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Abstract

Within the framework of jet spaces endowed with non-linear connection, are
characterized the special curves of these spaces (h-paths, v-paths and geodesics,
Lorentz-type paths and electromagnetic Lagrangian-action minimizers) which
extend the Riemannian classical electromagnetic field model. Remarkable special
cases outline the extension and computer-drawn graphic Maple-V plots for paths
are provided.
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1 Geometric objects on J1(T, M)

The geometrized framework on osculating first and higher-order osculating spaces
was introduced and widely studied by Acad. R.Miron and collaborators ([4], [5]). As
a complementary extension of the tangent (first-order osculating) framework in the
last decade was developed with significant results the geometric approach on first-
order jet spaces ([11], [9], [1], [3]).

In the sequel let ξ = (E = J1(T, M), π, T × M) be the first order jet bundle of
mappings ϕ : T → M , where T and M are C∞ real differentiable manifolds (dim T =
m, dim M = n). The local jet coordinates on E will be denoted by

(tα, xi, yA)(α,i,A)∈I∗ ≡ (yµ)µ∈I ,

where the set of indices I splits as follows

I = Ih ∪ Iv, Ih = Ih1 ∪ Ih2 , Iv = m + n + 1,m + n + mn

Ih1 = 1,m, Ih2 = m + 1,m + n, I∗ = Ih1 × Ih2 × Iv.

and the indices implicitly take values as described below:

α, β, . . . ∈ Ih1 ; i, j, . . . ∈ Ih2 ; A,B, . . . ∈ Iv; λ, µ, . . . ∈ I.
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As well, when appropriate, we identify A = m + n + n(i−m− 1) + α as A ≡ (
i
α

)
and

denote yA ≡ x(i
α) = ∂xi

∂tα .
We endow E with a the extended Lagrangian of electrodynamics ([9]) of the form

L(t, x, y) = g̃AB(t, x, y)yAyB + UA(t, x)yA + Φ(t, x),(1.1)

where UA(t, x) is a 1-form on E, Φ ∈ F (E) and assume the Kronecker decomposition

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t, x)gij(t, x, y),(1.2)

with hαβ and gij non-degenerate tensor fields. The derived Euler-Lagrange equations
evidentiate a spray, which under certain restrictive conditions provides a non-linear
connection N = {NA

µ }µ∈Ih,A∈Iv
on E which leads to the splitting TE = HE ⊕ V E,

where V E = Ker π∗ [11, 5]. As well, N determines the local adapted basis of X (E)

B = {δα, δi, δA}(α,i,A)∈I∗ ≡ {δµ}µ∈I ,(1.3)

with ∂α = ∂
∂tα , ∂i = ∂

∂xi and

δα = ∂α −NA
α δA, δi = ∂i −NA

i δA, δA = ∂̇A =
∂

∂yA
.(1.4)

The dual basis of B in (1.3) writes then B∗ = {δα, δi, δA}(α,i,A)∈I∗ ≡ {δµ}µ∈I , where

δα = dtα, δi = dxi, δA ≡ δyA = dyA + NA
α dtα + NA

i dxi.(1.5)

The existence of Lagrangian-derived non-linear connections in the general Kronecker
case represents still an open problem ([9]). However, in the following cases where g̃
admits a particular Kronecker splitting, the problem is tractable.

We note as particular case the ARL (almost Riemann Lagrange) jet case, where
the tensor field hαβ(t) is a metric tensor field on T ; then the Lagrangian (1.1) produces

the canonical nonlinear connection N = {N(i
α)

β , N
(i

α)
j } of coefficients

N
(i

α)
β = −

∣∣∣ γ
αβ

∣∣∣ y(i
γ), N

(i
α)

j =
∣∣ i
jk

∣∣ y(k
α) + 1

4
gik(2∂αgjk + hαβU(k

β)j),(1.6)

where U(k
β)j = δ[jU(

k]
β

) means the h2−curl of U ; generally, we denote τ[i...j] = τi...j −
τj...i and τ{i...j} = τi...j + τj...i. Also we have

g̃AB = 1
2
∂̇2

ABL.(1.7)

More particular, in the ARLS (almost Riemann Lagrange separated) jet case, gij

is a metric tensor field on M , and both the nondegenerate metric tensors h, g and the
potentials UA determine the nonlinear connection N of coefficients
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N
(i

α)
β = −

∣∣∣ γ
αβ

∣∣∣ y(i
γ), N

(i
α)

j =
∣∣ i
jk

∣∣ y(k
α) + 1

4
gik · hαβU(k

β)j .(1.8)

If E is endowed with a non-linear connection N = {NA
α , NA

i }, any linear connec-
tion ∇ = {Lλ

µν}λ,µ,ν∈I on E has its components relative to the adapted basis (1.3)
provided by the relations δλ(∇δν

δµ) = Lλ
µν , ∀λ, µ, ν ∈ I. According to the three sets

of indices Ih1 , Ih2 , Iv, these components group in 33 = 27 distinct subsets.
The subsets of nontrivial coefficients of ∇ can be strongly reduced for the connec-

tions Γ(N) (called ”N -connections”), whose covariant derivative preserves the sections
S(HE) and S(V E); these obey the conditions

Lλ
µν = 0, ∀ (λ, µ) ∈ (Ih × Iv) ∪ (Iv × Ih).(1.9)

Further, one may consider the special N -connections Γ∗(N), whose covariant deriv-
atives preserve the distributions Span(δα)α∈Ih1

and Span(δi)i∈Ih2
; they satisfy the

supplementary relations

Lλ
µν = 0, ∀ (λ, µ) ∈ (Ih1 × Ih2) ∪ (Ih2 × Ih1).(1.10)

More particular, the so-called ”Γ-linear h-normal connections” Γn(N) [9] have just
four essential sets of components

{Lα
βγ , Li

jγ , Li
jk, Li

jA} ≡ ∇,(1.11)

which provide the other 5 derived sets by means of

LA
Bγ ≡ L

(i
α)

(j
β)γ

= δβ
αLi

jγ − δi
j

∣∣ β
αγ

∣∣ , LA
Bk ≡ L

(i
α)

(j
β)k

= δβ
α

∣∣∣ i
jk

∣∣∣ ,

LA
BC ≡ L

(i
α)

(j
β)C

= δβ
αLi

jC , Lα
βj = 0, Lα

βC = 0.

We shall further consider the case when hαβ(t) and gij(t, x, y) in the Lagrangian L in
(1.1) are non-degenerate, and we endow E with a semi-Riemannian metric

G = hαβ(t)dtα ⊗ dtβ︸ ︷︷ ︸
h

+ gij(t, x, y)dxi ⊗ dxj

︸ ︷︷ ︸
g

+ g̃AB(t, x, y)δyA ⊗ δyB

︸ ︷︷ ︸
g̃

,(1.12)

where g̃AB ≡ g̃(i
α)(j

β) = hαβ(t)gij(t, x, y). In this case the so-called the Cartan linear
connection, which is an h−normal connection, is metrical and satisfies the conditions
([11], [9])

Li
jγ =

gik

2
∂γgjk, Li

[jk] = 0, Li

[j
(

k]
α

) = 0.

Its four essential sets of coefficients (1.11) are given by

Lα
βγ =

∣∣∣α
βγ

∣∣∣ , Li
jγ = 1

2gikδγgkj , Li
jk =

∣∣∣ i
jk

∣∣∣ ,

Li
jA ≡ Li

j(k
γ)

= 1
2gil(δ({k

γ

)gjl} − δ(l
γ)gjk).

(1.13)
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The adapted components of the torsion T and of the curvature R of ∇ are defined
by the relations

δλ(T (δν , δµ)) = Tλ
µν , δλ(R(δν , δµ)δρ) = R λ

ρ µν , ∀ λ, µ, ν, ρ ∈ I.

Then the Cartan essential torsion coefficients are ([9]; for ARL case [11, Theorem
4.4])

{T (i
α)

γ (j
β), T

(i
α)

k (j
β), T

(i
α)

(j
β) (k

γ), T
i

β j , T
i
jA, T A

β γ , T A
β j , T

A
i j}.

The nontrivial non-holonomy coefficients ωλ
µν are described by the relations

[δµ, δν ] = ωA
µνδA ≡ TA

µνδA, ∀µ, ν ∈ Ih,

[δµ, δB ] = ωA
µBδA ≡ ∂BNA

µ δA, ∀µ ∈ Ih,

and are explicitly provided for the ARL case in [9, Theorem 2.3]. Ultimately, the five
essential and three derived nontrivial sets of curvature N -tensor fields are respectively

{R α
β γδ, R i

j km, R i
j γλ, R i

j λA, R i
j CD}, {R (i

α)
(j

β) γδ
, R

(i
α)

(j
β) λk

, R
(i

α)
(j

β) µA
},

for λ ∈ Ih, µ ∈ I.
In this framework, the Liouville field C = yAδA on (E, N,∇) produces the deflec-

tion tensor fields
dA

µ = δA∇δµC, µ ∈ I, A ∈ Iv,

which lead further to the associated to N and∇ electromagnetic 2-form F = FAµδyA∧
δyµ, of nontrivial components





FAβ ≡ F(i
α)β = 1

2

(
hαγgiky(k

[γ)
)
|β]

FAB ≡ F(i
α)(j

β) = 1
2 g̃([i

α

)
C

yC

|
(

j]
β

)

FAj ≡ F(i
α)j = 1

2 d(
[i
α

)
j]

= 1
2 y([i

α

)
|j] = 1

2

(
y(k

γ)hαγgk[i

)
|j]

,

(1.14)

where |α, |i and |A are the covariant derivations given by ∇δµ , for µ ∈ Ih1 , Ih2 and Iv

respectively. Considering the raising/lowering of the indices performed by the metric
tensor field G, F provides the electromagnetic force

F̃ = F µ
A δµ ⊗ δA(1.15)

of nontrivial essential components,

Fα
A = hαβFAβ , F i

A = gijFAj , FC
A = gCDFAD.

We note that in the particular ARLS case, the Cartan connection has just two
basic nontrivial coefficients
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{Lα
βγ =

∣∣α
βγ

∣∣ , Li
jk =

∣∣ i
jk

∣∣},

and its non-trivial torsion N−fields are {T (m
γ )

αβ , T
(m

γ )
ij , T

(m
γ )

αj } ([9]).
Moreover, for m = 1, n = 4 and h11 = 1, one finds as particular case, the pseudo-

Riemannian weak gravitational model endowed with the metric gij(x) = ηij +εij(x),
where the weakness of the gravitational field gij is expressed by its decomposition into
the flat Minkowski metric nij = diag(−1, 1, 1, 1) and a small perturbation εij(x), a
symmetric tensor field with |εij(x)| << 1.

2 Paths and Lorentz curves on J1(T, M)

We consider in the following on (E,N,∇) smooth curves c : J = [a, b] ⊂ R → E,
having their images inside a chart Ũ ⊂ E, locally given by

c(s) = (tα(s), xi(s), yA(s)) ≡ (yµ(s)),∀t ∈ J.

Definitions. a) The field Vµ = δyµ

ds
defined on c is called N -velocity field of the curve

c. Its components are explicitely given by

{Vµ}µ∈I ≡
(

ṫα, ẋi,
δya

ds
= ẏA + NA

β ṫβ + NA
j ẋj

)

(α,i,A)∈I∗

where we denote by dot the s-derivation. We denote by F = Fµδµ the N -force field
on c, which provides the motion of the test-body along c and whose components are
explicitely given by

Fµ =
∇Vµ

ds

not=
δVµ

ds
+ Lµ

νρVνVρ.

b) We call c stationary curve with respect to ∇ iff F = 0 along the curve.
c) The curve c is called
• h−curve, if πv(V) = 0, and
• v−curve, if πh(V) = 0,

where by πh and πv we denoted respectively the h− and v−projectors of the canonic
splitting induced by N .

d) An h − /v−curve which satisfies also the extra condition F = 0, is called
h− /v−path, respectively.

Analytically, these curves are described by

Theorem 1. Let c : J ⊂ R → E be a curve. Then the curves defined above are
characterized as follows:

a) c is an h−curve iff

VA = 0 ⇔ δyA

ds
= 0 ⇔ ẏA + NA

α ṫα + NA
j ẋj = 0, ∀A ∈ Iv.(2.16)
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b) c is a v−curve iff

Vµ = 0, ∀µ ∈ Ih ⇔ δyµ

ds
= 0, ∀µ ∈ Ih ⇔ c(s) = (t0, x0, y(s)), s ∈ J.(2.17)

c) c is an h−path (”stationary h−curve or ”horizontal geodesic”) iff besides (2.16)
it satisfies

dVµ

ds
+ Lµ

νρVνVρ = 0, ∀µ ∈ Ih.(2.18)

d) c is a v−path (”stationary v−curve or ”vertical geodesic”) iff besides (2.17) it
satisfies

δVA

ds
+ LA

BCVBVC = 0, ∀A ∈ Iv.(2.19)

We note that the implicit sum in the right term of (2.18)/(2.19) involves just hori-
zontal/vertical index types. The proof is computational.

Consider the triple (E, N,G), where the metric G in the one in (1.12), N is a
fixed nonlinear connection, and ∇ is the Cartan connection attached to G of basic
coefficients (1.13). Then qne can derive the electromagnetic tensor fields in (1.14) and
(1.15) and we have

Definition. A curve c is called Lorentz curve on (E, N, G) iff

Gνρ
∇Vρ

ds
= FAνVA ⇔ ∇Vµ

ds
= F µ

A VA.(2.20)

Theorem 2. ([1, 3]) The Lorentz equations (2.20) have the equivalent form

ẗα + Lα
βC ṫβVC + Lα

jC ẋjVC + Lα
βγ ṫβ ṫγ + Lα

jγ ẋj ṫγ + Lα
βk ṫβ ẋk + Lα

jkẋj ẋk = Fα
BVB(2.21)

ẍi + Li
βC ṫβVC + Li

jC ẋjVC + Li
βγ ṫβ ṫγ + Li

jγ ẋj ṫγ + Li
βk ṫβ ẋk + Li

jkẋj ẋk = F i
BVB(2.22)

V̇A + NA
α ṫα + NA

i ẋi + LA
CβVC ṫβ + LA

CjVC ẋj + LA
BCVBVC = FA

B VB ,(2.23)

where VA = ẏA + NA
β ṫβ + NA

i ẋi, A ∈ Iv.
Remarks. a) The Lorentz h-paths satisfy the extra conditions VA = 0, A ∈ Iv and
since the right side of (2.21)-(2.23) is identically vanishing, they coincide with the
usual h-paths of (E, N, G).

b) The Lorentz v-paths have fixed base-point, i.e.,

Vµ = 0, µ ∈ Ih ⇔ (t, x) = (t0, x0) ∈ T ×M,

and hence the associated Lorentz equations rewrite

Fα
BVB = 0, F i

BVB = 0, FA
B VB = V̇A + LA

BCVBVC .

c) In the ARLS case with the nonlinear connection (1.6) induced by the Lagrangian,
the electromagnetic tensors simplify to
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Fα
A ≡ Fα

(i
β)γ

= 0, F i
A = gijF̃Aj = −1

4
gijUAj , FB

A = 0,(2.24)

and the nonvanishing Cartan connection essential coefficients reduce to

Lα
βγ =

∣∣α
βγ

∣∣ , Li
jk =

∣∣ i
jk

∣∣ , LA
Bγ ≡ L

(i
α)

(j
β)γ

= −δi
j

∣∣ β
αγ

∣∣ , LA
Bk ≡ L

(i
α)

(j
β)k

= −δβ
α

∣∣ i
jk

∣∣ .

Then the Lorentz equations (2.21)-(2.23) get the typical shape

ẗα +
∣∣α
βγ

∣∣ ṫβ ṫγ = 0, ẍi +
∣∣ i
jk

∣∣ ẋj ẋk = −1
4
gijUAjVA, V̇A = 0.

Note that in this case (g dependent on x only), the Berwald connection [11] has the
same coefficients as the Cartan connection, and hence the associated Lorentz curves,
h- and v-paths are described by the same equations. The Lorentz h-paths obey the
extra equations

ẏA + NA
β ṫβ + NA

j ẋj = 0, A ∈ Iv,

which write explicitely

ẏ(i
α) −

∣∣∣ γ
αβ

∣∣∣ y(i
γ)ṫβ +

(∣∣ i
jk

∣∣ y(k
α) +

1
4
gikhαβU(k

β)j

)
ẋj = 0.

As well, the Lorentz v-paths for the Cartan connection satisfy the extra condition
−VA = 2V̇A, having as solutions flat rays within the fibers of E - in accordance with
the particular case J1( R ,M) ≡ TM studied in [6].

d) In the ARLSU case (ARLS uniparametric case, for m = 1 and s = t1 = t, [2]),
for h11 = 1, we recapture the known results derived in [4, 6] for the tangent space
case. For this, after shifting the indices left by one unit (Ih2 = 1, n, Iv = n + 1, 2n),
yA ≡ y(i

1) not= yi, set locally h11 = 1 and we can use the Finsler-Lagrange tangent
space notations from [5].

If we consider the Lagrangian (1.1) of the particular form

L(x, y) = mcγij(x)yiyj +
2e

m
Ui(x)yi + Φ(x),(2.25)

with γij pseudo-Riemannian metric, U = Uidxi 1-form on M and Φ ∈ F (M), then
the fundamental tensor derived from L via (1.7) is

g̃(i
1)(j

1)(t, x, y) = gij(x) = mcγij(x),

the non-linear connection induced by L has the components

NA
1 = 0, N

(i
1)

j =
∣∣ i
jk

∣∣ yk + gikU(k
1)j , i = 1, n, A = n + 1, 2n,

where U(k
1) = e

mAk. In this case, the Cartan (1.13) and Berwald canonic connections
have just null and Christoffel (re-indexed) components. For ∇ Cartan connection, the
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Lorentz equations (2.22) confine to the known ones of Lagrange spaces ([5], [4, p.
171])

ẍi + 2Gi(x, y) = 0, yi =
dxi

ds
, i = 1,m(2.26)

of the Lagrangian spray derived from the Lagrangian L in (2.25) for Φ constant,

Gi =
1
2
γi

jkyjyk +
e

2m2c
γijA[j;k]y

k,

where ”; k” expresses the canonic covariant derivative on (M, γij).
We note that in the absence of the electromagnetic force FµA

, the equations (2.20)
rewritten in the form (2.26) become the equations of stationary curves of the con-
nection ∇. Hence, in the absence of the covector potential U , the equations (2.20)
become the equations of geodesics of the manifold M and the equations of h− paths
become the Lorentz equations.

3 Electromagnetic Lagrangian extremals

In the ARLS case the extremals of the energy action

E(L) =
∫

T

L(t, x, y) dvolT(3.27)

of the Lagrangian L in (1.1) are shown to satisfy the PDE system ([8])

hαβ(∂βy(i
α) + 2G

(i
α)

β ) = 0, i = 1, n.(3.28)

In (3.28), an essential role plays the spray G
(i

α)
β = 1G

(i
α)

β + 2G
(i

α)
β associated to L,

where




1G
(i

α)
β = − 1

2

∣∣∣ γ
αβ

∣∣∣ y(i
γ)

2G
(i

α)
β = 1

2

∣∣∣ i
jk

∣∣∣ y(j
α)y(k

β) + 1
4m g̃(i

α)(l
β)(U(l

ε)sy
(s
ε) + ∂εU(l

ε) + U(l
γ)

∣∣ ε
γε

∣∣− ∂lΦ),

which provides the canonic L-induced nonlinear connection N in (1.8) via

N
(i

α)
β = 2

∂(1G(i
α)

β )

∂y(j
γ)

y(j
γ), N

(i
α)

j = 2
∂(2G(i

δ)
ε hδε)

∂y(j
γ)

hαγ .

We note that in the ARLSU case for m = 1 and h11 = 1, using the conventions
above, the extremals of the Lagrangian action are characterized by the equations

ẍi +
∣∣ i
jk

∣∣ ẋj ẋk =
1
4
(F i

j yj + gij∂jΦ),

and for constant Φ these coincide with the extended Lorentz paths produced by the
Liouville tensor field.
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4 Numerical simulation

In the ARLS uniparametric case detailed above, consider n = 2, M endowed with
the Lagrangian L in (1.1) with g = mcγij , Φ = 0 and the potential Ū given by
Ū = ε(x1dx2 − x2dx1), ε ∈ R . Then, denoting by a = εe(m2c)−1 the control pa-
rameter of electromagnetid field strength, the appropriately rescaled Lorentz-type
equations (2.26) read

ẍi +
∣∣ i
jk

∣∣ ẋj ẋk = (−1)i+1a(gi1ẋ2 + gi2ẋ1), i = 1, 2.(4.29)

We exemplify further the influence of the electromagnetic force F derived from Ũ
via (2.24) on h-paths for three cases: R2, H2 and S2. Using Maple V programming
were obtained computer-drawn images representing the Lorentz-type sheaves of curves
(the left-bended lines in the drawings) which are obtained for fixed non-zero values
of a (a = −512 for Euclidean case, a = −1024 for the Poincare half-plane, a = 2 for
the sphere respectively).

R2 H2 S2

We note that, when the influence of the generalized electric potentials Ui(x) dis-
appears (i.e., for a = 0 regarded as a limit case), one obtains the sheaves of geodesics
of the manifold M (marked with thick lines). Hence the geodesics - the solutions
for a = 0 of the system (4.29) deform to Lorentz curves, under the controlled by a
influence of the generalized electromagnetic tensor field.
Acknowledgments. The author is grateful to Professor C.Udrişte for the
interesting insights on the present subject. The present work was partially supported
by Grant CNCSIS MEN 477 (75) / 2003.
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