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Abstract

Here we use elementary combinatorial arguments to give explicit formulae
and relations for some cohomology classes of moduli spaces of stable curves of
low genus.
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1 Introduction

Let g and n be non-negative integers such that 2g − 2 + n > 0. We denote by Mg,n

the moduli space of stable n-pointed genus g curves. Its points are in one-to-one cor-
respondence with isomorphism classes of pointed curves of arithmetic genus g curves
with simple nodes and finitely many automorphisms. Mg,n is a normal projective
variety of complex dimension 3g − 3 + n. It can be viewed as a complex-analytic
orbifold, in fact as a quotient of a smooth complete variety by a finite group (see [3],
[12]). Further details on the properties of Mg,n can be found, for instance, in [7], [13].
More generally, if P is a set with n elements, we will denote by Mg,P the space whose
elements are stable genus g curves with marked points indexed by P .

The fascinating geometry of Mg,n has been only partially understood. In many
instances, combinatorial arguments have been essential to prove various results in a
natural way (cfr. [6], [11]). However, little emphasis has been given to the development
of the combinatorics involved with moduli of curves, especially with its cohomology.

Here we obtain an explicit description for cohomology classes (in fact, algebraic)
of fundamental importance in all genera. In Section 3.2, we also describe such classes
in genus zero via the theory of hyperplane arrangements.

2 Preliminaries

For any g and P , |P | = n, in the range above, the collection of all moduli spaces is
naturally equipped with some relevant maps. We briefly recall their definition since
they will be used in what follows: for more details see, for example, [2].
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First of all, consider the projection

π : Mg,P
⋃
{q} →Mg,P ,(1)

which forgets the point q on any (n + 1)-pointed curve in the domain and contracts
unstable components, i.e., without finitely many automorphisms. We denote by σp,
p ∈ P , the canonical section of π and by Dp the corresponding divisor in Mg,P∪{q}.
The relative dualizing sheaf ωπ of the map (1) yields the cohomology classes:

ψp = c1(σ∗p(ωπ)), p ∈ P,

K = c1(ωπ(
∑

p∈P

Dp)).

The ψp’s are usually called universal cotangent classes. Following [1], the Mumford
classes are defined to be

κm = π∗(Km+1).(2)

Note that the push-forward in the last formula is well defined since the Poincaré
duality with rational coefficients holds for orbifolds. For P = ∅, the analogue of (2)
was first introduced in [13]. Another generalization to the case of n-pointed curves is
given by

κ̃m = π∗(c1(ωπ)m+1).

As shown in [2], the following relations hold:

κm = κ̃m +
∑

p∈P

ψm
p ,(3)

π∗(ψm+1
q ) = κm.(4)

The set of the ψp’s, κm’s, and κ̃m’s is called the set of Mumford-Morita-Miller
classes.

In addition to (1), further morphisms between moduli spaces of curves are de-
fined via the collection of stable graphs: see, for example, [2] for their definition and
properties. Here we just observe how to associate with them cohomology classes in
H∗(Mg,n,Q). With the same notation adopted in [2], for any stable graph G, choose
an ordering of the l(v) half-edges of G going out of each vertex v. Then consider the
morphisms

ξG :
∏

v∈V

Mg(v),l(v) →Mg,P ,(5)

where the g(v)’s are non-negative integers which label the vertices of G. A point in
the domain of ξG is the datum of an l(v)-pointed curve Cv for each v in the set of
vertices V of G. The image point is the P -labelled genus g curve that is obtained by
identifying the marked points of Cv which correspond to half-edges of G linked by
an edge. By definition, the map ξG does not depend on the ordering chosen for the
half-edges going out of each vertex. By properties of stable graphs, we have
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g =
∑

v∈V

g(v) + 1− |V |+ 1
2

∑

v∈V

(l(v)− |P |).(6)

For the purpose of what follows, we finally recall that for any stable graph G with
at least one edge the corresponding boundary class is given by

1
|Aut(G)|ξG,∗(1),

where Aut(G) is the automorphism group of G. These classes are usually referred to
as boundary classes since their Poincaré dual is supported on Mg,P −Mg,P , i.e., the
boundary of the moduli space of smooth P -labelled curves.

3 Relations among Mumford-Morita-Miller classes

In this section we show some explicit formulae for the classes ψp’s, κm’s in terms of
boundary classes. We basically extend previous work in [8] and [9].

3.1 The genus zero case

The structure of the cohomology ring of M0,n has been determined in [10]. For each
subset S⊆ {1, ..., n}, with |S| ≥ 2 and |Sc| ≥ 2, let δ0,S be the cohomology class dual
to the divisor of genus 0 curves with one node and two components with |S| and |Sc|
marked points, respectively. The cohomology ring of M0,n is a quotient of the free
Z-module

Z[δ0,S : S ⊆ {1, ..., n}, |S|, |Sc| ≥ 2].

This means that any class can be written as a linear combination of monomials in
the classes δ0,S ’s. Here we show how to use combinatorial arguments to obtain explicit
expressions for Mumford-Morita-Miller classes in any codimension.

Take P to be a set with n-elements and consider the moduli space M0,P . For the
ψp’s we recall that (see [2])

ψp =
∑

q1,q2 /∈S,
p∈S

δ0,S ,(7)

where p, q1, q2 are arbitrary elements in P .
Let Am(n) denote the collection of unordered m-ples (A1, ..., Am) of subsets Aj

⊂ P such that the following conditions are satisfied:

• for each Ak in (A1, ..., Am), |Ak| ≥ 2, |Ac
k| ≥ 2 and p, q /∈ Ak for any pair

p, q ∈ P ;

• for each k∈ {1, ...,m} and each choice of p, q ∈ P , Ak is not contained in any
subset S of P\{p, q}, with |S| = m;

• for each pair Ak, Al of an m-ple, one of the following conditions

Ak ⊂ Al, Al ⊂ Ak, Ak ⊂ Ac
l , Ac

l ⊂ Ak

is satisfied.
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For each such m-ple we define the following coefficient

c(A1, ..., Am) =




|A1 ∩ ... ∩Am|+ (−1)m, Ak ⊆ P \ S,

|A1 ∩ ... ∩Am| otherwise.

Theorem 1 In H∗(M0,n;Q), for each m, 1 ≤ m ≤ n− 3, we have
i)

ψm
p =

∑
p∈Ai, q1,q2 /∈Ai

A1,...,Am

δ0,A1 . . . δ0,Am
,

ii)

κm =
∑

(A1,...,Am)∈Am(n)

c(A1, ..., Am)δ0,A1 ...δ0,Am
.

Proof. i) The claim follows clearly from (7).
ii) Let πs : M0,P∪{s} → M0,P be the forgetful map. We prove the result by

induction on |P | = n. The base of the induction follows from the fact that κm = 0 on
M0,m+2 by dimensional calculations. Thus, we can assume n ≥ m + 2. Since (see [2])

κm = π∗s (κm) + ψm
q ,

by induction hypothesis and the relation which expresses ψq in terms of boundary
classes (see [1]),

κm =
∑

(A1,...,Am)∈Am(n)

c(A1, ..., Am)π∗q (δ0,A1 ...δ0,Am) + (
∑
s∈B,

p,q /∈B

δ0,B)m =

∑

(A1,...,Am)∈Am(n)

c(A1, ..., Am)π∗q (δ0,A1 ...δ0,Am) +
∑

A1,...,Am,

p,q /∈Ak,s∈Ak

δ0,A1 ...δ0,Am .(8)

The claim is proved if we show that the sum in (8) can be rewritten as

∑

(A′1,...,A′m)∈Am(n+1)

c(A′1, ..., A
′
m)δ0,A′1 ...δ0,A′m .

In fact, since (see [2])

π∗s (δ0,Al
) = δ0,Al

+ δ0,Al∪{s},

we just distinguish two cases:

1. s ∈ A′k, ∀k ∈ {1, ..., m};

2. s /∈ A′1 ∩ ... ∩A′m.
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In case 1 we can assume that A′k= Ak ∪ {s}. Therefore, by direct computations we
have

c(A′1, ..., A
′
m) = c(A1, ..., Am) + 1 = |A1 ∩ ... ∩Am|+ (−1)m + 1

= |A′1 ∩ ... ∩A′m|+ 1,

or

c(A′1, ..., A
′
m) = c(A1, ..., Am) + 1 = |A1 ∩ ... ∩Am|+ 1 = |A′1 ∩ ... ∩A′m|.

In case 2), we have c(A′1, ..., A
′
m) = c(A1, ..., Am) since there is no contribution to

the new coefficient coming from the expansion of ψm
q in terms of boundary classes;

hence the result follows.

2

3.1.1 An alternative description via hyperplane arrangements

Moduli space of pointed genus 0 curves can be constructed in terms of the De Concini-
Procesi models, i.e., via the theory of hyperplane arrangements. We omit their def-
inition since it is rather technical: for a detailed presentation see [4] and references
therein. Here we briefly recall the relationship between M0,n and these models so
to express the classes ψi and κi, 0 ≤ i ≤ n, in terms of the combinatorics of the
corresponding hyperplane arrangement.

The moduli space M0,n+1 can be viewed as the quotient of the set
{
(p0, ..., pn) ∈ P1 × ...×P1 : pi 6= pj , ∀i 6= j

}

modulo the group PGL(2,C) which acts componentwise - in the sequel, we consider
the marked points with indices in the set {0, 1, ..., n}. Note that this action identifies
the moduli space of (n + 1)-pointed rational curves with the set

{
(q1, ..., qn−2) ∈ P1 × ...×P1 : qi 6= qj , qi 6= 1, 0,∞}

.(9)

Let us now consider Cn with the standard scalar product denoted by (., .) and the
hyperplane arrangement given by the hyperplanes zij : xi−xj = 0, where xi ∈ (Cn)∗

are the coordinate functions. Moreover, be N the intersection of all the hyperplanes
and π : Cn → Cn/N := V the projection onto the quotient. In [4], and with the
same notation adopted there, the set in (3.1.1) is identified with the complement of
the projective arrangement An−1 := ∪h,k=1,...,nHhk, where Hhk = Ψ(π(zhk)), with Ψ
the projectivization map from V to P(V ).

This description allows constructing a De Concini-Procesi model which is denoted
by Y FAn−1

in the literature. With the same notation of [5], the cohomology of such a
model is generated over the integers by cohomology classes cA, where A ranges over
the subsets of {0, 1, . . . , n+1}. Furthermore, as proved in [4], Y FAn−1

is isomorphic to
M0,n+1. Let Φ be this isomorphism and denote by Φ∗ the map induced in cohomology.
Then

Φ∗(δ0,A) = cA,
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for A⊂ {1, ..., n}, and

−Φ∗(
∑

{i,j}⊂A⊂{1,...,n}
δ0,A) = c{1,...,n}

for every {i, j} ⊂ {1, ..., n}, i 6= j. Although this definiton may seem rather strange,
it is the natural correspondence between the second cohomology groups of M0,n+1

and Y FAn−1
.

We can now describe the image of the classes ψi’s and κi’s under the map Φ∗. To
this end, let us denote by τj the transposition of Sn+1 given by the exchange of the
two marked points with indices 0 and j. We recall that there is a natural action of
Sn+1 on M0,n+1 given as follows:

τj · [C; p0, p1, ..., pj , ..., pn] = [C; pj , p1, ..., p0, . . . , pn].

Proposition 2 Let z ∈ {0, 1, ..., n} and j ∈ {1, ..., n}. Then

Φ∗(ψz) = τz


 ∑

{j,z}⊂B⊂{1,...,n}
c{1,...,n}\B


 ,

with 1 ≤ |B| ≤ n− 2.

Proof. Since

τz


 ∑

{j,z}⊂B⊂{1,...,n}
c{1,...,n}\B


 =

∑

j /∈A⊂{1,...,n},z∈A

cA,

the result follows from Proposition 1.6 in [2].

2

By Theorem 1, and with the same notation, we immediately get the following

Proposition 3 For each m ≥ 0,

Φ∗(κm) =
∑

(A1,...,Am)∈Am(n)

c(A1, ..., Am)cA1 . . . cA2 .

3.2 The genus one case

In this section we give expressions for the Mumford classes and the powers of the
universal cotangent classes in genus one. To this end, let us consider the stable graphs
G1 and GS (S ⊂ P , |S| ≥ 2)
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As defined in (5), the morphisms associated with the graphs above will be denoted
by

ξG1 : M0,P∪{q1,q2} →M1,P

and
ξGS

: M0,S∪{r1} ×M1,Sc∪{r2} →M1,P .

As shown in [2], we have

ψq =
1
24

ξirr,∗(1) +
∑

q∈S,|S|≥2

ξS,∗(1), ∀p ∈ P.

In order to give relations in genus one we need some additional notation. If t is a
stable graph such that g(v) = 0 for each vertex v and the half-edges are labelled by
P ∪{a, b}, then we denote by L(t) the stable graph obtained from t by identifying the
half-edges of t labelled with a and b. Moreover, for a stable graph such that g(v) = 0
for each vertex v and the half-edges are labelled by P ∪ {q1}, we consider the stable
graph S(t) given as follows. Fix a subset S of P such that |S| ≥ 2. For such an
S, substitute in t the half-edge with label q1 with an edge that ends with a vertex v
(g(v) = 1 ) and with half-edges labelled by the elements of the set Sc, the complement
of S in P . Then

Theorem 4 i)

ψm+1
q =

∑
S1,...,Sm,

|Si|≥2

ξS1,∗(1) . . . ξSm,∗(1) +
m

24
ξirr,∗

∑
S1,...,Sm−1,

|Si|≥2

ξS1,∗(1) . . . ξSm−1,∗(1);

ii)

κm =
1
24

∑

t∈Gm−1,n+2

C(m− 1; a1, . . . , am, n + 2)ξL(t),∗(1)

+
∑

S,|S|≥2

∑

t∈Gm−1,|S|+1

C(m− 1; a1, . . . , am, |S|+ 1)ξS(t),∗(1),

where

C(m; a1, . . . , am+1, n) =
(m + 1)!(a1 − 1) . . . (am+1 − 1)a1 . . . am+1

n(n− 1)a1(a1 + a2) . . . (a1 + . . . + am)
.

Proof. i) By dimension computation, the Poincaré dual of the class ξirr,∗(1) is a point
in M1,1. Therefore, by pull-back under the map π : M1,n →M1,1 which forgets all
marked points but the last one, we have

(ξirr,∗(1))2 = 0

on M1,n for any n. This completes the proof.
ii) As proved in [8], the following recursive relation holds:

κm =
1
24

ξirr,∗(κm−1) +
∑

S,|S|≥2

ξS,∗(κm−1 ⊗ 1).(10)
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Let us denote by Gm,n the collection of P -labelled stable graphs t (|P | = n) such
that g(v) = 0 for each vertex v and with an ordering of the set of vertices. Additionally,
every graph in Gm,n has m edges - consequently m + 1 vertices - and each vertex has
at most two incident edges. As proved in [9],

κm =
∑

t∈Gm,n

C(m; a1, . . . , am+1, n)ξt,∗(1),(11)

where ai denotes the number of half-edges going out of the i-th vertex of t (1 ≤ i ≤
m + 1), and ξt is the map corresponding to t as defined in (5).

By combining (10) and (11), we get

κm =
1
24

∑

t∈Gm−1,n+2

C(m− 1; a1, . . . , am, n + 2)ξirr,∗
(
ξt,∗(1)

)
(12)

+
∑

S,|S|≥2

∑

t∈Gm−1,|S|+1

C(m− 1; a1, . . . , am, |S|+ 1)ξS(t),∗(ξt,∗ ⊗ 1).

By definition of ξirr and ξS , the claim follows.

2
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