

p∑
a=1

λa

n∑

i,j=1

(
∂ωa

i

∂xj
+

∂ωa
j

∂xi

)
(x0)

dxi

dt
(t0)

dxj

dt
(t0).

Finally,

ϕ(t)− ϕ(t0) =
1
2
ϕ′′(t0)(t− t0)2 +O((t− t0)2),

whence ϕ(t) ≥ ϕ(t0), ∀t ∈ (t0 − ε, t0 + ε). But ϕ(t0) = f(x0) and, for t ≥ t0,
f(α(t)) ≥ ϕ(t) so that there follows f(α(t)) ≥ f(x0) for t ∈ [t0, t0 + ε).
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3 Extremum constrained by inequalities associated
to a family of primitives of a Pfaff form

Let D be an open set in Rn and ω(x) =
n∑

j=1

ωj(x)dxj be a C0 Pfaff form. Let Γ be

the family of all C1 parametrized curves α : I → D. Each curve α generates a family
{gα} of functions,

gα : I → R, g′α(t) = (ω(α(t)), α′(t)),

called the primitives of ω along α. On the other hand, each curve α defines an equiv-
alence class {β = α ◦ ϕ|ϕ : J → I} is C1 diffeomorphism.
3.1. Definition. Let g: be a function which associates to each parametrized curve α
a function gα from the family {gα}. If gβ = gα ◦ ϕ, for any equivalent curves α and
β, then the function g is called system of ω-primitives.

For a Pfaff form ω and its associated system of primitives we can associate the set
M = S ∪ bS, where

bS = {x0 ∈ D|∃α ∈ Γx0 , α(t0) = x0, gα(t0) = 0}
S = {x0 ∈ D \ bS|∃α ∈ Γx0 , α(t0) = x0, gα(t0) > 0}.

The pair (ω, M) induces a selector Γ̂ of curves.
Similarly, for each a = 1, p, we consider the pair (ωa,Ma), where ωa(x) =

n∑

j=1

ωa
j (x)dxj are C0 Pfaff forms, and Ma = Sa ∪ bSa are defined using the system

of ωa-primitives ga. The pair (ω, M) induces a selector of curves via the system of
primitives g = (ga).

Let f : D → R be a C0 function. Using the previous ingredients we define the
Lagrange function

Lα(t, λ) = f(α(t))−
p∑

a=1

λaga
α(t), ∀t ∈ I, ∀λa ≥ 0.

This function is defined along each curve α : I → D, using the restriction of function
f to α and the primitives of the Pfaff forms ωa along α. In this way obtain a family
of Lagrange functions, which will satisfy conditions of saddle point type.
3.2. Definition. Let x0 ∈ D, and λ0 = (λ0

a) with λ0
a ≥ 0, a = 1, p. The point (x0, λ

0)
is called saddle point for the family of all Lagrange functions Lα if

a) Lα(t0, λ0) ≤ Lα(t, λ0), ∀α ∈ Γx0 , α(t0) = x0, ∀t ∈ [t0, t0 + ε);
b) there exists α ∈ Γx0 with α(t0) = x0 such that

Lα(t0, λ0) ≥ L(t0, λ), ∀λ = (λa) ≥ 0.

3.3. Lemma. The condition b) in the Definition 3.2 is equivalent to:
b′) there exists α ∈ Γx0 , α(t0) = x0, such that ga

α(t0) ≥ 0, a = 1, p and λ0
aga

α(t0) =
0 (no summ).

This condition afirms: if x0 ∈ M and if λ0
a > 0, then x0 ∈ bSa.
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Proof. Suppose b) is true: ∃α ∈ Γx0 with α(t0) = x0, and Lα(t0, λ0) ≥ L(t0, λ),

∀λ = (λa) ≥ 0. It follows (∗)
p∑

a=1

(λa−λ0
a)ga

α(t0) ≥ 0, ∀λa ≥ 0. Suppose, ∃a0 ∈ 1, p with

ga0
α (t0) < 0; taking λa0 > λ0

a0
and λa = λ0

a for a 6= a0 we obtain a contradiction with

(∗). Taking λa = 0, ∀a = 1, p, in (∗), we obtain
p∑

a=1

λ0
aga

α(t0) ≤ 0, i.e., λ0
aga

α(t0) = 0

for each a = 1, p.
The converse is automatically true.

3.4. Theorem. Let x0 ∈ D. If there exists λ0 = (λ0
a) ≥ 0, a = 1, p such that (x0, λ

0)
is a saddle point for the family for all Lagrange functions Lα, then x0 is a minimum
point of f constrained by (ω, M).
Proof. The condition b′) from Lemma 4.3 shows that x0 ∈ M . Suppose λ0

a = 0,
∀a = 1, p. From the condition a) it follows: for each α ∈ Γx0 , with α(t0) = x0,
f(α(t)) ≥ f(x0), ∀t ∈ [t0, t0 + ε). Hence, x0 is a minimum point of f constrained by
(ω, M); the point x0 is a free minimum point if Γx0 is the set of all C1 parametrized
curves, regular at x0 or the set of all C2 parametrized curves having x0 as a regular
point or as a singular point of order 2 (Theorem 1.3.)

Suppose J ′ = {a|λ0
a > 0} is nonvoid. According the condition b′), it follows

x0 ∈ bSa, ∀a ∈ J ′. Let α ∈ Γ̂x0 , with α(t0) = x0. Since
∫ t

t0

(ωa(α(u)), α′(u))du ≥ 0,

∀t ∈ [t0, t0 + ε), ∀a ∈ J ′, we find ga
α(t) − ga

α(t0) ≥ 0, ∀t ∈ [t0, t0 + η), ∀a ∈ J ′. From
the condition a) we get

f(α(t))− f(x0) ≥
∑

a∈J′
λ0

a(ga
α(t)− ga

α(t0)).

Consequently x0 is also a minimum point of f constrained by the pair (ω,M).
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